

 Navigation

 	
 index

 	
 next |

 	Phonological CorpusTools 1.0.0 documentation

Welcome to Phonological CorpusTools’s documentation!

Contents:

	Introduction
	General Background

	Code and interfaces

	Downloading and installing
	Download

	Windows Installer

	Mac Executable

	Linux / Fallback instructions

	Loading in corpora
	Using a built-in corpus

	Creating a corpus

	Column-delimited files

	Running Text

	Interlinear Text

	TextGrids

	Other Standards

	Creating a corpus file on the command line

	Summary information about a corpus

	Subsetting a corpus

	Saving and exporting a corpus or feature file

	Setting preferences & options; Getting help and updates

	Example corpora
	The example corpus

	The Lemurian corpus

	Working with transcriptions and feature systems
	Required format of a feature file

	Downloadable transcription and feature choices

	Using a custom feature system

	Applying / editing feature systems

	Edit inventory categories

	Creating new tiers in the corpus

	Adding, editing, and removing words, columns, and tiers

	Phonological Search

	Sound Selection

	Environment Selection

	Feature Selection

	Pronunciation Variants
	About Pronunciation Variants:

	Creating Pronunciation Variants:

	Viewing Pronunciation Variants:

	Options for Pronunciation Variants:

	Exporting Pronunciation Variants:

	Phonotactic Probability
	About the function

	Method of calculation

	Calculating phonotactic probability in the GUI

	Classes and functions

	Functional Load
	About the function

	Method of calculation

	Calculating functional load in the GUI

	Implementing the functional load function on the command line

	Classes and functions

	Predictability of Distribution
	About the function

	Method of calculation

	Calculating predictability of distribution in the GUI

	Classes and functions

	Kullback-Leibler Divergence
	About the function

	Method of calculation

	Calculating Kullback-Leibler Divergence in the GUI

	Implementing the KL-divergence function on the command line

	Classes and functions

	String similarity
	About the function

	Method of calculation

	Calculating string similarity in the GUI

	Classes and functions

	Neighbourhood density
	About the functions

	Method of calculation

	Calculating neighbourhood density in the GUI

	Implementing the neighbourhood density function on the command line

	Classes and functions

	Frequency of alternation
	About the function

	Method of calculation

	Calculating frequency of alternation in the GUI

	Classes and functions

	Mutual Information
	About the function

	Method of calculation

	Calculating mutual information in the GUI

	Implementing the mutual information function on the command line

	Classes and functions

	Acoustic Similarity
	About the function

	Method of calculation

	Calculating acoustic similarity in the GUI

	Classes and functions

	Citing PCT and the algorithms used therein

	References

	API Reference
	Lexicon classes

	Speech corpus classes

	Corpus binaries

	Loading from CSV

	Export to CSV

	TextGrids

	Running text

	Interlinear gloss text

	Other standards

	Frequency of alternation

	Functional load

	Kullback-Leibler divergence

	Mutual information

	Neighborhood density

	Phonotactic probability

	Predictability of distribution

	Symbol similarity

	Release Notes
	CorpusTools 1.0.1 Release Notes

	CorpusTools 1.1.0 Release Notes

	CorpusTools 1.1.1 Release Notes

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Introduction

General Background

Phonological CorpusTools (PCT) is a freely available open-source tool
for doing phonological analysis on transcribed corpora.
For the latest information, please refer to the PCT website [http://phonologicalcorpustools.github.io/CorpusTools/]. PCT is intended to be an
analysis aid for researchers who are specifically interested in
investigating the relationships that may hold between individual
sounds in a language. There is an ever-increasing interest in
exploring the roles of frequency and usage in understanding
phonological phenomena (e.g., [Bybee2001], [Ernestus2011], [Frisch2011]),
but many corpora and existing corpus-analysis software tools are focused
on dialogue- and sentence-level analysis, and/or the computational skills
needed to efficiently handle large corpora can be daunting to learn.

PCT is designed with the phonologist in mind and has an easy-to-use
graphical user interface that requires no programming knowledge, though
it can also be used with a command-line interface,1 and all of the original
code is freely available for those who would like access to the source.
It specifically includes the following capabilities:

	Summary descriptions of a corpus, including type and token frequency of
individual segments in user-defined environments;

	Calculation of the phonotactic probability of a word, given the other
words that exist in the corpus (cf. [Vitevitch2004]);

	Calculation of functional load of individual pairs of sounds,
defined at either the segment or feature level (cf. [Hockett1966];
[Surendran2003]; [Wedel2013]);

	Calculation of the extent to which any pair of sounds is predictably
distributed given a set of environments that they can occur in, as a
measure of phonological contrastiveness (cf. [Hall2009], [Hall2012]; [Hall2013a]);

	Calculation of the Kullback-Leibler divergence between the distributions
of two sounds, again as a measure of phonological contrastiveness
(cf. [Peperkamp2006]);

	Calculation of the extent to which pairs of words are similar to each
other using either orthographic or phonetic transcription,
and calculation of neighbourhood density (cf. [Frisch2004], [Khorsi2012];
[Greenberg1964]; [Luce1998]; [Yao2011]);

	Approximation of the frequency with which two sounds alternate with each other,
given a measure of morphological relatedness (cf. [Silverman 2006]_,
[Johnson2010], [Lu2012]);

	Calculation of the mutual information between pairs of segments in the corpus
(cf. [Brent1999]; [Goldsmith2012]); and

	Calculation of the acoustic similarity between sounds or words,
derived from sound files, based on alignment of MFCCs (e.g., [Mielke2012])
or of logarithmically spaced amplitude envelopes (cf. [Lewandowski2012]).

The software can make use of pre-existing freely available corpora
(e.g., the IPHOD corpus; [IPHOD]), which are included with the
system, or a user may upload his or her own corpus in several formats.
First, lexical lists with transcription and token frequency information can be
directly uploaded; such a list is what is deemed a “corpus” by PCT. Second,
raw running text (orthographically and/or phonetically transcribed) can be
uploaded and turned into lexical lists in columnar format (corpora) for
subsequent analysis. Raw sound files accompanied by Praat TextGrids
[PRAAT] may also be uploaded for analyses of acoustic
similarity, and certain pre-existing special types of corpora can be uploaded natively (Buckeye [BUCKEYE], TIMIT [TIMIT]). Orthographic corpora can have their transcriptions “looked up”
in a pre-existing transcribed corpus of the same language.

Phonological analysis can be done using built-in feature charts based on
Chomsky & Halle [SPE] or Hayes [Hayes2009], or a user may create his or her
own specifications by either modifying these charts or uploading a new chart.
Feature specifications can be used to pull out separate “tiers” of segments for
analysis (e.g., consonants vs. vowels, all nasal elements, tonal contours, etc.).
PCT comes with IPA transcription installed, with characters mapped to the two feature
systems mentioned above. Again, users may create their own transcription-to-feature
mappings by modifying the existing ones or uploading a new transcription-to-feature
mapping file, and several alternative transcription-to-feature mapping files are
available for download.

Analysis can be done using type or token frequency, if token frequency is
available in the corpus. All analyses are presented both on screen and
saved to plain .txt files in user-specfied locations.

The following sections walk through the specifics of downloading, installing,
and using the various components of Phonological CorpusTools.
We will do our best to keep the software up to date and to answer any questions
you might have about it; questions, comments, and suggestions should be sent to
Kathleen Currie Hall.

Version 1.1 (July 2015) differs from version 1.0.1 (March 2015) in three main areas:

	Loading of corpora – The interface for corpus loading has been streamlined,
and users have more options for adjusting the interpretation of transcriptions
and columns as they initiate a corpus. Better support for interlinear glosses
and TextGrids is also provided.

	Specification of inventories, features, and environments – Inventories
can now be displayed in IPA-like charts based on user-specified features.
Feature selection in analysis functions has been streamlined and natural
class selection is better supported. Environment selection is now iterative
and more interactive.

	Pronunciation variants – Analysis functions now provide users with
options for how to handle pronunciation variants when they occur in a corpus.

Version 1.0 differs from the original release version (0.15, July 2014)
primarily in its user interface; we switched the GUI from TK to QT and
tried to reorganize the utility menus to be somewhat more intuitive.
For example, the original release version had all segment inventory views
in alphabetical order; segments are now arranged as closely as possible to
standard IPA chart layouts (based on their featural interpretations).
Additionally, we have added greater search and edit functions as well as
some additional analysis tools (phonotactic probability, mutual information,
neighbourhood density), and a greater ability to work with running text /
spontaneous speech corpora.

Code and interfaces

PCT is written in Python 3.4, and users are welcome to add on other
functionality as needed. The software works on any platform that supports
Python (Windows, Mac, Linux). All code is available on the
GitHub repository [https://github.com/PhonologicalCorpusTools/CorpusTools/]; the details for
getting access are given in Downloading and installing.

There is both a graphical user interface (GUI) and a command-line interface
for PCT. In the following sections, we generally discuss interface-independent
aspects of some functionality first, and then detail how to implement it in
both the GUI and the command line. All functions are available in the GUI;
many, but not all, are currently available in the command line due to
complications in entering in phonological transcriptions that match a
given corpus in a command-line interface.

The command-line interface is accessed using command line scripts that are
installed on your machine along with the core PCT GUI.

NOTE: If you did not install PCT on your computer but are instead running
the GUI through a binary file (executable), then the command line scripts
are not installed on your computer either. In order to run them, you will
need to download the PCT source code and then find the scripts within the
command_line subdirectory. These can then be run as scripts in Python 3.

The procedure for running command-line analysis scripts is essentially the
same for any analysis. First, open a Terminal window (on Mac OS X or Linux)
or a CygWin window (on Windows, can be downloaded at https://www.cygwin.com/).
Using the “cd” command, navigate to the directory containing your corpus file.
If the analysis you want to perform requires any additional input files, then
they must also be in this directory. (Instead of running the script from the
relevant file directory, you may also run scripts from any working directory as
long as you specify the full path to any files.) You then type the analysis
command into the Terminal and press enter/return to run the analysis. The first
(positional) argument after the name of the analysis script is always the name
of the corpus file.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Downloading and installing

PCT is currently available for Mac, PC, and Linux machines.
It can be downloaded from PCT releases page [https://github.com/PhonologicalCorpusTools/CorpusTools/releases]
using the following steps. Note that there are several dependencies that are
pre-requisites before PCT can function properly. For Mac and Windows machines,
we have created executable files that bundle most of the dependencies and the
PCT software itself into a single package. Using these is the easiest /
fastest way to get PCT up and running on your machine.

Download

	Go to the PCT releases page [https://github.com/PhonologicalCorpusTools/CorpusTools/releases].

	Click on the link for your operating system with the highest number (= most recent version).
As of June 2015, that is 1.1.

Windows Installer

	NOTE: This method requires that you are running a 64-bit version of windows.
You can check this in Control Panel -> System and Security -> System.

	Download the file called “corpustools-1.1.0-amd64.msi” (or similar,
for a more recent version), by clicking or right-clicking on the link.
This is an installer program.

	Run the downloaded installer program by double-clicking on it, wherever
it has been saved locally.

	PCT should now be available from your “Start” menu under “Programs.”

	If you run into trouble, try the “Fallback” instructions in below.

Mac Executable

	Download the file called ‘Phonological.CorpusTools-1.1.0.dmg’ by clicking or ctrl-clicking on
the link.

	Open the dmg file and drag the Phonological CorpusTools app into Applications.

	Phonological CorpusTools is now available in your Applications, and can be
opened as other applications. You may have to enable applications from
third-party developers in your security settings.

	If you run into trouble, try the “Fallback” instructions in below.

Linux / Fallback instructions

	Dependencies: You’ll first need to make sure all of the following
are installed. The third and fourth ones (NumPy and SciPy) are
needed only for the Acoustic Similarity functionality to work.

	Python 3.3 or higher [https://www.python.org/downloads/release/python-341/]

	NumPy [http://www.numpy.org/]

	SciPy [http://www.scipy.org/]

	(NB: If you are on Windows and can’t successfully use the acoustic
similarity module after installing NumPy and SciPy from the above sources,
you may want to try installing them from precompiled binaries [http://www.lfd.uci.edu/~gohlke/pythonlibs/].)

	Get the source code for PCT. Click on either the .zip or the .gz file
on the PCT releases page [https://github.com/PhonologicalCorpusTools/CorpusTools/releases] or the GitHub repository [https://github.com/PhonologicalCorpusTools/CorpusTools/],
to download the zipped or tarball version of the code, depending
on your preference.

	After expanding the file, you will find a file called setup.py
in the top level directory. Run it in one of the following ways:

	Double-click it. If this doesn’t work, access the file properties
and ensure that you have permission to run the file; if not,
give them to yourself. In Windows, this may require that you
open the file in Administrator mode (also accessible through
file properties). If your computer opens the .py file in a text
editor rather than running it, you can access the file properties
to set Python 3.x as the default program to use with run .py files.
If the file is opened in IDLE (a Python editor), you can use the
“Run” button in the IDLE interface to run the script instead.

	Open a terminal window and run the file. In Linux or Mac OS X,
there should be a Terminal application pre-installed. In Windows,
you may need to install Cygwin [https://www.cygwin.com/]. Once
the terminal window is open, nagivate to the top level CorpusTools
folder—the one that has setup.py in it. (Use the command ‘cd’
to navigate your filesystem; Google “terminal change directory” for
further instructions.) Once in the correct directory, run this
command: python3 setup.py install. You may lack proper
permissions to run this file, in which case on Linux or Mac OS X
you can instead run sudo python3 setup.py install. If Python 3.x
is the only version of Python on your system, it may be possible or
necessary to use the command python rather than python3.

	Phonological CorpusTools should now be installed! Run it from a
terminal window using the command pct. You can also open a
“Run” dialogue and use the command pct there. In Windows, the
Run tool is usually found in All Programs -> Accessories.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Loading in corpora

In order to use the analysis functions in PCT, you’ll first need to open
up a corpus. When we say a “corpus” in PCT, we mean a file that has the
following basic structure: a list of words with other possible information
about each: e.g., its transcription, its frequency of occurrence, its
lexical category, its syllable structure, etc. These are in columnar format;
e.g., loaded from a CSV or tab-delimited text file. (See more at Required format of corpus.)

There are five possible ways of getting a corpus in PCT:

	Use one of the built-in corpora to get started immediately. You can
choose between two small, entirely invented corpora that have various
parameters (see Example corpora) or use the Irvine Phonotactic
Online Dictionary of English [IPHOD];

	Use a corpus in the above format that is independently stored on your
local computer;

	Create a corpus from running text (e.g., straight transcriptions of
speech or interlinear texts);

	Create a corpus from Praat TextGrids [PRAAT];

	Import a corpus from your own local copy of another standard corpus
(currently, we support the Buckeye corpus [BUCKEYE] and the
TIMIT corpus [TIMIT]).

Each of these options is discussed in more detail below.

Using a built-in corpus

To use a built-in corpus, simply go to the “File” menu and select
“Load corpus...” from the list, which will open the “Load corpora” dialogue box.

The first time you want to use a built-in corpus, you’ll need to download it
(from a Dropbox link accessed by PCT internally); you must therefore be
connected to the internet to complete this step. To do so, click on
“Download example corpora” from the right-hand menu. This will allow
you to download either of the two example corpora (one is called “example” and the other called “Lemurian” (both are entirely made up; see Example corpora) and/or the IPHOD corpus
[IPHOD]. Note that the version of the IPHOD corpus that is
contained here has been altered from the freely downloadable version [http://www.iphod.com/], in that it (1) does not have the derived columns and
(2) has been re-formatted as a .corpus file for easy reading by PCT.
It also contains only the following information: word, transcription,
and token frequency (from the SUBTLEX corpus [SUBTLEX]).
Please note that if you use the IPHOD corpus, you should use the following
citation (see more on citing corpora and functions of PCT in Citing PCT and the algorithms used therein):

Vaden, K. I., Halpin, H. R., Hickok, G. S. (2009). Irvine Phonotactic Online
Dictionary, Version 2.0. [Data file]. Available from http://www.iphod.com/.

After the corpus has been downloaded, it appears in the lefthand side of
the “Load corpora” dialogue box. Simply select the corpus and click on
“Load selected corpus” at the bottom of the dialogue box. Once these
corpora have been downloaded once, you don’t have to do so again; they
will be saved automatically to your local system unless and until you
delete them. On subsequent loadings of the PCT software, you will still
see these corpora listed in the lefthand side of the “Load corpora” dialogue
box, as in the following diagram:

[image: _images/loadcorpus.png]
The example corpora and the included version of the IPHOD corpus include
phonetic transcriptions in IPA, and are by default interpreted either
using the feature system of [Mielke2012], which in turn is based on
SPE features [SPE] [this is the default for the example corpus], or using
the feature system suggested by [Hayes2009] [this is the default
for the IPHOD corpus and the Lemurian corpus]. These systems are fully functional for doing subsequent
analyses. Note, however, that this is a built-in functionality of these
particular corpora, and does not allow you to use SPE or Hayes features
with other corpora. To use SPE features with other corpora, or to change
the feature system associated with a built-in corpus, you’ll need to
download the actual feature files, as described in
Working with transcriptions and feature systems. Features can be used
for defining classes of sounds (e.g., creating separate tiers for
different types of segments) and for defining environments (e.g., the
environments in which segments might occur, for use in calculating their
predictability of distribution).

The corpus may take several seconds to load, but will eventually appear;
the following is the example corpus:

[image: _images/loadexample.png]
Note that the name of the corpus and the current feature system are shown
at the bottom right-hand corner of the screen for easy reference. Summary information about a corpus
gives more detail on how to find out summary information about your
corpus. Typing a word or part-word in the “search” box takes you to each
successive occurrence of that word in the corpus (hit “return” once to see
the first instance; hit “return” again to see the second, etc.). Note that the
“search” box searches only the “Spelling” column of the corpus. To do a
phonological search, please use the “Phonological search” function under
the “Corpus” menu (see detailed discussion in Phonological Search).

For more details on the structure of the Lemurian corpus, which has been built to show particular kinds of phenomena that may be of interest to PCT users, please see the section on The Lemurian corpus.

Creating a corpus

It is also possible to create a corpus within PCT. These can be pre-formatted columnar corpora or corpora that are compiled from running text, TextGrids, or special corpus formats. It may be helpful to first load the relevant feature system for your corpus into PCT, so that the transcriptions in your corpus can be interpreted; detailed instructions for doing this are given in Working with transcriptions and feature systems (note that the corpus can be loaded in without featural interpretation, and features added later).

In all cases, to use a custom corpus, click on “File” / “Load corpus...” and then
choose “Import corpus.” The “Import corpus” dialogue box opens up.

At the top of the box, enter the path for the file that will form the corpus or select it using “Choose file...” and navigating to it from a system dialogue box. If the corpus is being created from a series of .txt files or .TextGrid files or other special files instead of a single file (e.g., being compiled from multiple files of running text or specially formatted corpora such as the Buckeye corpus), you can instead choose the directory that contains the files. All files that PCT thinks are plausible will be selected, ignoring other files. For example, if you have both .txt and .pdf files in a directory, only the .txt files will be selected. If there are both .txt and .TextGrid files (both of which could be used by PCT), it will read in only the one that has a greater number of instances in the directory. That is, if there are more .TextGrid files than .txt files, it will assume it should read the .TextGrid files (or vice versa). If you have selected a directory, you can hover the mouse over the box labeled “Mouseover for included files” to see a pop-up list of exactly which files in a directory have been chosen. Obviously, you can manually force PCT to read in all of your intended files by simply putting all and only those files into a single directory. Note that for a pre-formatted columnar corpus, a single file must be chosen, rather than a directory of files.

Enter a name for the corpus in the box to the right of the corpus source selection. (Note that on some screens, the box may initially appear to be absent; simply re-size the “Import corpus” dialogue box to make it appear.)

PCT will automatically detect what kind of file type you have selected and select the tab for the corpus type that it thinks most likely. For .txt files, it will default to assuming it is a column-delimited file, but you can easily select the “running text” or “interlinear text” tabs instead. For .TextGrid files, it will take you to the TextGrid tab; if it detects a directory of Buckeye or TIMIT files, it will take you to the “Other standards” tab. The choices within each of these tabs is described below: Column-delimited files; Running Text; Interlinear Text; TextGrids; Other Standards

Column-delimited files

If you have a corpus that is in
the appropriate format (see Required format of corpus) and stored independently on your
computer, you can read it in as a column-delimited file.

Once you have selected the file path and named the corpus (see Creating a corpus)
, make sure that the “Column-delimited file” tab is selected. PCT will
automatically try to figure out what delimiter (e.g., comma, tab) is used to
separate columns, but you can also enter it manually (e.g., a comma (,) or a
tab (t)). Any symbol can be used; PCT will simply break
elements at that symbol, so whatever symbol is used should be used only to
delimit columns within the corpus.

If there is a column in the corpus that shows phonetic transcription, choose
which feature system you would like to use. As noted above, in order for
there to be feature systems to choose from, you must first have loaded
them into PCT (Working with transcriptions and feature systems). If you haven’t
yet added any, you may still import the corpus and then add them later.

On the right-hand side of the “Import corpus” dialogue box, you will see a
“Parsing preview” window. This shows each of the columns in the corpus and
allows you to specify particular parameters for each one. For details on
this, please see the section on Parsing Parameters.

Once all selections have been made, click “Ok.” PCT will process the corpus
(depending on how big it is, this may take a few minutes). It will then
appear listed in the “Available corpora” window in the “Load corpus”
dialogue box; you can select it and then click “Load selected corpus” to open it.

Note: the processed version of the corpus is stored in a .corpus file
and automatically lives in a “CORPUS” folder in Documents / PCT / CorpusTools
on your hard drive. See Preferences for information on how to change this.

See also Logging / Saving Parsing Parameters for information about how the parameters you picked
when loading the corpus are temporarily saved.

Below is a picture of the “Import corpus” dialogue box set up to load in
a .csv file with orthography, transcription, and frequency columns:

[image: _images/importcsv1.png]
And here is the “Parsing settings” window of the transcription column:

[image: _images/parsingsettings.png]

Running Text

It is also possible to have PCT create a corpus for you from running text,
either in orthographic or transcribed form. If the text is orthographic,
of course, then segmental / phonological analysis won’t be possible, but
if the text is itself a transcription, then all subsequent analysis functions
are available. (Please see the section on Interlinear Text for running texts that interleave orthographic and phonetic transcriptions.)

Once you have selected the file path or directory and named the corpus
(see Creating a corpus), make sure that the “Running text” tab is
selected. Select whether the text is spelling (“Orthography”) or
phonetic transcription (“Transcribed”).

If the running text is transcribed, choose which feature system you would
like to use. As noted above, in order for there to be feature systems
to choose from, you must first have loaded them into PCT
(Working with transcriptions and feature systems). If you haven’t yet added
any, you may still import the corpus and then add them later.

If the running text is orthographic, and you have a corpus that contains
transcriptions for the language of the running text, you can have PCT look
up the transcriptions of words in that “support corpus.” This must be a
corpus that has already been created in PCT. For example, you could first
download the IPHOD corpus (see Using a built-in corpus) and then ask
PCT to create a corpus from a .txt file that contains English prose,
looking up each word’s transcription in the IPHOD corpus. You can specify
that case should be ignored during lookup (e.g., to allow PCT to find the
transcriptions of words even if they happen to be capitalized at the
beginning of sentences in the running text).

At the right-hand side of the “Import corpus” dialogue box, you will see
a “Parsing preview” window for the column of the corpus that will result
from the running text. (The frequency of individual words in the text
will be created automatically.) Please see the section on
Parsing Parameters for details on how to make choices in this window.

Once all selections have been made, click “Ok.” PCT will process the
corpus (depending on how big it is, this may take a few minutes). It
will then appear listed in the “Available corpora” window in the
“Load corpus” dialogue box; you can select it and then click
“Load selected corpus” to open it.

Note: the processed version of the corpus is stored in a .corpus file
and automatically lives in a “CORPUS” folder in Documents / PCT / CorpusTools
on your hard drive. See Preferences for information on how to change this.

See also Logging / Saving Parsing Parameters for information about how the parameters you picked
when loading the corpus are temporarily saved.

Interlinear Text

In addition to plain running text (Running Text), PCT also supports
building corpora from interlinear texts, e.g., those with spelling and
transcription on alternating lines. Interlinear texts may have any number
of repeating lines.

Once you have selected the file path or directory and named the corpus
(see Creating a corpus), make sure that the “Interlinear text” tab is selected.

PCT will start by automatically inspecting the text for characteristics
that seem to repeat on particular sets of lines, to figure out how many
lines there are per “unit.” E.g., a text that has spelling on the first
line, transcription on the second, and glosses on the third will be
automatically detected as having 3 lines per unit. The number can also
be specified manually. Note that the text must maintain this pattern
throughout; deviations will cause errors in how PCT reads in the data.

If the text is transcribed, choose which feature system you would like to use.
As noted above, in order for there to be feature systems to choose from,
you must first have loaded them into PCT (Working with transcriptions and feature systems).
If you haven’t yet added any, you may still import the corpus and then add them later.

On the right hand side of the dialogue box, you’ll see a “Parsing preview”
window which allows you to inspect each line of the gloss and specify how
that line is interpreted. Please see the section on Parsing Parameters
for details on how to make choices in this window.

Once all selections have been made, click “Ok.” PCT will process the corpus
(depending on how big it is, this may take a few minutes). It will then
appear listed in the “Available corpora” window in the “Load corpus” dialogue
box; you can select it and then click “Load selected corpus” to open it.

Note: the processed version of the corpus is stored in a .corpus file and
automatically lives in a “CORPUS” folder in Documents / PCT / CorpusTools
on your hard drive. See Preferences for information on how to change this.

See also Logging / Saving Parsing Parameters for information about how the parameters you
picked when loading the corpus are temporarily saved.

An example of the “Import corpus” dialogue box set up for loading in a
3-line interlinear Gitksan text:

[image: _images/ilg_loading1.png]

TextGrids

PCT can also be used to create corpora from a collection of Praat
TextGrids [PRAAT]. This is particularly useful for creating spontaneous
speech corpora from recordings, especially if the transcription is
based on what was actually spoken rather than on canonical forms of
each word – PCT can keep track of the individual pronunciation variants
associated with individual words (see Pronunciation Variants).

Once you have selected the file path or directory and named the corpus
(see Creating a corpus), make sure that the “TextGrid” tab is selected
(this should happen automatically if the file extension(s) is .TextGrid).

If any of the tiers in the TextGrid is a transcription tier, choose which
feature system you would like to use. As noted above, in order for there
to be feature systems to choose from, you must first have loaded them into
PCT (Working with transcriptions and feature systems). If you haven’t yet added
any, you may still import the corpus and then add them later.

If any of the tiers in the TextGrid is orthographic, and you have a corpus
that contains transcriptions for the language of the text, you can have PCT
look up the transcriptions of words in that “support corpus.” This must be a
corpus that has already been created in PCT. For example, you could first
download the IPHOD corpus (see Using a built-in corpus) and then ask PCT to
create a corpus from a .txt file that contains English prose, looking up
each word’s transcription in the IPHOD corpus. You can specify that case
should be ignored during lookup (e.g., to allow PCT to find the transcriptions
of words even if they happen to be capitalized at the beginning of sentences
in the running text).

At the right-hand side of the “Import corpus” dialogue box, you’ll see a
“Parsing preview” window. This will give you choices for how to parse each
tier of the TextGrid, labelled with the original names of the tiers. Please
see the section on Parsing Parameters for details on how to make
choices in this window.

Once all selections have been made, click “Ok.” PCT will process the corpus
(depending on how big it is, this may take a few minutes). It will then appear
listed in the “Available corpora” window in the “Load corpus” dialogue box;
you can select it and then click “Load selected corpus” to open it.

Note: the processed version of the corpus is stored in a .corpus file and
automatically lives in a “CORPUS” folder in Documents / PCT / CorpusTools
on your hard drive. See Preferences for information on how to change this.

See also Logging / Saving Parsing Parameters for information about how the parameters you picked
when loading the corpus are temporarily saved.

Other Standards

Finally, PCT comes pre-equipped to handle certain other standard corpus types.
At the moment, the only supported standards are the Buckeye corpus [BUCKEYE] and
the TIMIT corpus [TIMIT]. You must obtain your own copy of either of these
corpora through their usual means and store it locally; PCT simply gives you a
way to easily open these corpora in the standard PCT format.

When selecting the corpus source, navigate to the directory where the
Buckeye or TIMIT files are stored. PCT will automatically detect the
format of files in the directory and select the “Other Standards” tab.
Within that tab, it will also automatically select the file format.

If the text is transcribed, choose which feature system you would like to
use. As noted above, in order for there to be feature systems to choose
from, you must first have loaded them into PCT
(Working with transcriptions and feature systems). If you haven’t yet added any,
you may still import the corpus and then add them later. There is an
option to download a Hayes-style feature system [Hayes2009] for the Buckeye
corpus transcriptions.

At the right-hand side of the “Import corpus” dialogue box, you’ll see a
“Parsing preview” window. This will give you choices for how to parse each
part of the original corpus. Please see the section on Parsing Parameters
for details on how to make choices in this window.

Once all selections have been made, click “Ok.” PCT will process the corpus
(depending on how big it is, this may take a few minutes). It will then appear
listed in the “Available corpora” window in the “Load corpus” dialogue box;
you can select it and then click “Load selected corpus” to open it.

Note: the processed version of the corpus is stored in a .corpus file and
automatically lives in a “CORPUS” folder in Documents / PCT / CorpusTools
on your hard drive. See Preferences for information on how to change this.

See also Logging / Saving Parsing Parameters for information about how the parameters you
picked when loading the corpus are temporarily saved.

Required format of corpus

In order to use your own corpus, it must have certain properties.
First, it should be some plain text file (e.g., .txt, .csv); it cannot,
for example, be a .doc or .pdf file. The file should be set up in columns
(e.g., imported from a spreadsheet) and be delimited with some uniform character
(tab, comma, backslash, etc.). The names of most columns of information
can be anything you like, but the column representing common spelling of
the word should be called “spelling”; that with transcription should be
called “transcription”; and that with token frequency should be called
“frequency.” All algorithms for doing corpus analysis will assume these
column names. If, for example, you were using a corpus that had different
frequency columns for total frequency vs. the frequency of occurrence of
the word in its lowercase form (cf. the SUBTLEX corpus), then whichever
column is to be used for token frequency calculations should simply be
labelled “frequency.”

Parsing Parameters

This section outlines the choices that can be made in the “Parsing Preview”
section of the import corpus dialogue box. In order for this section to be
available, you need to have first started to import a corpus and selected a
file, as described in the section on Creating a corpus.

	Name: Specify the name of the column. If you are importing from a
column-delimited file or a TextGrid with tiers, PCT will default to the
name of the column / tier that is there. If you are reading from a running
text or interlinear gloss file, and have specified that the file is either
orthographic or transcribed, PCT will default to “Spelling” or
“Transcription,” respectively. You may also manually enter the name.

	Annotation type: Specify what type of information the column will
contain. The default is simply a numeric or character column, depending
on what type of information PCT automatically detects. IMPORTANT:
You should specify which column you want PCT to treat as the “Orthography”
and “Transcription” columns – without these named annotation types, some
of the functions in PCT will not work, as they call on these particular
types of columns.

	Word association: Specify whether the information in the column
should be associated with lexical items or should be allowed to vary
within lexical items. Most types of information will be associated with
lexical items (e.g., spelling, frequency). There are some kinds of
information that do vary depending on the specific token, however,
such as pronunciation variants of individual words or the identity
of the speaker of an individual token. These are most likely to
arise when creating a corpus from a TextGrid that has a tier for
lexical items (e.g., based on spelling on canonical transcriptions)
and then a separate tier that will show the characteristics of
particular tokens (similar structures may be found with interlinear
glosses). See also Pronunciation Variants and specifically
Creating Pronunciation Variants:.

	Delimiters and Special Characters: For transcription and orthography
columns, transcription and morpheme delimiters as well as any special
characters are previewed at the right-hand side of the column informatin
box. By clicking on “Edit parsing settings,” you can edit these, as follows:

	Example: At the top of the “parsing” dialogue box, you will see
an example of the entries in the column, to remind yourself of what
sort of entries you are dealing with.

	Transcription delimiter: If your transcriptions are delimited
(i.e., have special characters that indicate segment breaks, as
in [t.ai.d] for the word ‘tide,’ you can enter the delimiting
character here). PCT will automatically search for this delimiter,
but you may adjust it manually as well. For more on understanding
complex transcriptions, see Complex transcriptions (Digraphs and other multi-character sequences).

	Morpheme delimiter: If your transcriptions include a morpheme
delimiter (i.e., have special characters that indicate morpheme breaks,
as in [ri-du] for the word ‘redo,’ you can enter the delimiting character
here. PCT will automatically search for this delimiter, but you may
adjust it manually as well.

	Number parsing: If PCT detects that there are numbers in the
transcriptions, you have several options. Sometimes, numbers are
simply used as alternatives for segmental transcriptions (e.g., [2]
is used in the Lexique corpus [LEXIQUE] for IPA [ø]); in this case,
simply select that they should be treated the “Same as other characters.”
In other cases, numbers may be used to indicate tone (e.g.,
[l.ei6.d.a1.k.s.eoi3] ‘profits tax’ might be used in a Cantonese corpus
like the Hong Kong Cantonese Adult Language Corpus [HKCAC] to indicate
the tone number associated with each vowel). In this case, select that
number parsing should be “Tone.” Finally, numbers might be used to
indicate stress (e.g., [EH2.R.OW0.D.AY0.N.AE1.M.IH0.K] is the
representation of the word “aerodynamic” in the IPHOD corpus [IPHOD]
using CMU [CMU] transcriptions that include stress).

	Punctuation to ignore: If there are punctuation marks in the file,
and these have not already been specified as being used as either
transcription of morpheme delimiters, then they will be listed as
possible punctuation marks that PCT can ignore. Ignoring punctuation
allows PCT to compile an accurate count of unique words, especially
from running texts; for example, the words “example” and “example,”
should be treated as two tokens of the same word, ignoring the comma
at the end of the second one. Punctuation can be included, however;
this might be desirable in a case where a punctuation symbol is being
used within the transcription system (e.g., [!] used for a retroflex click).
Each symbol can be ignored or included as needed. (Clicking on the
symbol so that it is selected makes PCT IGNORE the symbol in the
corpus creation.)

	Multicharacter segments: See the discussion in
Constructed multicharacter sequences in the section on
Complex transcriptions (Digraphs and other multi-character sequences) for details.

Complex transcriptions (Digraphs and other multi-character sequences)

There is no way for PCT to know automatically when a single sound is
represented by a sequence of multiple characters – e.g., that the digraphs
[aɪ], [tʰ], [xw], [p’], [tʃ], and [iː] are intended to represent single
sounds rather than sequences of two sounds. There are currently three
possible ways of ensuring that characters are interpreted correctly:

	One-to-one transcriptions: The first way is to use a transcription
system with a one-to-one correspondence between sounds and symbols,
such as DISC. If you need to create a novel transcription system in
order to accomplish this (e.g., using [A] to represent [aɪ] and [2]
to represent [tʰ], etc.), you may certainly do so; it is then necessary
to create a novel feature file so that PCT can interpret your symbols
using known features. See detailed instructions on how to do this in
Downloadable transcription and feature choices. The word tide in American English might then be transcribed as
[2Ad]. This is a relatively easy solution to implement by using
find-and-replace in a text editing software, though it does result
in less easily human-readable transcriptions.

	Delimited transcriptions: The second way is to use a standard
transcription system, such as IPA, but to delimit every unitary
sound with a consistent mark that is not otherwise used in the
transcription system (e.g., a period). Thus the word tide in
American English might be transcribed in IPA as [tʰ.aɪ.d], with
periods around every sound that is to be treated as a single unit.
When creating the corpus, PCT will give you the option of specifying
what the character is. PCT will then read in all elements between
delimiting characters as members of a single “segment” object, which
can be looked up in a standard feature file (either an included one
or a user-defined one; see Using a custom feature system). This solution makes it easy to
read transcribed words, but can be more labour-intensive to implement
without knowledge of more sophisticated searching options (e.g.,
using regular expressions or other text manipulation coding) to
automatically insert delimiters in the appropriate places given a
list of complex segments. A first pass can be done using, e.g.,
commands to find “aɪ” and replace it with “.aɪ.” – but delimiters
will also have to be added between the remaining single characters,
without interrupting the digraphs.

Constructed multicharacter sequences

The third option is to tell PCT what the set ofmulticharacter sequences is in
your corpus manually, and then to have PCT automatically
identify these when it creates the corpus. This can be done by editing
the parsing settings for a column during the import of a corpus. In the
“Import corpus” dialogue box, there is an option to edit the parsing
settings for each column in the corpus. At the bottom there is an option
for listing multicharacter segments in the corpus. You may enter these
manually, separated by commas, or choose “Construct a segment” to have
help from PCT. If you are entering them manually, you may copy and paste
from other documents (e.g., if you have created a list of such sequences
independently). If you choose “Construct a segment,” PCT will scan the
selected file for single
characters and present these to you as options for constructing
multi-character segments from.

For example, in the following box, all of the single characters
in a Gitksan text file are presented, and can be selected sequentially
to create the appropriate multi-character segments. This method is somewhat more
labour-intensive in terms of knowing ahead of time what all the
multi-character segments are and being able to list them, but ensures that all
such occurrences are found in the text file. Note, however, that
if there’s a distinction to be made between a sequence of characters
and a digraph (e.g., [tʃ] as a sequence in great ship vs. as an
affricate in grey chip), this method will be unable to make that
distinction; all instances will be treated as multi-character segments.
Each multi-character segment can be as long as you like. If there are
shorter sequences that are subsets of longer sequences, PCT will
automatically look for the longer sequences first, and separate them
out; it will then scan for the shorter sequences. E.g., it will search
for and delimit [tsʷ’] before it searches for [tsʷ], regardless of the
order in which the sequences are entered. Note that the list of
multicharacter segments is temporarily saved in a log file for
the current PCT session; you may want to open the log file and copy
and paste the set of multicharacter segments to a new file for your
own later use. For instance, this is useful for times when you may want
to re-create the corpus with different settings or formatting and don’t
want to have to re-construct all the multi-character sequences by hand,
as the entire list of multicharacter segments can simply be copy-pasted
into the parsing dialogue box. See details on this feature in the
Logging / Saving Parsing Parameters section.

Logging / Saving Parsing Parameters

When you import a new corpus into PCT, there are many parameters that you choose, such as the name of the corpus, the type of corpus, the various delimiters, ignored punctuation, multicharacter sequences, etc. – see Creating a corpus. Sometimes, you may find it necessary to tweak the parameters originally chosen once you’ve imported a corpus and loaded it in (for instance, you might realize that you forgot a particular digraph when you were specifying multicharacter segments). PCT automatically keeps a temporary log of the import settings on any given session. You can, for example, copy and paste the set of digraphs from this log to save and re-use in future sessions, rather than having to re-create them from scratch just to add a new one in. To limit the size of the log file, though, PCT will overwrite it every time PCT is re-launched with a new corpus import, so any information that is important should be saved from the log file manually.

To access the log file, go to the directory where your PCT files are stored. By default, this is Documents / PCT / CorpusTools, but you can change this location; to do so, see the Preferences section. Within this directory, click on the “log” folder; you will see a pct_gui.log file. This can be opened in any text editor. Information from this file can be copied and pasted into a separate document that can be saved for future reference.

Here’s an example of the log file after importing a 3-line interlinear gloss file of Gitksan:

[image: _images/pctguilog.png]
The following shows an example of a transcribed Gitksan story transformed
into a (small!) corpus (with grateful acknowledgement to Barbara Sennott
and the UBC Gitksan language research group, headed by Lisa Matthewson &
Henry Davis, for granting permission to use this text):

	The original transcribed story:

[image: _images/gitksanoriginal.png]

	The transcription delimited with periods to show unitary characters:

[image: _images/gitksandelimited.png]

	The dialogue boxes for creating the corpus from text. Note that hyphens
and equal signs, which delimit morphological boundaries in the original,
have been ignored during the read-in. A feature system called gitksan2hayes_delimited, which maps the delimited transcription system used in this example to the features given
in [Hayes2009], has already been loaded into PCT (see Using a custom feature system), and so is selected here. In this case, the multicharacter segments are indicated manually.

[image: _images/gitksanorthcorpus1.png]
[image: _images/gitksanparsing.png]

	The resulting corpus, ready for subsequent analysis:

[image: _images/gitksanloaded.png]
The corpus appears on the left, in the familiar columnar format. The
original text of the corpus appears at the right. Right-clicking on
a word in the corpus list gives you the option to “Find all tokens”
in the running text; these words will be highlighted. Similarly,
right-clicking a word in the running text gives you the option to
“Look up word,” which will highlight the word’s entry in the corpus list.

Here is an example of creating a corpus based on three .TextGrid files
from the Corpus of Spontaneous Japanese [CSJ]. Note that the hovering over the box labelled “Mouseover for included files” shows a list of the names of the files in the chosen directory. In the “parsing preview” window, each set of boxes corresponds to one tier of the TextGrids, and the original name of the TextGrid is shown at the top (e.g., “word,” “seg”). Note that here, the orthographic tier is associated with the lexical item, while the transcription tier is allowed wot vary within lexical item, such that pronunciation variants are kept track of.

[image: _images/importspontaneous.png]
Once the TextGrids have been processed, they appear in a window such as
the following. The regular corpus view is in the centre, with frequency
counts aggregated over the entire set of speakers / TextGrids. Note that
the transcription column may be blank for many words; this is because in
spontaneous speech, the citation / spelled words often have multiple
different transcribed forms in the corpus itself. To see these various
transcriptions, right-click on any word in the corpus and select “List
pronunciation variants.” A new dialogue box will pop up that shows the
individual pronunciation variants that occur in the corpus for that word,
along with their token frequencies. (See also Pronunciation Variants.)

[image: _images/pronunciationvariant.png]
In this example, each TextGrid is interpreted as belonging to a different
speaker, and these individual speakers are listed on the left. Clicking
on one of the speakers shows the transcript of that speaker’s speech in
a box on the right. This is not a corpus, but rather a sequential
listing of each word that was extracted, along with the transcription
and the timestamp of the beginning of that word in the TextGrid.
Right-clicking on a word in this list will give you the option to
look up the word’s summary entry in the corpus itself, which apears in
the centre. Right-clicking a word
in the overall corpus will give you the option to “Find all tokens” of
that word in the transcriptions, where they will simply be highlighted.

Creating a corpus file on the command line

In order to create a corpus file on the command line, you must enter a
command in the following format into your Terminal:

pct_corpus TEXTFILE FEATUREFILE

...where TEXTFILE is the name of your input text file and FEATUREFILE
is the name of your feature file. You may specify file names using
just the file name itself (plus extension) if your current working
directory contains the files; alternatively, you can specify the full
path to these files. Please do not mix short and full paths. You may also
use command line options to change the column delimiter character or
segment delimiter character from their defaults (\t and '',
respectively). Descriptions of these arguments can be viewed by
running pct_corpus -h or pct_corpus --help. The help text from
this command is copied below, augmented with specifications of default values:

Positional arguments:

	
-h

	
--help

	Show this help message and exit

	
-d DELIMITER

	
--delimiter DELIMITER

	Character delimiting columns in input file, defaults to \t

	
-t TRANS_DELIMITER

	
--trans_delimiter TRANS_DELIMITER

	Character delimiting segments in input file, defaults to the empty string

EXAMPLE:

If your pre-formatted text file is called mytext.txt and your features
are hayes.feature, and if mytext.txt uses ; as column delimiters and .
as segment delimiters, to create a corpus file, you would need to run
the following command:

pct_corpus mytext.txt hayes.feature -d ; -t .

Summary information about a corpus

Phonological CorpusTools allows you to get summary information about
your corpus at any time. To do so, go to “Corpus” / “Summary.”

	General information: At the top of the “Corpus summary” dialogue box,
you’ll see the name of the corpus, the feature system currently being
used, and the number of word types (entries) in the corpus.

	Inventory: Under the “Inventory” tab, there will generally be three
sections, “Consonants,” “Vowels,” and “Other.” (Note that this assumes
there is an interpretable feature system being used; if not, then all
elements in the inventory will be shown together.) If there is a feature
system in place, consonants and vowels will be arranged in a manner similar
to an IPA chart. (For more on how to edit this arrangement,
see Edit inventory categories.) Any other symbols
(e.g., the symbol for a word boundary, #) will be shown under “Other.”
	Segments: Clicking on any individual segment in the inventory will
display its type and token frequency in the corpus, both in terms
of the raw number of occurrences and the percentage of occurrences.

	Columns: Under the “Columns” tab, you can get information about each
of the columns in your corpus (including any that you have added as
tiers or other columns; see Adding, editing, and removing words, columns, and tiers).
The column labels are listed in
the drop-down menu. Selecting any column will show you its type
(spelling, tier, numeric, factor) and other available information.
Tier columns (based on transcriptions) will indicate which segments
are included in the tier. Numeric columns will indicate the range of
values contained.

Once you are finished examining the summary information, click “Done” to exit.

Subsetting a corpus

It is possible to subset a corpus, creating new corpora that have only
a portion of the original corpus. For example, one might want to create
a subset of a corpus that contains only words with a frequency greater
than 1, or contains only words of a particular part of speech or that
are spoken by a particular talker (if such information is available).
The new subsetted corpus will be saved and made available to open in
PCT as simply a new corpus.

To create a subset, click on “File” / “Generate a corpus subset” and follow these steps:

	Name: Enter the name for your new corpus. The default is to use the
name of the current corpus, followed by “_subset,” but a more informative
name (e.g., “Gitksan_nouns”) may be useful.

	Filters: Click on “Add filter” to add a filter that will be used to
subset the corpus. You can filter based on any numeric or factor tier
/ column that is part of your corpus. For a numeric column (e.g., frequency),
you can specify that you want words that have values that are equal to,
greater than, less than, greater than or equal to, less than or equal to,
or not equal to any given value. For a factor column (e.g. an abstract CV
skeleton tier), you can add as many or as few levels of the factor as you like.

	Multiple filters: After a filter has been created, you can choose to
“Add” it or “Add and create another” filter. The filters are
cumulative; i.e., having two filters will mean that the subset
corpus will contain items that pass through BOTH filters (rather
than, say, either filter, or having two subsets, one for each filter).

	Create subset: Once all filters have been selected, click on “Create
subset corpus.” You will be returned to your current corpus view,
but the subsetted corpus is available if you then go to “File” /
“Load corpus...” – it will automatically be added to your list of
available corpora. Note that the subset corpus will automatically
contain any additional tiers that were created in your original
corpus before subsetting.

Saving and exporting a corpus or feature file

If “Auto-save” is on (which is the default; see Preferences), most changes
to your corpus (adding a feature system, words, tiers, etc.) will be saved automatically
and will be available the next time you load the corpus in PCT. Some
changes are not automatically saved (removing or editing word entries),
even if Auto-save is on, to prevent inadvertant loss of information.
If you have made changes that have not been automatically saved, and
then quit PCT, you will receive a warning message indicating that there
are unsaved changes. At that point, you may either choose “Don’t save”
(and therefore lose any such changes), “Save” (to save the changes in
its current state, to be used the next time it is loaded into PCT), or
“Cancel” (and return to the corpus view).

It is also possible to export
the corpus as a text file (.txt), which can be opened in other software,
by selecting “File” / “Export corpus as text file” and entering the
file name and location and the column and transcription delimiters.
(Note: use t to indicate a tab.) You can also choose whether and how to
export pronunciation variants, if there are any in the corpus
(see Pronunciation Variants and the subsection
Exporting Pronunciation Variants: for more details).

Similarly, the feature system can also be exported to a .txt file by
selecting “File” / “Export feature system as text file” and selecting
the file name and location and the column delimiter. See more about
the utility of doing so in Working with transcriptions and feature systems.

See also information about the temporary log file that is created when a
new corpus is imported by going to Logging / Saving Parsing Parameters; this file has
information about the various Parsing Parameters that were
chosen in the creation of any given corpus.

Setting preferences & options; Getting help and updates

Preferences

There are several preferences that can be set in PCT. These can be
selected by going to “Options” / “Preferences....” The following are available:

	Storage:
	File location: By default, PCT will save corpus, feature, and
result files to your local “Documents” directory, which should
exist under the default settings on most computers. When saving
a particular output file, you can generally specify the particular
storage location as you are saving. However, it is also possible
to change the default storage location by changing the file path
in this dialogue box. You may enter the path name directly, or
select it from a system window by selecting “Choose directory...”.

	Auto-save: By default, PCT will automatically save changes to a
corpus (e.g., if you have updated a feature system, added a
tier, etc.). De-select this option if you prefer to manually
save such changes (PCT will prompt you before closing without
saving). Changes to word entries (removing or editing a word)
are NOT auto-saved and should be saved manually if you want them
to be saved; again, PCT will prompt you to save in these cases
before exiting. Once Auto-save is deselected, PCT will remember
that this is your preference for the next time you open the software -
it will not automatically get turned back on.

	Display: By default, PCT will display three decimal places in on-screen
results tables (e.g., when calculating predictability of distribution or
string similarity, etc.). The number of displayed decimal places can
be globally changed here. Note that regardless of the number specified
here, PCT will save results to files using all of the decimal places
it has calculated.

	Processing: Some calculations consume rather a lot of computational
resources and can be made faster by using multiprocessing. To allow
PCT to use multiprocessing on multiple cores when that is possible,
select this option and indicate how many cores should be used (enter
0 to have PCT automatically use ¾ of the number of cores available
on your machine).

Help and warnings

When using PCT, hovering over a dialogue box within a function will
automatically reveal quick ToolTips that give brief information about
the various aspects of the function. These can be turned on or off by
going to “Options” / “Show tooltips.”

PCT will also issue certain warnings if various parameters aren’t met.
It is possible to turn warning messages off by going to “Options” /
“Show warnings.”

There is also extensive documentation for all aspects of PCT (of which
the current text is part). There are several options for accessing this information:

	In the main PCT window (i.e., when viewing your corpus), click on
“Help” from the “Help” menu. This will take you to the main help file,
from which you can navigate to other specific topics.

	Go to the online PCT documentation [http://corpustools.readthedocs.org/en/latest/index.html] to get access to the help files online.

	Go to the PCT website [http://phonologicalcorpustools.github.io/CorpusTools/] and download a .pdf copy of the entire help
file for off-line use.

	While working in PCT, most dialogue boxes have options at the lower
right-hand corner that say either “Help” or “About...” (e.g., “About
functional load...”). Clicking this button will pull up the relevant help file.

Copying and pasting

It is possible to highlight the cells in any table view (a corpus, a
results window, etc.) and copy / paste a tab-delimited string version
of the data into another program (e.g., a spreadsheet or text editor)
using your standard copy & paste keyboard commands (i.e., Ctrl-C and
Ctrl-V on a PC; Command-C and Command-V on a Mac).

Updates

To manually see whether there is a more recent version of PCT available
for download, click on “Help” / “Check for updates...”.

To be automatically notified of new versions of PCT or any other major news
that is relevant to all users, please sign up for the PCT mailing list,
available from the PCT website [http://phonologicalcorpustools.github.io/CorpusTools/].

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Example corpora

There are two example corpora that can be used in PCT that consist of
entirely made-up data. The first is a very small corpus called the
“example” corpus; the second is a slightly larger corpus called
“Lemurian.” Their purpose is to serve as “practice” corpora, allowing
the user to become familiar with PCT while working with an unfamiliar language.

The example corpus

The example corpus was included in the earliest versions of PCT and has
a few useful patterns for testing out analysis functions. For practical
purposes, it is essentially superseded by the Lemurian corpus, which is
more complex, but we continue to include it since many of the “help”
examples are based on its contents.

Inventory:

Stops: /t/

Nasals: /m, n/

Fricatives: /s, ʃ/

Vowels: /i, e, u, o, a/

Phonological restrictions:

	[e] and [o] are allophones of [i] and [u], respectively, which occur
only immediately before a nasal consonant.

	Non-low vowel harmony with blocking nasals: there are no sequences of
a non-low front vowel followed (at any distance) by a non-low mid vowel
or vice-versa without an intervening nasal consonant.

	Left-spreading ʃ-dominant sibilant harmony: there are no sequences of
[s] followed (at any distance) by [ʃ].

	Purely CV syllable structure.

The Lemurian corpus

The Lemurian corpus is generated by a Python script such that it will
contain patterns that are easily detected with the analysis functions in
PCT. It can be generated to any size. The specific instantiation of the
Lemurian corpus that is available in PCT is generated with 30 words. It
is a bit larger than the example corpus and has a few specific characteristics
that users may find useful. Not all of the following may be particularly
visible in this sample of Lemurian, but these are the guidelines along which
the corpus is built:

Inventory:

Stops: /p, b, t, d, k/

Nasals: /m, n/

Fricatives: /f, s, x/

Liquids: /l, r/

Glides: /j, w/

Vowels: /i, e, u, o, a/

Phonotactics:

Words in the corpus can be anywhere from 1 to 5 syllables long. Lemurian
has a maximum syllable of C1C2VC3 with the following phonotactics:

	Codas and onsets are always optional.

	C1 can be any consonant in the inventory.

	C2 can be a glide, a stop, or a nasal. Glides can occur after any consonants.

	C2 can only be a stop or a nasal if C1 is a fricative.

	C3 if present must be a nasal.

Lemurian has front/back vowel harmony, and a word can only contain vowels
from one of those categories. Front vowels are /i, e/, back vowels are /u, o/.
The vowel /a/ is neutral and can appear with vowels from either set.

Other phonological patterns:

	The sound [z] occurs only as an allophone of /s/ between vowels,
i.e. s -> z / V_V

	Voiced and voiceless stops only contrast in C1 position of a syllable.
If a stop appears in C2 (following a fricative) then it is necessarily
a voiceless stop.

	Coronals have a high functional load.

	Word frequencies are randomly generated, so there is no guarantee
about any sound or sound sequence being more or less common.

Orthography vs. transcription:

The Lemurian corpus contains a number of intentional mismatches between
the spelling system and the transcription system. This allows users to
test out the differences between selecting spelling and transcription
for some of the analysis functions, e.g. string similarity.

	All of the transcription symbols match the orthographic symbols,
except for /x/ which is written as “h.”

	Coda nasals are not distinguished in writing. Both use the symbol
‘N’. This obscures some minimal pairs.

	If a syllable starts with /ju/ or /wu/, the glide is not written.

	The allophone [z] is written as “s”

For example, the word [junxwa] would be spelled “uNhwa”

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Working with transcriptions and feature systems

In order to do phonological analysis, PCT needs to know what segments
exist in a corpus, and what features are assigned to each segment.
There are a variety of built-in transcription systems and feature
systems available, but users can also define their own for custom
use. Transcription and feature systems are essentially packaged
together as .txt files in the form of a spreadsheet, where particular
transcription symbols are mapped to a set of features (described below
in Required format of a feature file). In general, however, feature systems (i.e., files containing
transcriptions and their features) must be explicitly loaded into PCT
before they are available for use. Thus, it makes sense to start by
loading in at least one such system before attempting to work with corpora.

Required format of a feature file

As mentioned above, transcription and feature systems are packaged
together as .txt files in the form of a delimited spreadsheet. The
first column in the file lists all the transcription symbols that
are to be recognized. Note that this column must be labeled with
the name “symbol” in order for PCT to correctly read in the file.
Every symbol used in the corpus needs to be in this column. Subsequent
columns list individual features that are to be used. Each cell in a
row gives either a + or – for each feature, indicating what value the
initial symbol in that row has for that feature; a 0 or n can also be
used, to indicate that a particular feature is not defined for a given
segment (0 is the default in the built-in hayes system; n is the default
in the built-in spe system). The following shows an example; keep in mind
that this is in fact a tab-delimited .txt file, but the names in the
first row are longer than any of the values in subsequent rows, so the
alignment is visually misleading. For example, the first row containing
symbols contains the symbol [p], which is designated as [-syllabic],
[+consonantal], [-sonorant], [-continuant], etc., although the column
names aren’t aligned with the feature values visually.

[image: _images/featurefile.png]

Downloadable transcription and feature choices

Currently, the built-in transcription systems that are usable are
IPA, ARPABET (used for the [CMU] dictionary), XSAMPA, CPA, CELEX, DISC,
Klatt, and Buckeye. These transcription systems can be associated with either the
features as laid out in [Mielke2012], which in turn are based on [SPE],
or as laid out in [Hayes2009] [1]. Each of these
transcription-to-feature mappings is laid out as above in a .txt file that
can be downloaded from within PCT. The former system is called “spe” for
short within PCT, while the latter is called “hayes.”

To download one of these systems, click on “Corpus” /
“Manage feature systems...” and follow these steps:

	Download: Click on “Download feature systems” to open up the relevant dialogue box.

	Transcription: Select which of the transcription systems you want
(IPA, ARPABET, XSAMPA, CPA, CELEX, DISC, Klatt, or Buckeye).

	Feature system: Select which set of features you would like to map
the transcription symbols to (SPE or Hayes).

	Saving: Click “OK” to have PCT load in the selected feature file
(you must be connected to the internet to have this functionality).
The newly downloaded feature file will now appear in your “Manage
feature systems” dialogue box, and is available for all subsequent
use of PCT unless and until you delete it (done by selecting the
system and clicking “Remove selected feature system”). Click “Done”
to return to the regular corpus analysis window.

[image: _images/downloadfeature.png]
See Applying / editing feature systems for more information about applying / editing feature systems in
conjunction with corpora.

Using a custom feature system

In addition to using one of the built-in feature systems, you can design
your own transcription-to-feature mapping, of the format specific in Required format of a feature file.

Loading a custom feature system

Once you have a feature file in the required format (see Required format of a feature file
and Modifying an existing feature system’s text file),
go to “Corpus” / “Manage feature systems...” to load it in. Select
“Create feature system from text file” and the “Import feature system”
dialogue box will open.

	File selection: Specify the file by entering its directory path or
by selecting it using the “Choose file...” button.

	Transcription system: Indicate which transcription system this is a
feature file for. (For example, you can create a new feature file for
existing IPA transcriptions.) If this is a brand-new system for PCT,
i.e., a new transcription system being associated with features, then
select “Custom” from the dropdown menu. Then, enter a name for the
transcription system in the box.

	Feature system: Indicate which feature system is being used (e.g.,
is this a case of assigning existing SPE features to a new transcription
system?). If this is a brand-new set of features, then select “Custom”
from the dropdown menu. Then, enter a name for the feature system in the box.

Note

For both existing transcription and feature systems, you still
need to include both the transcriptions and the features in the .txt
file itself; you can simply indicate here in PCT that these transcriptions
and / or features are identical to ones that are already extant in the
system, so that they can be used / interpreted consistently. The name
of the transcription / feature system file in PCT will conventionally
be transcription2features (e.g., ipa2hayes for IPA symbols interpreted
using Hayes features), so it’s useful to be consistent about what the names are.

	Delimiter: Indicate what the column delimiter in the custom file is.
The default, tab, is indicated by \t.

Click “OK,” and the feature system should now appear in your “Available
feature systems” window. Click “Done.” See Applying / editing feature systems for more information about
applying the feature system to corpora. The image below shows the dialogue
box used to load in the custom, tab-delimited feature file for interpreting
the custom “gitksan” transcription system using Hayes features.

[image: _images/loadfeature.png]

Modifying an existing feature system’s text file

A custom system can be created from scratch, following the format
described in Required format of a feature file. It is probably easier, however, to create a new
system by modifying an existing system’s file. While this can be done
to a certain extent within PCT itself (see Applying / editing feature systems), large-scale changes
are best done in separate text-editing software. To do so, you’ll need
to start with an existing file, which can be obtained in one of two ways:

	Through PCT: Download one of the built-in feature systems (Downloadable transcription and feature choices) and
apply it to your corpus (Applying / editing feature systems). Then go to “File” / “Export feature
system as text file...” and save the file locally.

	Online: You can directly download .txt files with the currently
available feature systems from the PCT SourceForge page [http://sourceforge.net/projects/phonologicalcorpustools/], under
“Files.” One advantage to this method is that there may be additional
feature files that are created as .txt files and made available online
before they are packaged into the next release of the downloadable software itself.

Once you have the file, open it in whatever software you prefer (e.g.,
TextEdit, OpenOffice, etc.); it may be easiest to import it into a
spreadsheet reader (e.g., Excel, Calc, etc.) in terms of legibility.
You can then add new symbols to the first column, feature specifications
in the subsequent columns, new feature names, etc., etc. Remember that
the name of the first column must always be “symbol” in order for PCT to
read the file. Save the new file as a CSV or tab-delimited .txt file,
and load it following the instructions in Loading a custom feature system.

Applying / editing feature systems

Once a feature system has been loaded into PCT (Downloadable transcription and feature choices,
Using a custom feature system), it is
available for use with a corpus. To do so, first load in a corpus
(Loading in corpora);
if you are using a custom corpus or creating a corpus from text, you can
select the feature system you want to use during the loading. Once a
corpus has been loaded (with or without a feature system), you can edit
the system by clicking on “Features” / “View / change feature system....”
The following options are shown:

	View system: At the top of the “Edit feature system” dialogue box,
you’ll see the current transcription and feature system being used,
assuming one has been selected. The first column shows the individual
symbols; subsequent columns give the feature specifications for each
symbol. Clicking on the name of any column sorts the entire set by the
values for that feature; clicking again flips the sort order based on
that same column.

	Change transcription and feature systems: If there is no feature system
already specified, or if you would like to change the transcription or
feature system, use the dropdown menus under “Change feature systems” to
select from your currently available systems. If no system is available,
or the system you want to use is not available, go back to
Downloadable transcription and feature choices or Using a custom feature system
to learn how to load feature systems in to PCT. Be sure to click on “Save
changes to this corpus’s feature system” after selecting a new feature
system in order to actually apply it to the corpus.

	Modify the feature system: You can modify the current feature system
directly within PCT. There are three options.
	Add segment: To add a new segment and its associated feature values
to the current feature system, click on “Add segment.” A new dialogue
box will open up, with a space to input the symbol and dropdown
menus for all of the features expected in the current system.
You can also specify that all features should be set to a particular
value, and then change / edit individual features as needed.
Simply fill in all the values and click “OK”; the symbol and
features will be added to the feature system.

	Edit segment: To change the feature specifications of an existing segment,
click on the row containing that segment and then on “Edit Segment.”
Then use the resulting dialogue box to change the feature specifications.

	Add feature: To add an additional feature to the current system,
click on “Add feature.” Enter the name of the feature in the dialogue
box, select the default value that all segments will have for this
feature, and hit “OK.” The feature will be added to all the segments
in the corpus, with the default value. To change the value of the
feature for each segment, simply click on the segment and then use
the “Edit segment” functionality described above; the new feature
will automatically be added to the dialogue box for each segment.

Warning

Be sure to click on
“Save changes to this corpus’s feature system” after adding a new
segment or feature, or editing the feature specifications of a segment,
in order to actually apply the changes to the corpus.

	Corpus inventory coverage: There are two tools built in to help you
check the coverage in your corpus.
	Extraneous symbols: The built-in feature systems are fairly
extensive, and may include symbols for sounds that do not occur
in your corpus. Click on “Hide all segments not used by corpus”
to remove such segments from the viewing window. (This does NOT
remove them from the feature system itself; it just de-clutters
your view of the system.) To revert back to the full system,
simply click on “Show full feature system.”

	Corpus coverage: It’s possible that there are symbols used in
your corpus that are not covered in whatever feature system you
have selected. To find out, click on “Check corpus inventory
coverage.” A new window will appear that either confirms that
all symbols in the corpus are mapped onto features, or lists
the symbols that are currently lacking. If there are symbols
that are missing, you’ll need to add them before doing phonological
analysis on the corpus. You can do so in two ways: (1) adding them
within the PCT interface, following the instructions under “Modify
the feature system,” immediately below; or (2) changing the feature
system itself by editing the .txt file and reloading it (more
information given in Modifying an existing feature system’s text file).

Below is an example of the “Edit feature” system dialogue box, loaded
with the “ipa2spe” transcription and feature file:

[image: _images/editfeatures.png]

	Display options: The standard view (shown below) is to display the
segments and features as a matrix. One can also select “tree” view,
which allows one to see a list of the segments included in the
transcription system, organized by phonetic characteristics (but
currently without all of their feature specifications).

Edit inventory categories

There are many instances in which PCT
needs to display the inventory of the corpus in order for sounds to be
selected for search or analysis. The default is to display segments in
alphabetical order, which is not necessarily particularly intuitive as
far as a linguist’s ability to interact with the list. For example, here
is the unordered version of the segments in the sample “Lemurian” corpus
(see Example corpora):

[image: _images/lemurian_unsorted.png]
Once a feature file has been associated with a corpus, this unordered set
can be arranged into something more closely resembling an IPA chart. Here
is the Lemurian corpus once the IPA symbols have been interpreted using
Hayes-style features (note that for space reasons, only the consonant chart
is shown; the vowel chart is below in the actual PCT window):

[image: _images/lemurian_sorted.png]
If the feature system being used is either the built-in [Hayes2009] or
the [SPE] style feature system, the sorting of segments (regardless of
the transcription system) in to a standard IPA-like chart will be done
automatically (though it can still be edited). If a different feature
system is used, however, the sorting may not be correct if PCT does not
recognize the features. Therefore, the inventory categories can be edited.

To do so, click on “Edit inventory categories” in the “Features” /
“View / change feature system....” menu. The “Edit categories” dialogue
box appears. Essentially, you are telling PCT which feature values are
associated with which segments in the inventory. There are five sets of
categories to be edited: “Major distinctions,” “Places of articulation,”
“Manners of articulation,” “Vowel height,” and “Vowel backness.”
Each is described below. In each case, PCT will ask for which feature or
set of features is used to specify a particular set of segments. You can
then type in the box the name of the feature; PCT will auto-complete feature
names. Once a feature has been included, you can simply mouseover the box on
the right-hand side to view which segments from the inventory are included by
the selected features, to check that they are correct and exhaustive. (Note
that the order of feature selection doesn’t matter.)

	Major distinctions: Use the major distinctions tab to edit major
class distinctions, i.e., vowels vs. consonants; voicing; diphthongs;
and rounding in vowels. For example, the feature specifying vowels in
the [SPE] system is +voc; the feature in the [Hayes2009] system is +syllabic.

	Places of articulation: Use the places of articulation tab to
indicate which features are associated with each standard place of
articulation. For example, the features to pick out labial segments
in the [SPE] system are -cor, +ant, -back; in the [Hayes2009] system,
they are -coronal, +labial.

	Manners of articulation: Use the manners of articulation tab to
indicate which features are associated with each standard manner of
articulation. For example, the features to pick out stops in the [SPE]
system are -cont, -nasal, -son; in the [Hayes2009] system, they are
-delayed_release, -sonorant, -nasal, -continuant.

	Vowel height: Use the vowel height tab to indicate which features
are associated with each standard height of vowels. For example,
the features to pick out close vowels in the [SPE] system are +high,
+tense, -low; in the [Hayes2009] system, they are +high, +tense, -low.

	Vowel backness: Use the vowel backness tab to indicate which
features are associated with each standard degree of backness of vowels.
For example, the features to pick out front vowels in the [SPE] system
are +tense, -back; in the [Hayes2009] system, they are -back, +tense, +front.

Here is an example of the “Edit categories” box:

[image: _images/editcategories.png]

Creating new tiers in the corpus

It is possible to have PCT extract a tier of segments from the
transcribed words in your corpus, based on any segment, feature, or
set of features that are defined for your corpus. For example, it is
easy to extract separate tiers for consonants and vowels. This extraction
is particularly useful if, for example, one is interested in looking at
an analysis of predictability of distribution where the conditioning
contexts are non-adjacent segments; the extraction of a tier allows
otherwise non-adjacent segments to be adjacent to each other on the
selected tier. For example, one could examine the possibility of vowel
height harmony in language X by extracting the vowels from all words and
then calculating the extent to which high / low vowels are predictably
distributed in high / low vowel contexts. (See also Adding a column for information
on how to add a column to a corpus, which contains any kind of user-specified
information, and Adding a “count” column for information on how to add a count column to a
corpus, which contains counts of specific elements within each entry in the corpus.)

To create a new tier for a corpus that is currently open, click on the
“Corpus” menu and select either “Add tier...” or “Add abstract tier...”;
the “create tier” dialogue box opens. An “abstract” tier is a tier that is
not based directly on the transcriptins themselves, but rather abstracts
to a higher level. As of June 2015, the only abstract tier available is
a CV skeleton tier. Before creating the tier, you can “preview” the tier
as in the following example; this shows what segments PCT thinks are
consonants and vowels in the current corpus.

[image: _images/cvtier.png]
The example corpus after an abstract CV tier has been added:

[image: _images/examplecvtier.png]
To create a less abstract tier, i.e., one that is just an extraction of
all transcription symbols in the corpus that have some particular characteristic(s),
use the following instructions after choosing “Corpus” / “Add tier...”:

	Name: Enter a short-hand name for the tier, which will appear as the
column header in your corpus. For example, “vowels” or “consonants” or “nasals.”

	Basis for creating tier: You can create the tier using natural classes
if you base the tier on features; you can also create “unnatural” tiers
that are simply extractions of any set of user-defined segments.

	Segments: To actually select the segments, using either features or
individually, follow the directions given in Sound Selection.

The image below shows an example of creating a tier to contain all the non-mid
vowels in the example corpus. (Note that the image shows the mid vowels
highlighted but not yet selected; one would need to hit “enter” again or
choose “Select highlighted” to make the actual selection):

[image: _images/createtier.png]
The features available will be based on whatever feature system has been
selected as part of the corpus; see Downloadable transcription and feature choices for
information on selecting or defining different features for the segments in the corpus.

	Finalizing the tier: To create the tier and return to the corpus,
click on “Create tier.” It may take a moment to process the entire
corpus, but a new column should be added to the corpus that shows the
segments matching these feature selections for every word in the corpus.

	Saving the tier: The tier can be saved along with the corpus for future
use by selecting “Corpus” / “Save corpus” from the menu items (this will
be done automatically if auto-save is on; see Preferences). It is also possible
to export the corpus as a text file (.txt), which can be opened in other
software, by selecting “File” / “Export corpus as text file.”

	Removing a tier: To delete a tier that has been created, simply click on
“Corpus” / “Remove tier or column...” and select the tier you want to
remove; then click “Remove.” You can also right-click on the column name
and select “Remove column.” Note that only tiers that have been added
through PCT can be removed; tiers that are inherent in loaded corpora
cannot be removed in PCT. You can, of course, export the corpus
itself to a text file, remove the column manually, and then re-load
the changed corpus. To remove all the added tiers, leaving only the
inherent (“essential”) tiers in the corpus, select “Remove all non-essential
columns.” PCT will list which columns are non-essential and verify that
you want to remove them before the removal is permanent. The “essential”
columns for most corpora are “Spelling,” “Transcription,” and “Frequency.”

The following shows an example of the a vowel tier added to the example
corpus using the SPE feature system:

[image: _images/examplevoweltier.png]

Adding, editing, and removing words, columns, and tiers

Adding a column

In addition to the ability to add tiers based on information already in
the corpus, as described above in Creating new tiers in the corpus, it is also possible to add a
column containing any other user-specified information to a corpus (see
also Adding a “count” column to find out how to add a column based on counts of elements
within each corpus entry). For example, one could add a “Part of Speech”
column and indicate what the lexical category of each entry in the corpus
is. Note that as a general proposition, it is probably easier to add
such information in a spreadsheet before importing the corpus to PCT,
where sorting and batch updates are easier, but we include this functionality
in a basic form in case it is useful.

To add a column, go to “Corpus” / “Add column...” and do the following:

	Name: Enter the name of the new column.

	Type of column: Indicate what type of information the column will
contain. The choices are “Spelling,” “Numeric,” and “Factor.” A
spelling column will have values that are written out as strings
of characters, with each entry taken to be a unique string. A numeric
column will have numeric values, upon with mathematical operations
can be performed. A factor column will have values that can contain
characters or numbers, but are limited in number, as in the levels
of a categorical variable. This is useful when, for example, the
column encodes categorical information such as part of speech, with
each entry in the corpus belonging to one of a limited set of categories
such as “Noun,” “Verb,” and “Preposition.”

	Default value: A default value for the column can be entered if desired,
such that every entry in the corpus receives that value in the new column.
Individual entries can subsequently be edited to reflect its actual
value (see Editing a word).

Click “Add column” to return to the corpus and see the new column,
with its default values.

Adding a “count” column

In addition to adding columns that contain any kind of user-specified
information (Adding a column), and tiers that contain phonological information
based on the entries themselves (Creating new tiers in the corpus), one can also add “Count”
columns, which contain information about the number of occurrences of
a feature or segment in each entry in a corpus. For example, one could
add a column that lists, for each entry, the number of round vowels
that are contained in that entry. To add a count column, go to “Corpus”
/ “Add count column...” and then do the following:

	Name: Enter the name of the new column.

	Tier: Specify what tier the count column should refer to in order to
determine the counts (e.g., transcription or a derived tier such as
a vowel tier).

	Segment selection: Use the standard Sound Selection instructions to select which segments or types of segments to count.

Click “Add count column” to return to the corpus and see the new column,
with its count values automatically filled in.

Removing a tier or column

To delete a tier or column that has been created, simply click on
“Corpus” / “Remove tier or column...” and select the tier you want to
remove; then click “Remove.” Note that only tiers that have been added
through PCT can be removed; tiers that are inherent in loaded corpora
cannot be removed in PCT. You can, of course, export the corpus itself
to a text file, remove the column manually, and then re-load the changed
corpus. To remove all the added tiers, leaving only the inherent
(“essential”) tiers in the corpus, select “Remove all non-essential
columns.” PCT will list which columns are non-essential and verify that
you want to remove them before the removal is permanent. The “essential”
columns for most corpora are “Spelling,” “Transcription,” and “Frequency.”

Adding a word

As a general proposition, we don’t recommend using PCT as a database
manager. It is designed to facilitate analyses of pre-existing corpora
rather than to be an interface for creating corpora. That said, it is
occasionally useful to be able to add a word to a pre-existing corpus in
PCT. Note that this function will actually add the word to the corpus
(and, if auto-save is on, the word will be saved automatically in future
iterations of the corpus). If you simply need to add a word temporarily,
e.g., to calculate the neighbourhood density of a hypothetical word given
the current corpus, you can also add a word in the relevant function’s
dialogue box, without adding the word permanently to the corpus.

To do add the word globally, howveer, go to “Corpus” / “Add new word...”
and do the following:

	Spelling: Type in the orthographic representation of the new word.

	Transcription: To add in the phonetic transcription of the new word,
it is best to use the provided inventory. While it is possible to type
directly in to the transcription box, using the provided inventory will
ensure that all characters are understood by PCT to correspond to existing
characters in the corpus (with their concomitant featural interpretation).
(If there is no featural interpretation of your inventory,
you will simply see a list of all the available segments, but they will
not be classifed by major category.) Clicking on the individual segments
will add them to the transcription. Note that you do
NOT need to include word boundaries at the beginning and end of the
word, even when the boundary symbol is included as a member of the
inventory; these will be assumed automatically by PCT.

	Frequency: Enter the token frequency of this word.

	Other: If there are other tiers or columns in your corpus, you can
also enter the relevant values for those columns in the dialogue box.
For tiers that are defined via features, the values should be
automatically populated as you enter the transcription. E.g., if you
have a vowel tier, and add the word [pim.ku] to your corpus by selecting
the relevant segments from the inventory, the vowel tier should
automatically fill in the entry as [i.u].

Once all values are filled in, select “Create word” to return to the
corpus with the word added. If auto-save is not on, you can save this
new version of the corpus for future use by going to “File” / “Save corpus.”
If you have added a word and the corpus has NOT been saved (either manually
or through auto-save) afterward, and then try to quit PCT, it will warn
you that you have unsaved changes and ask that you verify that you want
to quit without saving them.

Removing a word

To remove a word from the corpus, select it in the corpus view and
right-click (ctrl-click on a Mac) on it. Choose “Remove word” from the
menu. Regardless of whether warnings are turned on or not (see Help and warnings),
PCT will verify that you want to remove the word before commiting the
change. Word removal is not auto-saved with a corpus, even if “Auto-save”
is turned on (see Preferences); if you want to save the new version of the
corpus with the word removed, you should explicitly go to “File” /
“Save corpus.” If you have removed a word and NOT manually saved the
corpus afterward, and then try to quit PCT, it will again warn you that
you have unsaved changes and ask that you verify that you want to quit.

Editing a word

To edit a word in the corpus, right-click on the word’s entry and chooser
“Edit word details,” or double-click the word’s entry in the corpus.
A dialogue box opens that shows the word’s spelling, transcription,
frequency, and any other information that is included in the corpus.
Most of these entries can be edited manually, though a few, such as
tiers that are dependent on a word’s transcription, cannot themselves
be directly edited. To edit such a derived tier, edit the transcription
of the word; the derived tier will update automatically as the new
transcription is provided.

Hiding / showing non-transcribed items

When working with a corpus, it is possible to hide all entries that do
not have a transcription (if any such entries exist). To do this,
right-click anywhere in the corpus itself and select “Hide non-transcribed
items.” To reveal them again, right-click anywhere in the corpus itself
and select “Show non-transcribed items.”

Phonological Search

PCT allows you to do searches for various strings, defined by segments or
features. The search returns two types of information: one, a general count
of the number of entries that fit the search description, and two, the
actual list of all the words in the corpus that contain the specified
string. To conduct a search, choose “Corpus” / “Phonological search...”
and do the following:

	Environments: Select the strings you want to search for. See Environment Selection and Sound Selection for details.

	Tier: Select the tier on which phonological search should be performed.
The default would be the transcription tier, so that phonological
environments are defined locally. But, for example, if a vowel tier
is selected, then one could search for the occurrence of, e.g., [i]
before mid vowels on that tier (hence ignoring intervening consonants). (Note that it is not currently possible to do a phonological search within Pronunciation Variants; the search will look only at the canonical forms or whatever forms are listed in the specified tier.)

An example of adding environments (in this case, the environment “word-initial,
before a vowel”):

[image: _images/phonosearchenvironment.png]
An example of the phonological search window, set up to search for
voiceless stops word-initially before vowels and between [a] vowels,
on the transcription tier:

[image: _images/phonosearchenvironment2.png]

	Results: Once all selections have been made, click on “Calculate
phonological search.” If there is not already an existing results table,
or you want to start a new once, choose the “Start new results table”
option. If you want to add the results to a pre-existing table, choose
the “Add to current results table” option. The results appear in a new
dialogue box that first shows the summary results, i.e., a list that
contains the segment that was searched for, each environment that was
searched for, the total count of words that contain that segment in that
environment, and the total token frequency for those words (note that
these are the frequencies of the WORDS containing the specified environments,
so if for example, a particular word contains multiple instances of the same
environment, this is NOT reflected in the counts). The individual words in
the corpus that match the search criteria can be shown by clicking on “Show
individual results” at the bottom of the screen; this opens a new dialogue
box in which each word in the corpus that matches the search criteria is
listed, including the transcription of the word, the segment that was found
that matches the search criteria, and which environment that segment
occurred in in that word. Note that the results can be sorted by any of
the columns by clicking on that column’s name (e.g., to get all the words
that contained the [a_a] environment together, simply click on the “Environment”
label at the top of that column). To return to the summary results, click on
“Show summary results.” Each set of results can be saved to a .txt file by
clicking “Save to file” at the bottom of the relevant results window. To
return to the search selection dialogue box, click on “Reopen function dialogue.”
Otherwise, when finished, click on “Close window” to return to the corpus.

An example of the summary results window for the above phonological search:

[image: _images/phonosearchsummary.png]
And the individual results from the same search, sorted by environment:

[image: _images/phonosearchindividual.png]

Classes and functions

For further details about the relevant classes and functions in PCT’s
source code, please refer to API Reference.

	[1]	Note that the original [Hayes2009] system does not include
diphthongs. We have included featural interpretations for common
English diphthongs using two additional features, [diphthong] and
[front-diphthong]. The former has a [+] value for all diphthongs, a
[-] value for all vowels that are not diphthongs, and a [0] value for
non-vowels. The latter references the end point of a diphthong; [aɪ],
[eɪ], and [ɔɪ] are [+front-diphthong], [aʊ] and [oʊ] are [-front-diphthong].
All other segments are left unspecified for this feature. Other vowel
features for diphthongs are specified based on the first element of
the diphthong; e.g., all of [aɪ], [eɪ], [ɔɪ], [aʊ], and [oʊ] are
[-high]; of these five, only [aɪ] and [aʊ] are [+low]; only [eɪ]
is [+front]; only [oʊ] and [ɔɪ] are [+back]; only [oʊ] and [ɔɪ] are [+round].

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Sound Selection

There are many instances in PCT where you are given the opportunity to
select sounds that will be used in an analysis or a search. This section
describes the general interface used in all such instances, including
using featural descriptions to select sounds. See also Feature Selection
for information about how to seelct features on which to do analyses.

When selecting a sound or a pair of sounds, you will be presented with a
dialogue box that contains all of the unique segments that occur in the corpus.
If there is no feature system associated with the corpus, then these will
be arranged in alphabetical order as a solid block. If there is an
associated feature system, then the segments will be arranged in an
IPA-style format. You can customize the layout of this display; for
details on how to do so, see Edit inventory categories. If there are
associated features, there will also be an option at the top of the
“select segment” box to “select by feature.”

To select sounds, there are two options:

First, you can simply click on individual segments in the list or chart
of segments. Multiple segments can be selected at once. If you are selecting
sounds for an analysis that involves a single segment, then each selected
segment will undergo the same analysis. (E.g., in a Phonological Search,
if you select A, B, C, and D as the target sounds, then each of those sounds
will be searched for in the same environment.) If you are selecting sounds
for an analysis that involves a pair of sounds, then all the pairwise
combinations of the selected sounds will be created. (E.g., if you select
A, B, C, and D as sounds in a pairwise selection, then all of the pairs,
i.e., AB, AC, AD, BC, BD, and CD, will be selected. In many analyses the
order of the sounds in the pair doesn’t matter, but PCT also will allow
you to switch the order after the pairs have been created.)

Second, if there is an associated feature file, you can select sounds
using featural descriptions. To do so, simply start typing a feature
value into the “Select by feature” box at the top of the sound selection
box. As soon as any value or characters are typed, a dropdown box will
appear that lists all of the available features that match the current typing.
For example, just typing a “+” sign will reveal + values of all features that
have a + specification in the feature chart (e.g., +anterior, +coronal, +long,
+nasal, + sonorant, +vocalic, etc.). Typing a letter, such as “c” will show
all features that start with that letter (e.g., -consonantal, -constricted
glottis, -consonantal, -coronal, +consonantal, +constricted glottis,
+consonantal, +coronal, etc.). You can continue typing out the feature
or select one from the list by either clicking on it or hitting “return”
when it is the one highlighted. Once a feature is entered, all segments
that have that feature specification will be highlighted in red on the
chart. This does not in fact “select” them yet – it just indicates which
segments match the currently listed specifications. Once segments are
highlighted, you may continue entering features to winnow down the
selection, or revert to clicking on individual segments (e.g., from among
the highlighted ones). As more features are typed in and selected, the
highlighting in the chart will update to match the current feature
specification. (Features in the list can be separated by commas or spaces.)
To actually SELECT all the highlighted segments, you can simply hit “enter”
again after the names of the features are completely entered, and the
highlighting will change to selection. Alternatively, you can click on
the “Select highlighted” button. Note that if you just leave them highlighted,
no segments will actually be selected.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Environment Selection

There are many instances in PCT where you are given the opportunity to
define environments that will be used in an analysis. This section
describes the general interface used in all such instances.

When you have the opportunity to define an environment, you will see a
blank “Environments” box with a button in it for “New environment.”
Start by clicking this button to create a new environment – you can
click it as many times as you need to define multiple environments.

When a new environment has been added, it starts out blank. Environments
are basically divided into three sections: the target, the left-hand side,
and the right-hand side.

The central rectangle marks the “target” of the environment and has an
underscore at the top and a set of empty curly brackets, {}, beneath.
Depending on where you are building the environment, you may be able to
edit the contents of this target. E.g., if you are doing a
Phonological Search, you can put the target(s) of the search
here, and fill in the environment around them. On the other hand, if
you are builiding an environment to be used with pairs of sounds, as in
the Predictability of Distribution analysis, you will have specified
the target pairs of sounds independently, and cannot edit the targets in the
environment selection box. In order to select a target in cases where it
is editable, simply click on the central target box; a sound selection box
will open. See Sound Selection for details on how to use this
function, but basically, sounds can be selected either by clicking on
segments or by specifying feature values. Multiple sounds can be selected
as the targets; each will be placed in the same surrounding environments.

On either side of the central target rectangle, there is a “+” button.
These allow you to add segments to either the left-hand or the right-hand
side of the environment in an iterative fashion, starting with segments
closest to the target and working out. Clicking on one of the “+” buttons
adds an empty set {} to the left or right of the current environment.

To fill the left- or right-hand side, click on the rectangle containing
the empty set {}. This again brings up the sound selection box; see
Sound Selection for details. The environment can be filled by
either clicking on segments or specifying features.

Note that regardless of whether targets and environments are selected
by segments or by features, the result will be a disjunctive set of
all segments that have been selected.

For example, to set up an environment that might be used to search for
[n] vs. [m] vs. [ŋ] in words that start with [ɪ] and in which the nasal
is followed by voiceless stop, one could do the following:

	Click on “New environment.” This gives you a blank environment:

[image: _images/environment1.png]

	Click on the left-hand “+” sign twice, and the right-hand “+” sign once. This will give you the following, still blank environment:

[image: _images/environment2.png]

	Click the central “target” rectangle.

	Select [m], [n], and [ŋ] either by hand or through their features
(e.g., [+nasal, -vocalic] or whatever combination of features is
relevant for the corpus). (Be sure to fully select the segments if
you’re using features; don’t just have them highlighted, or they
won’t get added to the environment. See Sound Selection for details.)

	Click the leftmost empty set.

	Select the word boundary symbol, #.

	Click the empty set immediately to the left of the targets.

	Select the vowel [ɪ].

	Select the rightmost empty set.

	Select all voiceless stops (e.g., by using the features [-voice,
-continuant, -delayed release]).

This now gives you an environment that looks something like the following
(depending on the total inventory and the transcription system of your
corpus; this example is from the IPHOD corpus):

[image: _images/environment3.png]
To add additional environments, simply click “New environment.” To edit
a current environment, simply click on the rectangle containing the part
of the environment you want to edit and re-select the sounds. To remove
an environment entirely, click on the “Remove environment” button to the right.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Feature Selection

There are several instances in PCT where you are given the opportunity to
select sounds for an analysis based on shared features. This section describes
the general interface used in all such instances. See also Sound Selection
for general information on how to select individual segments for analysis,
including using features to identify classes of segments.

In many cases, you will just want to select individual sounds for an analysis
(e.g., [e] vs. [o]). Occasionally, however, it is useful to be able to compare
classes of sounds that differ along some dimension (e.g., comparing front vs.
back non-low vowels, i.e., [i, e] on the one hand vs. [u, o] on the other).

To do this in an analysis window, click on “Add pair of features” to open the
“Select feature pair” dialogue box.

At the top of the box, there is a place to enter the feature(s) along
which the pairs will have OPPOSITE values. No “+” or “-” value should be
entered here; rather, it should just be the name of the feature (e.g.,
“back”). Note that currently, PCT has some ability to automatically detect
redundant features within a given domain.
For instance, if the example corpus is open and
associated with SPE features, and one wanted to calculate the predictability
of distribution of [i,e] on the one hand vs. [u, o] on the other, one would
could enter either “back” or “round”, but would also have enter “-low” in the “Filter pairs” box.
To accomplish the same thing
with Hayes features, one needs to enter only one of “back, front, round, or labial.”
On the other hand, if one wanted to calculate the predictability of distribution
for high vowels [i, u] on the one hand and [e, o] on the other, one need
only list the feature [high].
The automatic detection is based on the inventory size, so smaller inventories will
have more detectable redundancies than larger inventories. Larger inventories will thus
have to have more features entered for the segment sets to be selected.

As soon as a feature or set of features has been entered that
describes two sets of sounds that differ on exactly the feature values for
the listed features, the sounds themselves will be shown in the box under
“First segments” and “Second segments.”

One can then filter the entire set by entering in specific values of other
features. E.g., if one wanted to limit the comparison to [i] vs. [e],
one could enter “high” in the “feature to make pairs” box and then [-round]
in the “filter pairs” box. (Of course, in this case, it might be easier to
simply select those two sounds, [i] and [e], directly as segments, but the
same principle works for more complicated sets of segments.)

Once the correct segments are listed, click “Add” to add the pairs to the
segment list in the original analysis dialogue box. If additional pairs are
needed, one can click “Add and create another” instead.

Here’s an example of using both features and filters in the Lemurian
corpus to select [o,u] vs. [e,i], to the exclusion of [w,j]:

[image: _images/featurepairselection.png]

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Pronunciation Variants

About Pronunciation Variants:

In some corpora (e.g., spontaneous speech corpora), there may be different
pronunciation variants that are associated with the same lexical item.
For instance, the word “probably” might be variably produced as [pɹɑbəbli]
(its canonical form) or as [pɹɑbli], [pɹɑli], [pɹɑi], or any of a number
of other reduced forms. In the Buckeye corpus, for example, there are 290
tokens of the word “probably”, only 50 of which have the canonical
pronunciation ([BUCKEYE]).

A number of studies have looked at the effects of this kind of surface
variation on lexical representations (e.g., [Connine2008]; [Pinnow2014];
[Pitt2009]; [Pitt2011]; [Sumner2009]). For example, [Pinnow2014] show
that lexical items with high-frequency variants that include deleted schwas
have processing advantages over similar items where the deleted variant
is less frequent, suggesting that frequency matters in the representations.

Because such differences may matter, PCT includes several options
(Options for Pronunciation Variants:) for handling pronunciation
variants in its analysis functions (though note that not every option
is available in every analysis function as of version 1.1). To the best
of our knowledge, none of the analysis functions we provide has ever been
applied to anything other than the canonical pronunciations of forms, so
it is a completely open question as to which of these options is best, or
even how to determine which one might be best (e.g., in terms of correlations
with other linguistic or behavioural patterns). It is simply our hope that
by allowing the functions to be applied in a variety of ways, such empirical
questions can be answered in the future.

Creating Pronunciation Variants:

To create a corpus that has pronunciation variants, there are several options
(see also Loading in corpora). First is to use a specially formatted
corpus, such as the Buckeye corpus ([BUCKEYE]), that PCT already recognizes
as containing pronunciation variants. Second is to create a corpus from an
interlinear gloss file that has separate lines for lexical items and their
pronunciations. For example, a fragment of the text might be as follows:

Line 1:

	Well,
	I’m
	probably
	going
	to
	go
	to
	the
	pool
	after.

	wɛl
	ɑɪm
	pɹɑbəbli
	goʊɪŋ
	tu
	goʊ
	tu
	ðə
	pul
	æftɚ

	wɛl
	ɑɪm
	pɹɑli
	gʌn
	ə
	goʊ
	ɾə
	ðə
	pul
	æftɚ

Line 2:

	Is
	Max
	going
	with
	us?

	ɪz
	mæks
	goʊɪŋ
	wɪθ
	ʌs

	z
	mæks
	goʊɪŋ
	wɪθ
	ʌs

Line 3:

	Oh,
	no,
	he’ll
	probably
	stay
	home.

	oʊ
	noʊ
	hil
	pɹɑbəbli
	steɪ
	hoʊm

	oʊ
	noʊ
	həl
	pɹɑbəbli
	steɪ
	hoʊm

The first line shows the spelling; the second the canonical pronunciation
of each word; and the third the pronunciation of the word as it was
actually said in context. This would get read in to PCT as:

	spelling
	transcription
	frequency

	I’m
	ɑɪ.m
	1

	is
	ɪ.z
	1

	Max
	m.æ.k.s
	1

	oh
	oʊ
	1

	well
	w.ɛ.l
	1

	after
	æ.f.t.ɚ
	1

	go
	g.oʊ
	1

	going
	g.oʊ.ɪ.ŋ
	2

	he’ll
	h.i.l
	1

	home
	h.oʊ.m
	1

	no
	n.oʊ
	1

	pool
	p.u.l
	1

	probably
	p.ɹ.ɑ.b.ə.b.l.i
	2

	stay
	s.t.eɪ
	1

	the
	ð.ə
	1

	to
	t.u
	2

	us
	ʌ.s
	1

	with
	w.ɪ.θ
	1

...where the words “going,” “to,” and “probably” each have multiple variants associated with them (see Viewing Pronunciation Variants: for more on how to view these). (Note that to achieve this result, you would indicate in the Parsing Parameters that both lines 2 and 3 are “Transcription” lines, but that line 2 is associated with the lexical item while line 3 is allowed to vary within lexical items.)

A similar method works for creating pronunciation variants from TextGrid files. As in the interlinear gloss files, you would have three tiers in a TextGrid; one with spelling, one with canonical pronunciations; and one with the specific pronunciations used in particular instances. The Parsing Parameters would be filled in similarly.

Note that the canonical pronunciations are in fact optional; it is possible to simply associate pronunciation variants with spelling forms (though this may limit some of the functionality of searching and some analyses).

Viewing Pronunciation Variants:

If a corpus has pronunciation variants, you can view these by right-clicking on any word in the corpus and selecting “List
pronunciation variants.” A new dialogue box will pop up that shows the
individual pronunciation variants that occur in the corpus for that word,
along with their token frequencies. (See also Exporting Pronunciation Variants: for information about how to save these to a .txt file for use outside of PCT.)

[image: _images/pronunciationvariant.png]

Options for Pronunciation Variants:

There are four basic options in PCT for dealing with pronunciation variants, each of which is described below. In all cases, the way that PCT handles them is to create a version of the corpus that is set up with the selected option; analysis functions are then applied as normal. Thus, each time that a non-canonical approach is used, there will be a slight delay in processing time while the alternative corpus structure is set up.

	Canonical forms: The first option is for PCT to use only the
canonical forms in analyses. This is the default and the option
that is usually reported in the literature. For many corpora, only
the canonical pronunciation is available anyway, and will be the only
option. In corpora with pronunciation variants, this option is
available only if there is a form that is known by PCT to be the
canonical pronunciation (see Creating Pronunciation Variants:).
Note that the token frequency values are summed across all variants.

As an example, the canonical form for the word “cat” is [kæt]; the
canonical form for the word “probably” is [pɹɑbəbli]. A fragment of the
corpus would be as follows:

	Spelling
	Transcription
	Type frequency
	Token frequency

	cat
	k.æ.t
	1
	6

	probably
	p.ɹ.ɑ.b.ə.b.l.i
	1
	290

	Most frequent forms: Alternatively, PCT can use only the most frequent
variant of each lexical item in analyses. This option puts priority on forms as
they are actually used most often in the corpus. If there are two or more
forms that have equal frequencies, and one of them is the canonical form,
then PCT will fall back on the canonical form, if one is available. If no
canonical form is available or if it is not one of the forms that is tied
for being most frequent, then the longest of the most frequent forms
will be chosen (on the assumption that this will be closest to the
canonical form). If there is a tie in terms of frequencies AND a tie
in terms of the lengths of the tied forms, then PCT will simply use the
variant that is first alphabetically.

As an example, the most frequent form of the word “probably” in the Buckeye
corpus is [pɹɑbli]; 66 of the 290 tokens of the word have this form
(whereas only 50 are the canonical pronunciation). Similarly, the most
frequent form for the word “cat” is [kæʔ]; 3 of the six tokens of “cat”
have this pronunciation. Thus, searches and analyses using the most frequent
forms would use these transcriptions instead. The token frequency values
are again combined across all variants.

A fragment of the corpus would be as follows:

	Spelling
	Transcription
	Type frequency
	Token frequency

	cat
	k.æ.ʔ
	1
	6

	probably
	p.ɹ.ɑ.b.l.i
	1
	290

	Each word token seaparately: The third option is for PCT to treat
each pronunciation variant as its own separate lexical entry. This
allows all variants to be considered, regardless of canonical-ness
or frequency. At the same time, it will somewhat artificially inflate
the number of occurrences of segments that relatively stably occur
in words that otherwise have lots of variation. For example, there
are 74 different pronunciation variants of the word “probably” in the
Buckeye corpus; 73 of these begin with [p] (one, [frai], begins with [f]).
Thus, while this method is useful for seeing the range of variability
elsewhere in the word, it will make word-initial [p] seem much more
relatively frequent than it actually is. It allows every pronunciation
variant to count equally as far as word types are concerned. Token
frequencies for each individual variant are used or each variant is assigned
a frequency of 1 if type frequencies are used.

A fragment of the corpus would be as follows:

	Spelling
	Transcription
	Type frequency
	Token frequency

	cat
	k.æ.t
	1
	2

	cat
	k.æ.ʔ
	1
	3

	cat
	k.æ.ɾ
	1
	1

	probably
	p.ɹ.ɑ.b.ə.b.l.i
	1
	50

	probably
	p.ɹ.ɑ.b.l.i
	1
	66

	probably
	p.ɹ.ɑ.l.i
	1
	35

... (not all variants of the word “probably” are shown)

	Weighted word types by the frequency of each variant: The fourth
option is for PCT to weight each variant’s frequency by the overall
token frequency (if using token frequency) or by the number of variants
(if using type frequency).

As an example, the word “probably” has 74 variants in the Buckeye corpus.
The most frequent, [pɹɑbli], occurs 66 times out of the 290 tokens.
66/290 = 0.2276. So, there would be a lexical entry in the corpus for
[pɹɑbli], with a type frequency of 0.2276 (instead of 1). Similarly, the
canonical pronunciation, [pɹɑbəbli], occurs with a relative frequency
of 50/290 = 0.1724, so that would be the type frequency for its lexical
entry. Thus, the total type frequency across all variants of a single
lexical item sum to 1. The token frequencies match the original numbers.

A fragment of the corpus would be as follows:

	Spelling
	Transcription
	Type frequency
	Token frequency

	cat
	k.æ.t
	0.333
	2

	cat
	k.æ.ʔ
	0.5
	3

	cat
	k.æ.ɾ
	0.167
	1

	probably
	p.ɹ.ɑ.b.ə.b.l.i
	0.172
	50

	probably
	p.ɹ.ɑ.b.l.i
	0.228
	66

	probably
	p.ɹ.ɑ.l.i
	0.121
	35

... (not all variants of the word “probably” are shown)

Exporting Pronunciation Variants:

It is possible to export pronunciation variants with a corpus for easy
reference or use outside of PCT. General information about exporting a
corpus can be found in Saving and exporting a corpus or feature file. The basic procedure is to go
to “File” / “Export corpus as text file” and enter the file name and
location and the column and transcription delimiters.

PCT provides three options for exporting pronunciation variants. They
can simply be excluded entirely (by selecting “Do not include”); the
resulting file will have only the canonical pronunciations, assuming
the corpus contains these. The following is an example of the resulting
single line of the output file from the Buckeye corpus for the word “probably”:

	Spelling
	Transcription
	Frequency

	probably
	p.r.aa.b.ah.b.l.iy
	290

Alternatively, pronunciation variants can be included in either of two
formats. Selecting “Include in each word’s line” will organize the
output by lexical item, with exactly one line per item. Pronunciation
variants of that item will be listed at the end of the line. Here’s an
example of the single line that results for the word “probably” in this
version of the export of the Buckeye corpus:

	Spelling
	Transcription
	Frequency
	Variants

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah.eh, p.r.aa.b.eh.b.l.ey,
p.aa.b.l.ih, f.r.ay, p.r.eh.ih,
p.r.aa.b.l.uh, p.ah.r.eh,
p.r.aa.b.b.l.iy, p.r.ah.b.l.ah,
p.r.aw.b.w.iy, p.r.aw.b.l.iy,
p.r.aa.b.ah.b.l.ey, p.r.aa.w.ah.v.w.iy,
p.r.aa.ey, p.r.aa.b.ah.b.l,
p.r.aa.b.el.ih, p.r.aa.b.w.iy.jh,
p.p.r.aa.b.l.iy, p.r.aa.b,
p.r.ah.ay, p.r.ah.b.l.ih,
p.r.aa.iy.m, p.r.aa.b.uh.b.l.ah,
p.aa.b.ow.b.l.iy, p.er.r.eh.ih,
p.aa.b.ow.l.iy, p.r.ah.b.w.iy,
p.r.aa.b.ow.b.l.ey, p.r.aa.b.ah.b.l.ih,
p.r.aa.v.iy, p.r.ah.ey, p.aa.b.ih,
p.aa.ih.ih, p.r.aa.r.iy,
p.r.aa.l.uw, p.r.aa.b.r.ih,
p.ah.b.l.iy, p.r.ao.b.ih, p.ah.l.ih,
p.aa.r, p.r.aa.w.iy, p.r.ao.ey,
p.r.ow.iy, p.aa.l.iy,
p.r.ah.b.uh.b.l.iy,
p.r.aa.ah.b.l.iy, p.r.aa.l.eh,
p.r.aa.ih, p.r.aa.b.ow.b.l.iy,
p.r.ah.l.ih, p.r.ah.b.iy,
p.r.aa.b.ih, p.r.aa.el.iy,
p.r.aa.b.el.b.l.iy, p.aa.b.el.b.l.iy,
p.r.ah.iy, p.aa.ih, p.aa.b.l.iy,
p.r.aa, p.r.ah, p.r.aa.v.l.iy,
p.r.aa.b.uh.b.l.iy, p.r.aa.b.el.iy,
p.r.aa.l.ih, p.r.aa.eh, p.r.ah.l.iy,
p.r.ah.b.l.iy, p.r.aa.b.l.ih,
p.r.aa.iy, p.r.aa.b.iy, p.r.ay,
p.r.aa.l.iy, p.r.aa.b.ah.b.l.iy,
p.r.aa.b.l.iy

The other format for exporting pronunciation variants, “Have a line for each variant,”
will put each different variant on a separate line in the exported corpus.
Each will also include the spelling and canonical transcription (if available).
This version also lists the frequency with which each different variant occurs
in the corpus. Here’s an example of the 74 lines that result for the word
“probably” in this version of the export of the Buckeye corpus:

	Spelling
	Transcription
	Frequency
	Token_Transcription
	Token_Frequency

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah.eh
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.eh.b.l.ey
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.aa.b.l.ih
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.l.iy
	66

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.ah.b.l.iy
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.l.eh
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.l.ih
	4

	probably
	p.r.aa.b.ah.b.l.iy
	290
	f.r.ay
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.ih
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.eh.ih
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.l.uh
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.ah.r.eh
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.ow.b.l.iy
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.b.l.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah.b.l.ah
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aw.b.w.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aw.b.l.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.ah.b.l.ey
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.eh
	4

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah.l.ih
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah.l.iy
	4

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah
	3

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.w.ah.v.w.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.ey
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.v.l.iy
	3

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.ah.b.l
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.el.ih
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah.b.iy
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.w.iy.jh
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.p.r.aa.b.l.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.uh.b.l.iy
	3

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.ih
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah.ay
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah.b.l.ih
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.iy.m
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.el.iy
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.ah.b.l.iy
	50

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.iy
	6

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.uh.b.l.ah
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.aa.b.ow.b.l.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.er.r.eh.ih
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.aa.b.ow.l.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.l.ih
	5

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.iy
	11

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah.b.w.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.ow.b.l.ey
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.el.b.l.iy
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.aa.b.el.b.l.iy
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah.b.l.iy
	4

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.ah.b.l.ih
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.v.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah.ey
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.aa.b.ih
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah.iy
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.aa.ih.ih
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.el.iy
	3

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.r.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.l.uw
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.aa.ih
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.aa.b.l.iy
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.b.r.ih
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.ah.b.l.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ao.b.ih
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.ah.l.ih
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.aa.r
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.w.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ao.ey
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa
	2

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.aa.l.iy
	35

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ow.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ay
	16

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.aa.l.iy
	1

	probably
	p.r.aa.b.ah.b.l.iy
	290
	p.r.ah.b.uh.b.l.iy
	1

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Phonotactic Probability

About the function

Phonotactic probability refers to the likelihood of a given set of segments
occurring in a given order for a given corpus of transcriptions. For instance,
blick is a phonotactically probable nonword in English, but bnick is
phonotactically improbable. Words as well as nonwords can be assessed for
their phonotactic probability, and this measure has been used in behavioural
research ([Vitevitch1999] and others). In particular, the phonotactic
probability of words has been correlated with their ability to be segmented,
acquired, processed, and produced; see especially the discussion in [Vitevitch2004]
for extensive references.

Method of calculation

One method for computing the phonotactic probability, and the current algorithm implemented in PCT, uses average unigram
or bigram positional probabilities across a word ([Vitevitch2004];
their online calculator for this function is available here [http://www.people.ku.edu/~mvitevit/PhonoProbHome.html]).
For a word like blick in English, the unigram average would include the
probability of /b/ occurring in the first position of a word, the
probability of /l/ in the second position, the probability of /ɪ/
occuring in the third position, and the probability of /k/ occurring
in the fourth position of a word. Each positional probability is
calculated by summing the log token frequency of words containing that
segment in that position divided by the sum of the log token frequency
of all words that have that position in their transcription. The bigram
average is calculated in an equivalent way, except that sequences of two
segments and their positions are used instead of single segments. So for
blick that would be /bl/, /lɪ/, /ɪk/ as the included poisitional probabilities.
As with all n-gram based approaches, bigrams are preferable to unigrams.
In the example of blick versus bnick, unigrams wouldn’t likely capture
the intuitive difference in phonotactic probability, since the probability
of /n/ and /l/ in the second position isn’t necessarily radically different.
Using bigrams, however, would capture that the probability of /bl/ versus /bn/
in the first position is radically different.

There are other ways of calculating phonotactic probability that don’t
have the strict left-to-right positional assumptions that the Vitevitch
& Luce algorithm has, such as the constraint-based method in BLICK by
Bruce Hayes (Windows executable available on the Blick homepage [http://www.linguistics.ucla.edu/people/hayes/BLICK/], Python package
available at python-blick on PyPi [https://pypi.python.org/pypi/python-BLICK/0.2.12]
with source code available at python-blick on GitHub [https://github.com/mmcauliffe/python-BLICK/]).
However, such algorithms require training on a specific language, and
the constraints are not computed from transcribed corpora in as
straightforward a manner as the probabilities used in the Vitevitch &
Luce algorithm. Therefore, PCT currently supports only the Vitevitch &
Luce style algorithm.

Calculating phonotactic probability in the GUI

To start the analysis, click on “Analysis” / “Calculate phonotactic probability...”
in the main menu, and then follow these steps:

	Phonotactic probability algorithm: Currently the only offered algorithm
is the Vitevitch & Luce algorithm, described above.

	Query type: Phonotactic probability can be calculated for one of three
types of inputs:
	One word: The phonotactic probability of a single word can be calculated
by entering that word’s orthographic representation in the query box.

	One word/nonword not in the corpus: The phonotactic probability can
be calculated on a word that is not itself in the corpus, but using
the probabilities derived from the corpus. These words are distinct
from the corpus and won’t be added to it, nor will their creation
affect any future calculations. See Adding a word for information on how
to more permanently add a new word to the corpus. Words can be
created through the dialogue opened by pressing the button:
	Spelling: Enter the spelling for your new word / nonword using
the regular input keyboard on your computer. The spelling is
how the word will be referenced in the results table, but won’t
affect the calculation of phonotactic probability.

	Transcription: To add in the phonetic transcription of the new
word, it is best to use the provided inventory. While it is
possible to type directly in to the transcription box, using
the provided inventory will ensure that all characters are
understood by PCT to correspond to existing characters in the
corpus (with their concomitant featural interpretation). Click
on “Show inventory” and then choose to show “Consonants,” “Vowels,”
and/or other. (If there is no featural interpretation of your
inventory, you will simply see a list of all the available
segments, but they will not be classifed by major category.)
Clicking on the individual segments will add them to the
transcription. The selections will remain even when the
sub-inventories are hidden; we allow for showing / hiding
the inventories to ensure that all relevant buttons on the
dialogue box are available, even on small computer screens.
Note that you do NOT need to include word boundaries at the
beginning and end of the word, even when the boundary symbol
is included as a member of the inventory; these will be assumed
automatically by PCT.

	Frequency: This can be left at the default. Note that entering
a value will NOT affect the calculation; there is no particular
need to enter anything here (it is an artifact of using the same
dialogue box here as in the “Add Word” function described in Adding a word).

	Create word: To finish and return to the “Phonotactic probability”
dialogue box, click on “Create word.”

	List of words: If there is a specific list of words for which
phonotactic probability is to be calculated (e.g., the stimuli list
for an experiment), that list can be saved as a .txt file with one
word per line and uploaded into PCT for analysis. If words in the
list are not in the corpus, you can still calculate their phonotactic
probability by entering in the spelling of the word and the transcription
of the word in a single line delimited by a tab. The transcription
should be delimited by periods.

	Whole corpus: Alternatively, the phonotactic probability for every
current word in the corpus can be calculated. The phonotactic
probability of each word will be added to the corpus itself, as
a separate column; in the “query” box, simply enter the name of
that column (the default is “Phonotactic probability”).

	Tier: Phonotactic probability can be calculated from transcription
tiers in a corpus (e.g., transcription or tiers that represent subsets
of entries, such as a vowel or consonant tier).

	Pronunciation variants: Specify whether phonotactic probability should be calculated based on the canonical pronunciations of each word or the most frequent pronunciations (which may not be the same). See more in Pronunciation Variants.

	Type vs. token frequency: Specify whether phonotactic probabilities
should be based on word type frequency or token frequency. The
original Vitevitch & Luce algorithm uses token frequency. Token frequency
will use the log frequency when calculating probabilities.

	Probability type: Specify whether to use biphone positional
probabilities or single segment positional probabilities. Defaults to biphone.

	Results: Once all options have been selected, click “Calculate
phonotactic probability.” If this is not the first calculation, and
you want to add the results to a pre-existing results table, select
the choice that says “add to current results table.” Otherwise, select
“start new results table.” A dialogue box will open, showing a table of
the results, including the word, its phonotactic probability, the
transcription tier from which phonotactic probability was calculated,
whether type or token frequency was used, whether the algorithm used
unigram or bigram probabilities, and the phonotactic probability algorithm
that was used. If the phonotactic probability for all words in the corpus
is being calculated, simply click on the “start new results table” option,
and you will be returned to your corpus, where a new column has been added
automatically.

	Saving results: The results tables can each be saved to tab-delimited .txt
files by selecting “Save to file” at the bottom of the window. If all
phonotactic probabilities are calculated for a corpus, the corpus
itself can be saved by going to “File” / “Export corpus as text file,”
from where it can be reloaded into PCT for use in future sessions with
the phonotactic probabilities included.

An example of the “Phonotactic Probability” dialogue box for calculating
the probability of the non-word “pidger” [pɪdʒɚ], or [P.IH.JH.ER] in Arpabet, using unigram position
probabilities (using the IPHOD corpus):

[image: _images/phonoprobdialog.png]
[image: _images/phonoprobresults.png]
To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

Classes and functions

For further details about the relevant classes and functions in PCT’s
source code, please refer to Phonotactic probability.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Functional Load

About the function

Functional load is a measure of the “work” that any particular contrast
does in a language, as compared to other contrasts (e.g., [Hockett1955],
[Hockett1966]; [Kucera1963]; [King1967]; [Surendran2003]). Two contrasts
in a language, such as [d] / [t] vs. [ð] / [θ] in English, may have very
different functional loads. The difference between [d] and [t] is used to
distinguish between many different lexical items, so it has a high
functional load; there are, on the other hand, very few lexical items
that hinge on the distinction between [ð] and [θ], so its functional
load is much lower. One of the primary claims about functional load is
that it is related to sounds’ propensity to merge over time, with pairs
of sounds that have higher functional loads being less likely to merge
than pairs of sounds with lower functional loads (e.g., [Wedel2013], [Todd2012]).
The average functional load of a particular sound has also been claimed to
affect its likelihood of being used as an epenthetic vowel [Hume2013].
Functional load has also been illustrated to affect the perceived
similarity of sounds [Hall2014a].

Method of calculation

There are two primary ways of calculating functional load that are
provided as part of the PCT package. One is based on the change of
entropy in a system upon merger of a segment pair or set of segment
pairs (cf. [Surendran2003]); the other is based on simply
counting up the number of minimal pairs (differing in only the target
segment pair or pairs) that occur in the corpus.

Change in entropy

The calculation based on change in entropy is described in detail in
[Surendran2003]. Entropy is an Information-Theoretic measure of the
amount of uncertainty in a system [Shannon1949], and is
calculated using the formula in (1); it will also be used for the
calculation of predictability of distribution (see Method of calculation). For every
symbol i in some inventory (e.g., every phoneme in the phoneme inventory,
or every word in the lexicon), one multiplies the probability of i by
the \(log_{2}\) of the probability of i; the entropy is the sum of the products
for all symbols in the inventory.

Entropy:

\(H = -\sum_{i \in N} p_{i} * log_{2}(p_{i})\)

The functional load of any pair of sounds in the system, then, can be
calculated by first calculating the entropy of the system at some level
of structure (e.g., words, syllables) with all sounds included, then
merging the pair of sounds in question and re-calculating the entropy
of the new system. That is, the functional load is the amount of
uncertainty (entropy) that is lost by the merger. If the pair has a
functional load of 0, then nothing has changed when the two are merged,
and \(H_{1}\) will equal \(H_{2}\). If the pair has a non-zero functional load, then
the total inventory has become smaller through the conflating of pairs
of symbols that were distinguished only through the given pair of sounds.

Functional load as change in entropy:

\(\Delta H = H_{1} - H_{2}\)

Consider a toy example, in which the following corpus is assumed (note
that, generally speaking, there is no “type frequency” column in a PCT
corpus, as it is assumed that each row in the corpus represents 1 type;
it is included here for clarity):

Consider a toy example, in which the following corpus is assumed
(note that, generally speaking, there is no “type frequency” column
in a PCT corpus, as it is assumed that each row in the corpus represents
1 type; it is included here for clarity):

	Word
	Original
	Under [h] / [ŋ] merger
	Under [t] / [d] merger

	Trans.
	Type
Freq.
	Token
Freq.
	Trans.
	Type
Freq.
	Token
Freq.
	Trans.
	Type
Freq.
	Token
Freq.

	hot
	[hɑt]
	1
	2
	[Xɑt]
	1
	2
	[hɑX]
	1
	2

	song
	[sɑŋ]
	1
	4
	[sɑX]
	1
	4
	[sɑŋ]
	1
	4

	hat
	[hæt]
	1
	1
	[Xæt]
	1
	1
	[hæX]
	1
	1

	sing
	[sɪŋ]
	1
	6
	[sɪX]
	1
	6
	[sɪŋ]
	1
	6

	tot
	[tɑt]
	1
	3
	[tɑt]
	1
	3
	[XɑX]
	1
	8

	dot
	[dɑt]
	1
	5
	[dɑt]
	1
	5
	[XɑX]

	hip
	[hɪp]
	1
	2
	[Xɪp]
	1
	2
	[hɪp]
	1
	2

	hid
	[hɪd]
	1
	7
	[Xɪd]
	1
	7
	[hɪX]
	1
	7

	team
	[tim]
	1
	5
	[tim]
	1
	5
	[Xim]
	1
	10

	deem
	[dim]
	1
	5
	[dim]
	1
	5
	[Xim]

	toot
	[tut]
	1
	9
	[tut]
	1
	9
	[XuX]
	1
	11

	dude
	[dud]
	1
	2
	[dud]
	1
	2
	[XuX]

	hiss
	[hɪs]
	1
	3
	[Xɪs]
	1
	3
	[hɪs]
	1
	3

	his
	[hɪz]
	1
	5
	[Xɪz]
	1
	5
	[hɪz]
	1
	5

	sizzle
	[sɪzəl]
	1
	4
	[sɪzəl]
	1
	4
	[sɪzəl]
	1
	4

	dizzy
	[dɪzi]
	1
	3
	[dɪzi]
	1
	3
	[Xɪzi]
	1
	7

	tizzy
	[tɪzi]
	1
	4
	[tɪzi]
	1
	4
	[Xɪzi]

	Total
	17
	70
	
	17
	70
	
	13
	70

The starting entropy, assuming word types as the relative unit of
structure and counting, is:

\(H_{1 - types} = -[(\frac{1}{17} log_{2}(\frac{1}{17}))
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))\\
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))\\
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))]
=4.087\)

The starting entropy, assuming word tokens, is:

\(H_{1 - tokens} = -[(\frac{2}{70} log_{2}(\frac{2}{70}))
+ (\frac{4}{70} log_{2}(\frac{4}{70})) + (\frac{1}{70} log_{2}(\frac{1}{70}))
+ (\frac{6}{70} log_{2}(\frac{6}{70})) + (\frac{3}{70} log_{2}(\frac{3}{70}))\\
+ (\frac{5}{70} log_{2}(\frac{5}{70})) + (\frac{2}{70} log_{2}(\frac{2}{70}))
+ (\frac{7}{70} log_{2}(\frac{7}{70})) + (\frac{5}{70} log_{2}(\frac{5}{70}))
+ (\frac{5}{70} log_{2}(\frac{5}{70})) + (\frac{9}{70} log_{2}(\frac{9}{70}))\\
+ (\frac{2}{70} log_{2}(\frac{2}{70})) + (\frac{3}{70} log_{2}(\frac{3}{70}))
+ (\frac{5}{70} log_{2}(\frac{5}{70})) + (\frac{4}{70} log_{2}(\frac{4}{70}))
+ (\frac{3}{70} log_{2}(\frac{3}{70})) + (\frac{4}{70} log_{2}(\frac{4}{70}))]
= 3.924\)

Upon merger of [h] and [ŋ], there is no change in the number of unique words;
there are still 17 unique words with all their same token frequencies.
Thus, the entropy after an [h] / [ŋ] merger will be the same as it was
before the merger. The functional load, then would be 0, as the pre-merger
and post-merger entropies are identical.

Upon merger of [t] and [d], on the other hand, four pairs of words have
been collapsed. E.g., the difference between team and deem no longer
exists; there is now just one word, [Xim], where [X] represents the
result of the merger. Thus, there are only 13 unique words, and while
the total token frequency count remains the same, at 70, those 70 occurrences
are divided among only 13 unique words instead of 17.

Thus, the entropy after a [t] / [d] merger, assuming word types, is:

\(H_{1 - types} = -[(\frac{1}{13} log_{2}(\frac{1}{13}))
+ (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))
+ (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))\\
+ (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))
+ (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))
+ (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))\\
+ (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))]
= 3.700\)

And the entropy after a [t] / [d] merger, assuming word tokens, is:

\(H_{1 - tokens} = -[(\frac{2}{70} log_{2}(\frac{2}{70}))
+ (\frac{4}{70} log_{2}(\frac{4}{70})) + (\frac{1}{70} log_{2}(\frac{1}{70}))
+ (\frac{6}{70} log_{2}(\frac{6}{70})) + (\frac{8}{70} log_{2}(\frac{8}{70}))\\
+ (\frac{2}{70} log_{2}(\frac{2}{70})) + (\frac{7}{70} log_{2}(\frac{7}{70}))
+ (\frac{10}{70} log_{2}(\frac{10}{70})) + (\frac{11}{70} log_{2}(\frac{11}{70}))
+ (\frac{3}{70} log_{2}(\frac{3}{70})) + (\frac{5}{70} log_{2}(\frac{5}{70}))\\
+ (\frac{4}{70} log_{2}(\frac{4}{70})) + (\frac{7}{70} log_{2}(\frac{7}{70}))]
= 3.466\)

\(\Delta H = H_{1-types} - H_{2-types} = 4.087– 3.700 = 0.387\)

And the functional load of [t] / [d] based on word tokens is:

\(\Delta H = H_{1-tokens} - H_{2-tokens} = 3.924– 3.466 = 0.458\)

(Relative) Minimal Pair Counts

The second means of calculating functional load that is included in PCT
is a straight count of minimal pairs, which can be relativized to the
number of words in the corpus that are potential minimal pairs—i.e. the
number of words in the corpus with at least one of the target segments.

In the above example, the number of minimal pairs that hinge on [h] vs.
[ŋ] is of course 0, so the functional load of [h] / [ŋ] is 0. The number
of minimal pairs that hinge on [t] / [d] is 3, and the number of words
with either [t] or [d] is 11; the functional load as a relativized minimal
pair count would therefore be 3/11 = 0.273. Note that here, a relatively
loose definition of minimal pair is used; specifically, two words are
considered to be a minimal pair hinging on sounds A and B if, upon merger
of A and B into a single symbol X, the words are identical. Thus, toot and
dude are considered a minimal pair on this definition, because they both
become [XuX] upon merger of [t] and [d].

The resulting calculations of functional load are thus quite similar
between the two measures, but the units are entirely different.
Functional load based on change in entropy is measured in bits,
while functional load based on relativized minimal pair counts is
simply a percentage. Also note that functional load based on minimal
pairs is only based on type frequency; the frequency of the usage of
the words is not used as a weighting factor, the way it can be under
the calculation of functional load as change in entropy.

Average Functional Load

[Hume2013] suggests that the average functional load (there called “relative contrastiveness”) is a useful way of indicating how much work an individual segment does, on average, in comparison to other segments. This is calculated by taking an individual segment, calculating the pairwise functional load of that segment and each other segment in the inventory, and then taking the average across all those pairs. This calculation can also be performed in PCT.

Calculating functional load in the GUI

As with most analysis functions, a corpus must first be loaded (see
Loading in corpora).
Once a corpus is loaded, use the following steps.

	Getting started: Choose “Analysis” / “Calculate functional load...”
from the top menu bar.

	Sound selection: First, decide whether you want to calculate the
average functional load of a single segment (i.e., its functional load
averaged across all possible pairwise comparisons), or the more standard
functional load of a pair of sounds, defined over segments or features.
To calculate the average functional load of a single sound, choose
“Add one segment”; to calculate the pairwise functional load of two
segments, choose “Add pair of segments”; to calculate the pairwise
functional load based on features, choose “Add pair of features.”

For details on how to actually select segments or features, see
Sound Selection or Feature Selection as relevant.

When multiple individual segments or individual pairs are selected, each
entry will be treated separately.

	Functional load algorithm: Select which of the two methods of calculation
you want to use—i.e., minimal pairs or change in entropy.
(See discussion above for details of each.)

	Minimal pair options: If minimal pairs serve as the
means of calculation, there are three additional parameters can be set.

	Raw vs. relative count: First, PCT can report only the raw count of
minimal pairs that hinge on the contrast in the corpus, if you just
want to know the scope of the contrast. On the other hand, the
default is to relativize the raw count to the corpus size, by
dividing the raw number by the number of lexical entries that
include at least one instance of any of the target segments.

	Include vs. ignore homophones: Second, PCT can either include
homophones or ignore them. For example, if the corpus includes
separate entries for the words sock (n.), sock (v.), shock (n.),
and shock (v.), this would count as four minimal pairs if homophones
are included, but only one if homophones are ignored. The default is
to ignore homophones.

	Output list of minimal pairs to a file: It is possible to save
a list of all the actual minimal pairs that PCT finds that hinge on a
particular chosen contrast to a .txt file. To do so, enter a file
path name, or select “Choose file...” to use a regular system
dialogue box. If nothing is entered here, no list will be saved,
but the overall output will still be provided (and can be saved independently).

	Change in entropy options: If you are calculating
functional load using change in entropy, one additional parameter can be set.

	Type or token frequency: As described in Change in entropy, entropy can be
calculated using either type or token frequencies. This option
determines which to use.

	Tier: Select which tier the functional load should be calculated from.
The default is the “transcription” tier, i.e., looking at the entire
word transcriptions. If another tier has been created (see Creating new tiers in the corpus),
functional load can be calculated on the basis of that tier. For example,
if a vowel tier has been created, then “minimal pairs” will be entries
that are identical except for one entry in the vowels only, entirely
independently of consonants. Thus, the words [mapotik] and [ʃɹaɡefli]
would be treated as a minimal pair, given that their vowel-tier
representations are [aoi] and [aei].

	Pronunciation variants: If the corpus contains multiple pronunciation
variants for lexical items, select what strategy should be used. For details,
see Pronunciation Variants.

	Minimum frequency: It is possible to set a minimum token frequency
for words in the corpus in order to be included in the calculation.
This allows easy exclusion of rare words; for example, if one were
calculating the functional load of [s] vs. [ʃ] in English and didn’t
set a minimum frequency, words such as santy (vs. shanty) might be
included, which might not be a particularly accurate reflection of
the phonological knowledge of speakers. To include all words in the
corpus, regardless of their token frequency, set the the minimum frequency to 0.

Here is an example of selecting [m] and [n], with functional load to be
calculated on the basis of minimal pairs, only including words with a
token frequency of at least 1, from the built-in example corpus (which
only has canonical forms):

[image: _images/funtionalloaddialog.png]

	Results: Once all parameters have been set, click one of the two
“Calculate functional load” buttons. If this is the first calculation,
the option to “start new results table” should be selected. For subsequent
calculations, the calculation can be added to the already started table,
for direct comparison, or a new table can be started.

Note

that if a table is closed, new calculations will not be added to the previously
open table; a new table must be started.

Either way, the results table will have the following columns, with one row per calculation: segment 1,
segment 2, which tier was used, which measurement method was selected,
the resulting functional load, what the minimum frequency was, what
strategy was used for dealing with pronunciation variants, and for
calculations using minimal pairs, whether the count is absolute or
relative and whether homophones were ignored or not. (For calculations
using change in entropy, “N/A” values are entered into the latter two columns.)

	Saving results: Once a results table has been generated for at least
one pair, the table can be saved by clicking on “Save to file” at the
bottom of the table to open a system dialogue box and save the results
at a user-designated location.

[image: _images/funtionalloadresults.png]

Note

that in the above screen shot, not all columns are visible;
they are visible only by scrolling over to the right, due to constraints
on the window size. All columns would be saved to the results file.)

To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

Implementing the functional load function on the command line

In order to perform this analysis on the command line, you must enter
a command in the following format into your Terminal:

pct_funcload CORPUSFILE [additional arguments]

...where CORPUSFILE is the name of your *.corpus file. If calculating
FL from a file of segment pairs, it must list the pairs
of segments whose functional load you wish to calculate with each pair
separated by a tab (\t) and one pair on each line. Note that you must either
specify a file or segment (using -p) or request the functional loads of all
segment pairs in the inventory (using -l). You may also use
command line options to change various parameters of your functional
load calculations. Descriptions of these arguments can be viewed by
running pct_funcload –h or pct_funcload --help. The help text from
this command is copied below, augmented with specifications of default values:

Positional arguments:

	
corpus_file_name

	Name of corpus file

Mandatory argument group (call must have one of these two):

	
-p PAIRS_FILE_NAME_OR_SEGMENT

	
--pairs_file_name_or_segment PAIRS_FILE_NAME_OR_SEGMENT

	Name of file with segment pairs (or target segment if relative fl is True)

	
-l

	
--all_pairwise_fls

	Flag: calculate FL for all pairs of segments

Optional arguments:

	
-h

	
--help

	Show help message and exit

	
-c CONTEXT_TYPE

	
--context_type CONTEXT_TYPE

	How to deal with variable pronunciations. Options are
‘Canonical’, ‘MostFrequent’, ‘SeparatedTokens’, or
‘Weighted’. See documentation for details.

	
-a ALGORITHM

	
--algorithm ALGORITHM

	Algorithm to use for calculating functional load:
“minpair” for minimal pair count or “deltah” for change in entropy.
Defaults to minpair.

	
-f FREQUENCY_CUTOFF

	
--frequency_cutoff FREQUENCY_CUTOFF

	Minimum frequency of words to consider as possible minimal pairs or
contributing to lexicon entropy.

	
-d DISTINGUISH_HOMOPHONES

	
--distinguish_homophones DISTINGUISH_HOMOPHONES

	For minimal pair FL: if False, then you’ll count sock~shock
(sock=clothing) and sock~shock (sock=punch) as just one minimal
pair; but if True, you’ll overcount alternative spellings of the
same word, e.g. axel~actual and axle~actual. False is the value
used by Wedel et al.

	
-t TYPE_OR_TOKEN

	
--type_or_token TYPE_OR_TOKEN

	For change in entropy FL: specifies whether entropy is based on type
or token frequency.

	
-e RELATIVE_FL

	
--relative_fl RELATIVE_FL

	If True, calculate the relative FL of a single segment by averaging
across the functional loads of it and all other segments.

	
-s SEQUENCE_TYPE

	
--sequence_type SEQUENCE_TYPE

	The attribute of Words to calculate FL over. Normally this will be
the transcription, but it can also be the spelling or a user-specified tier.

	
-o OUTFILE

	
--outfile OUTFILE

	Name of output file

EXAMPLE 1: If your corpus file is example.corpus (no prounciation variants)
and you want to calculate the minimal pair functional load of the segments
[m] and [n] using defaults for all optional arguments, you first need to
create a text file that contains the text m\tn (where \t is a tab).
Let us call this file pairs.txt. You would then run the
following command in your terminal window:

pct_funcload example.corpus -p pairs.txt

EXAMPLE 2: Suppose you want to calculate the relative (average) functional
load of the segment [m]. Your corpus file is again example.corpus. You
want to use the change in entropy measure of functional load rather than
the minimal pairs measure, and you also want to use type frequency
instead of (the default value of) token frequency. In addition, you want
the script to produce an output file called output.txt. You would need
to run the following command:

pct_funcload example.corpus -p m -a deltah -t type -o output.txt

EXAMPLE 3: Suppose you want to calculate the functional
loads of all segment pairs. Your corpus file is again example.corpus.
All other parameters are set to defaults. In addition, you want
the script to produce an output file called output.txt. You would need
to run the following command:

pct_funcload example.corpus -l -o output.txt

Classes and functions

For further details about the relevant classes and functions in PCT’s
source code, please refer to Functional load.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Predictability of Distribution

About the function

Predictability of distribution is one of the common methods of determining
whether or not two sounds in a language are contrastive or allophonic.
The traditional assumption is that two sounds that are predictably
distributed (i.e., in complementary distribution) are allophonic, and
that any deviation from complete predictability of distribution means
that the two sounds are contrastive. [Hall2009], [Hall2012] proposes a way of
quantifying predictability of distribution in a gradient fashion, using
the information-theoretic quantity of entropy (uncertainty), which is
also used for calculating functional load (see Method of calculation), which can be used
to document the degree to which sounds are contrastive in a language.
This has been shown to be useful in, e.g., documenting sound changes
[Hall2013b], understanding the choice of epenthetic vowel in a languages
[Hume2013], modeling intra-speaker variability [Thakur2011],
gaining insight into synchronic phonological patterns [Hall2013a],
and understanding the influence of phonological relations on perception
([Hall2009], [Hall2014a]). See also the related measure of
Kullback-Leibler divergence (Kullback-Leibler Divergence), which is used in [Peperkamp2006]
and applied to acquisition; it is also a measure of the degree to which
environments overlap, but the method of calculation differs (especially
in terms of environment selection).

It should be noted that predictability of distribution and functional
load are not the same thing, despite the fact that both give a measure
of phonological contrast using entropy. Two sounds could be entirely
unpredictably distributed (perfectly contrastive), and still have either
a low or high functional load, depending on how often that contrast is
actually used in distinguishing lexical items. Indeed, for any degree of
predictability of distribution, the functional load may be either high or
low, with the exception of the case where both are 0. That is, if two
sounds are entirely predictably distributed, and so have an entropy of
0 in terms of distribution, then by definition they cannot be used to
distinguish between any words in the language, and so their functional
load, measured in terms of change in entropy upon merger, would also be 0.

Method of calculation

As mentioned above, predictability of distribution is calculated using
the same entropy formula as above, repeated here below, but with different
inputs.

Entropy:

\(H = -\sum_{i \in N} p_{i} * log_{2}(p_{i})\)

Because predictability of distribution is determined between exactly two
sounds, i will have only two values, that is, each of the two sounds.
Because of this limitation to two sounds, entropy will range in these
situations between 0 and 1. An entropy of 0 means that there is 0
uncertainty about which of the two sounds will occur; i.e., they are
perfectly predictably distributed (commonly associated with being
allophonic). This will happen when one of the two sounds has a probability
of 1 and the other has a probability of 0. On the other hand, an entropy
of 1 means that there is complete uncertainty about which of the two
sounds will occur; i.e., they are in perfectly overlapping distribution
(what might be termed “perfect” contrast). This will happen when each
of the two sounds has a probability of 0.5.

Predictability of distribution can be calculated both within an individual
environment and across all environments in the language; these two
calculations are discussed in turn.

Predictability of Distribution in a Single Environment

For any particular environment (e.g., word-initially; between vowels;
before a [+ATR] vowel with any number of intervening consonants; etc.),
one can calculate the probability that each of two sounds can occur.
This probability can be calculated using either types or tokens, just
as was the case with functional load. Consider the following toy data,
which is again repeated from the examples of functional load, though
just the original distribution of sounds.

	Word
	Original

	Trans.
	Type
Freq.
	Token
Freq.

	hot
	[hɑt]
	1
	2

	song
	[sɑŋ]
	1
	4

	hat
	[hæt]
	1
	1

	sing
	[sɪŋ]
	1
	6

	tot
	[tɑt]
	1
	3

	dot
	[dɑt]
	1
	5

	hip
	[hɪp]
	1
	2

	hid
	[hɪd]
	1
	7

	team
	[tim]
	1
	5

	deem
	[dim]
	1
	5

	toot
	[tut]
	1
	9

	dude
	[dud]
	1
	2

	hiss
	[hɪs]
	1
	3

	his
	[hɪz]
	1
	5

	sizzle
	[sɪzəl]
	1
	4

	dizzy
	[dɪzi]
	1
	3

	tizzy
	[tɪzi]
	1
	4

	Total
	17
	70

Consider the distribution of [h] and [ŋ], word-initially. In this
environment, [h] occurs in 6 separate words, with a total token frequency
of 20. [ŋ] occurs in 0 words, with, of course, a token frequency of 0.
The probability of [h] occurring in this position as compared to [ŋ],
then, is 6/6 based on types, or 20/20 based on tokens. The entropy of
this pair of sounds in this context, then, is:

\(H_{types/tokens} = -[1 log_{2}(1) + 0 log_{2} (0)] = 0\)

Similar results would obtain for [h] and [ŋ] in word-final position,
except of course that it’s [ŋ] and not [h] that can appear in this environment.

For [t] and [d] word-initially, [t] occurs 4 words in this environment,
with a total token frequency of 21, and [d] also occurs in 4 words,
with a total token frequency of 15. Thus, the probability of [t] in
this environment is 4/8, counting types, or 21/36, counting tokens, and
the probability of [d] in this environment is 4/8, counting types, or
15/36, counting tokens. The entropy of this pair of sounds is therefore:

\(H_{types} = -[(\frac{4}{8} log_{2}(\frac{4}{8}))
+ (\frac{4}{8} log_{2}(\frac{4}{8}))] = 1\)

\(H_{types} = -[(\frac{21}{36} log_{2}(\frac{21}{36}))
+ (\frac{15}{36} log_{2}(\frac{15}{36}))] = 0.98\)

In terms of what environment(s) are interesting to examine, that is of
course up to individual researchers. As mentioned in the preface to Predictability of Distribution,
these functions are just tools. It would be just as possible to calculate
the entropy of [t] and [d] in word-initial environments before [ɑ],
separately from word-initial environments before [u]. Or one could
calculate the entropy of [t] and [d] that occur anywhere in a word
before a bilabial nasal...etc., etc. The choice of environment should
be phonologically informed, using all of the resources that have
traditionally been used to identify conditioning environments of interest.
See also the caveats in the following section that apply when one is
calculating systemic entropy across multiple environments.

Predictability of Distribution across All Environments (Systemic Entropy)

While there are times in which knowing the predictability of distribution
within a particular environment is helpful, it is generally the case that
phonologists are more interested in the relationship between the two
sounds as a whole, across all environments. This is achieved by
calculating the weighted average entropy across all environments in which
at least one of the two sounds occurs.

As with single environments, of course, the selection of environments
for the systemic measure need to be phonologically informed. There are
two further caveats that need to be made about environment selection when
multiple environments are to be considered, however: (1) exhaustivity and
(2) uniqueness.

With regard to exhausitivity: In order to calculate the total
predictability of distribution of a pair of sounds in a language, one
must be careful to include all possible environments in which at least
one of the sounds occurs. That is, the total list of environments needs
to encompass all words in the corpus that contain either of the two
sounds; otherwise, the measure will obviously be incomplete. For example,
one would not want to consider just word-initial and word-medial positions
for [h] and [ŋ]; although the answer would in fact be correct (they have 0
entropy across these environments), it would be for the wrong reason—i.e.,
it ignores what happens in word-final position, where they could have had
some other distribution.

With regard to uniqueness: In order to get an accurate calculation of the
total predictability of distribution of a pair of sounds, it is important
to ensure that the set of environments chosen do not overlap with each other,
to ensure that individual tokens of the sounds are not being counted multiple
times. For example, one would not want to have both [#__] and [__i] in the
environment list for [t]/[d] while calculating systemic entropy, because
the words team and deem would appear in both environments, and the sounds
would (in this case) appear to be “more contrastive” (less predictably
distributed) than they might otherwise be, because the contrasting nature
of these words would be counted twice.

To be sure, one can calculate the entropy in a set of individual
environments that are non-exhaustive and/or overlapping, for comparison
of the differences in possible generalizations. But, in order to get an
accurate measure of the total predictability of distribution, the set of
environments must be both exhaustive and non-overlapping. As will be
described below, PCT will by default check whether any set of environments
you provide does in fact meet these characteristics, and will throw a
warning message if it does not.

It is also possible that there are multiple possible ways of developing
a set of exhaustive, non-overlapping environments. For example,
“word-initial” vs. “non-word-initial” would suffice, but so would
“word-initial” vs. “word-medial” vs. “word-final.” Again, it is up to
individual researchers to determine which set of environments makes the
most sense for the particular pheonmenon they are interested in.
See [Hall2012] for a comparison of two different sets of possible
environments in the description of Canadian Raising.

Once a set of exhaustive and non-overlapping environments has been
determined, the entropy in each individual environment is calculated,
as described in Predictability of Distribution in a Single Environment. The frequency of each environment itself is
then calculated by examining how many instances of the two sounds
occurred in each environment, as compared to all other environments, and
the entropy of each environment is weighted by its frequency. These
frequency-weighted entropies are then summed to give the total average
entropy of the sounds across the environments. Again, this value will
range between 0 (complete predictability; no uncertainty) and 1 (complete
unpredictability; maximal uncertainty). This formula is given below; e
represents each individual environment in the exhaustive set of
non-overlapping environments.

Formula for systemic entropy:

\(H_{total} = -\sum_{e \in E} H(e) * p(e)\)

As an example, consider [t]/[d]. One possible set of exhaustive,
non-overlapping environments for this pair of sounds is (1) word-initial
and (2) word-final. The relevant words for each environment are shown in
the table below, along with the calculation of systemic entropy from
these environments.

The calculations for the entropy of word-initial environments were given
above; the calculations for word-final environments are analogous.

To calculate the probability of the environments, we simply count up the
number of total words (either types or tokens) that occur in each
environment, and divide by the total number of words (types or tokens)
that occur in all environments.

Calculation of systemic entropy of [t] and [d]:

	e
	[t]-

words

	[d]-

words

	Types
	Types

	H(e)
	p(e)
	p(e) * H(e)
	H(e)
	p(e)
	p(e) * H(e)

	[#__]
	tot,
team,
toot,
tizzy
	dot,
dude,
deem,
dizzy
	1
	(4+4)/
(8+7)
=8/15
	0.533
	0.98
	(21+15)/
(36+29)
=36/65
	0.543

	[__#]
	hot,
hat,
tot,
dot,
toot
	hid,
dude
	0.863
	7/15
	0.403
	0.894
	29/65
	0.399

	
	0.533+0.403=0.936
	
	0.543+0.399=0.942

In this case, [t]/[d] are relatively highly unpredictably distributed
(contrastive) in both environments, and both environments contributed
approximately equally to the overall measure. Compare this to the example
of [s]/[z], shown below.

Calculation of systemic entropy of [s] and [z]:

	e
	[s]-

words

	[z]-

words

	Types
	Types

	H(e)
	p(e)
	p(e) * H(e)
	H(e)
	p(e)
	p(e) * H(e)

	[#__]
	song,
sing,
sizzle
	
	0
	3/8
	0
	0
	14/33
	0

	[__#]
	hiss
	his
	1
	2/8
	0.25
	0.954
	8/33
	0.231

	[V_V]
	
	sizzle,
dizzy,
tizzy
	0
	3/8
	0
	0
	11/33
	0

	
	0.25
	
	0.231

In this case, there is what would traditionally be called a contrast word
finally, with the minimal pair hiss vs. his; this contrast is neutralized
(made predictable) in both word-initial position, where [s] occurs but
[z] does not, and intervocalic position, where [z] occurs but [s] does
not. The three environments are roughly equally probable, though the
environment of contrast is somewhat less frequent than the environments
of neutralization. The overall entropy of the pair of sounds is on
around 0.25, clearly much closer to perfect predictability (0 entropy)
than [t]/[d].

Note, of course, that this is an entirely fictitious example—that is,
although these are real English words, one would not want to infer
anything about the actual relationship between either [t]/[d] or [s]/[z]
on the basis of such a small corpus. These examples are simplified for
the sake of illustrating the mathematical formulas!

“Predictability of Distribution” Across All Environments (i.e., Frequency-Only Entropy)

Given that the calculation of predictability of distribution is based on
probabilities of occurrence across different environments, it is also
possible to calculate the overall entropy of two segments using their
raw probabilities and ignoring specific environments. Note that this
doesn’t really reveal anything about predictability of distribution per
se; it simply gives the uncertainty of occurrence of two segments that
is related to their relative frequencies. This is calculated by simply
taking the number of occurrences of each of sound 1 (N1) and sound 2
(N2) in the corpus as a whole, and then applying the following formula:

Formula for frequency-only entropy:

\(H = (-1) * [(\frac{N1}{N1+N2}) log_{2} (\frac{N1}{N1+N2})
+(\frac{N2}{N1+N2}) log_{2} (\frac{N2}{N1+N2})]\)

The entropy will be 0 if one or both of the sounds never occur(s) in the
corpus. The entropy will be 1 if the two sounds occur with exactly the
same frequency. It will be a number between 0 and 1 if both sounds occur,
but not with the same frequency.

Note that an entropy of 1 in this case, which was analogous to
perfect contrast in the environment-specific implementation of this
function, does not align with contrast here. For example, [h] and [ŋ]
in English, which are in complementary distribution, could theoretically
have an entropy of 1 if environments are ignored and they happened to
occur with exactly the same frequency in some corpus. Similarly, two
sounds that do in fact occur in the same environments might have a low
entropy, close to 0, if one of the sounds is vastly more frequent than
the other. That is, this calculation is based ONLY on the frequency of
occurrence, and not actually on the distribution of the sounds in the
corpus. This function is thus useful only for getting a sense of the
frequency balance / imbalance between two sounds. Note that one can
also get total frequency counts for any segment in the corpus through
the “Summary” information feature (Summary information about a corpus).

Calculating predictability of distribution in the GUI

Assuming a corpus has been opened or created, predictability of
distribution is calculated using the following steps.

	Getting started: Choose “Analysis” / “Calculate predictability of
distribution...” from the top menu bar.

	Segments: First, select which pairs of sounds you want the predictability
of distribution to be calculated for. There are two options for this. First is to add individual pairs of sounds. Do this by clicking on “Add pair of sounds”;
the “Select segment pair” dialogue box will open. The order that the sounds are selected in is irrelevant; picking [i] first and [u] second will yield the same
results as picking [u] first and [i] second. See more about interacting with the sound selection box (including, e.g., the use of features in selecting sounds and the options for selecting multiple pairs) in Sound Selection.

The second alternative is to select pairs of sounds based on shared vs. contrasting features. This option allows you, for example, to test the predictability of distribution of the front/back contrast in vowels, regardless of vowel height. To do this, click on “Add pair of features”; the “Select feature pair” dialogue box will open. See Feature Selection for more information on using this interface.

Once sounds have been selected, click “Add.” Pairs will appear in the “Predictability of distribution” dialogue box.

	Environments: Click on “New environment” to add an environment in
which to calculate predictability of distribution. See Environment Selection for details on how to use this interface. Note that you will not be able to edit the “target” segments in this function, because the targets are automatically populated from the list of pairs selected on the left-hand side.

Note

If NO environments are added, PCT will
calculate the overall predictability of distribution of the two
sounds based only on their frequency of occurrence. This will simply
count the frequency of each sound in the pair and calculate the
entropy based on those frequencies (either type or token). See
below for an example of calculating environment-free entropy for
four different pairs in the sample corpus:

[image: _images/prodfreq.png]

	Environment list: Individual environments from the
list can be selected and edited or removed if it is determined that an environment
needs to be changed. It is this list that PCT will verify as being
both exhaustive and unique; i.e., the default is that the environments
on this list will exhaustively cover all instances in your corpus of
the selected sounds, but will do so in such a way that each instance
is counted exactly once.

	Tier: Under “Options,” first pick the tier on which you want
predictability of distribution to be calculated. The default is for
the entire transcription to be used, such that environments are defined
on any surrounding segments. If a separate tier has been created as part
of the corpus (see Creating new tiers in the corpus), however, predictability of distribution can
be calculated on this tier. For example, one could extract a separate
tier that contains only vowels, and then calculate predictability of
distribution based on this tier. This makes it much easier to define
non-adjacent contexts. For instance, if one wanted to investigate the
extent to which [i] and [u] are predictably distributed before front
vs. back vowels, it will be much easier to to specify that the relevant
environments are _[+back] and _[-back] on the vowel tier than to try
to account for possible intervening segments on the entire transcription
tier.

	Pronunciation variants: If the corpus contains multiple pronunciation variants for lexical items, select what strategy should be used. For details, see Pronunciation Variants.

	Type vs. Token Frequency: Next, pick whether you want the calculation
to be done on types or tokens, assuming that token frequencies are
available in your corpus. If they are not, this option will not be
available. (Note: if you think your corpus does include token frequencies,
but this option seems to be unavailable, see Required format of corpus on the required
format for a corpus.)

	Exhaustivity & Uniqueness: The default is for PCT to check for both
exhaustivity and uniqueness of environments, as described above in
Predictability of Distribution across All Environments (Systemic Entropy). Un-checking this box will turn off this mechanism. For
example, if you wanted to compare a series of different possible
environments, to see how the entropy calculations differ under
different generalizations, uniqueness might not be a concern. Keep
in mind that if uniqueness and exhaustivity are not met, however,
the calculation of systemic entropy will be inaccurate.

	If you ask PCT to check for exhaustivity, and it is not met, an error
message will appear that warns you that the environments you have
selected do not exhaustively cover all instances of the symbols in
the corpus, as in the following; the “Show details...” option has
been clicked to reveal the specific words that occur in the corpus
that are not currently covered by your list of environments.
Furthermore, a .txt file is automatically created that lists all
of the words, so that the environments can be easily adjusted. This
file is stored in the ERRORS folder within the working directory
that contains the PCT software (see also Preferences), and can be accessed directly by
clicking “Open errors directory.” If exhaustivity is not important,
and only the entropy in individual environments matters, then it is
safe to not enforce exhaustivity; it should be noted that the
weighted average entropy across environments will NOT be accurate
in this scenario, because not all words have been included.

[image: _images/proderror.png]

	If you ask PCT to check for uniqueness, and it is not met, an error
message will appear that indicates that the environments
are not unique, as shown below. Furthermore, a .txt file explaining
the error and listing all the words that are described by multiple
environments in your list is created automatically and stored in
the ERRORS folder within the working directory that contains the
PCT software. Clicking “Show details” in the error box also reveals
this information.

[image: _images/proderror2.png]

Here’s an example of correctly exhaustive and unique selections for
calculating the predictability of distribution based on token frequency
for [s] and [ʃ] in the example corpus (note that the environments were selected using features, e.g., _#, _[-voc], _[+voc, -high], _[+voc, +high], even though they appear as sets of segments in the environments):

[image: _images/proddialog.png]

	Entropy calculation / results: Once all environments have been specified,
click “Calculate predictability of distribution.” If you want to start
a new results table, click that button; if you’ve already done at least
one calculation and want to add new calculations to the same table,
select the button with “add to current results table.” Results will
appear in a pop-up window on screen. The last row for each pair gives
the weighted average entropy across all selected environments, with
the environments being weighted by their own frequency of occurrence.
See the following example (noting that not all columns in the result file are visible on screen):

[image: _images/prodresults.png]

	Output file / Saving results: If you want to save the table of results,
click on “Save to file” at the bottom of the table. This opens up a
system dialogue box where the directory and name can be selected.

To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

Classes and functions

For further details about the relevant classes and functions in PCT’s
source code, please refer to Predictability of distribution.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Kullback-Leibler Divergence

About the function

Another way of measuring the distribution of environments as a proxy for
phonological relationships is the Kullback-Leibler (KL) measure of the
dissimilarity between probability distributions [Kullback1951].
Sounds that are distinct phonemes appear in the same environments, that is,
there are minimal or near-minimal, pairs. Allophones, on the other hand,
have complementary distribution, and never appear in the same environment.
Distributions that are identical have a KL score of 0, and the more
dissimilar two distributions, the higher the KL score. Applied to
phonology, the idea is to calculate the probability of two sounds across
all environments in a corpus, and use KL to measure their dissimilarity.
Scores close to 0 suggest that the two sounds are distinct phonemes,
since they occur in many of the same environments (or else there is
extensive free variation). Higher scores represent higher probabilities
that the two sounds are actually allophones. Since KL scores have no
upper bound, it is up to the user to decide what counts as “high enough”
for two sounds to be allophones (this is unlike the predictability of
distribution measure described in Predictability of Distribution).
See [Peperkamp2006] for a discussion of how to use Z-Scores to make this discrimination.

As with the predictability of distribution measure in Predictability of Distribution, spurious
allophony is also possible, since many sounds happen to have non-overlapping
distributions. As a simple example, vowels and consonants generally have
high KL scores, because they occur in such different environments.
Individual languages might have cases of accidental complementary
distribution too. For example, in English /h/ occurs only initially and
[ŋ] only occurs finally. However, it is not usual to analyze them as
being in allophones of a single underlying phonemes. Instead, there is
a sense that allophones need to be phonetically similar to some degree,
and /h/ and /ŋ/ are simply too dissimilar.

To deal with this problem, [Peperkamp2006] suggest two
“linguistic filters” that can be applied, which can help identify
cases of spurious allophones, such as /h/ and /ŋ/. Their filters do
not straightforwardly apply to CorpusTools, since they use 5-dimensional
vectors to represent sounds, while in CorpusTools most sounds have only
binary features. An alternative filter is used instead, and it is
described below.

It is important to note that this function’s usefulness depends on the
level of analysis in your transcriptions. In many cases, corpora are
transcribed at a phonemic level of detail, and KL will not be very
informative. For instance, the IPHOD corpus does not distinguish between
aspirated and unaspirated voiceless stops, so you cannot measure their
KL score.

Method of calculation

All calculations were adopted from [Peperkamp2006]. The variables
involved are as follows: s is a segment, c is a context, and C is the
set of all contexts. The Kullback-Leibler measure of dissimilarity between
the distributions of two segments is the sum for all contexts of the
entropy of the contexts given the segments:

KL Divergence:

\(m_{KL}(s_1,s_2) = \sum_{c \in C} P(c|s_1) log (\frac{P(c|s_1)}{P(c|s_2)})
+ P(c|s_2) log(\frac{P(c|s_2)}{P(c|s_1)})\)

The notation P(c|s) means the probability of context c given segment s,
and it is calculated as follows:

\(P(c|s) = \frac{n(c,s) + 1}{n(s) + N}\)

...where n(c,s) is the number of occurrences of segments s in context c.
[Peperkamp2006] note that this equal to the number of occurrences
of the sequence sc, which suggests that they are only looking at the right
hand environment. This is probably because in their test corpora, they were
looking at allophones conditioned by the following segment. PCT provides
the option to look only at the left-hand environment, only at the right-hand
environment, or at both.

[Peperkamp2006] then compare the average entropy values of each segment,
in the pair. The segment with the higher entropy is considered to be a
surface representation (SR), i.e. an allophone, while the other is the
underlying representation (UR). In a results window in PCT, this is given
as “Possible UR.” More formally:

\(SR = \max_{SR,UR}[\sum_{c} P(c|s) log \frac{P(c|s)}{P(c)}]\)

[Peperkamp2006] give two linguistic filters for getting rid of spurious
allophones, which rely on sounds be coded as 5-dimensional vectors. In
PCT, this concept as been adopted to deal with binary features. The aim
of the filter is the same, however. In a results window the column labeled
“spurious allophones” gives the result of applying this filter.

The features of the supposed UR and SR are compared. If they differ by
only one feature, they are considered plausibly close enough to be
allophones, assuming the KL score is high enough for this to be
reasonable (which will depend on the corpus and the user’s expectations).
In this case, the “spurious allophones?” results will say ‘No.’

If they differ by more than 1 feature, PCT checks to see if there any
other sounds in the corpus that are closer to the SR than the UR is.
For instance, if /p/ and /s/ are compared in the IPHOD corpus, /p/ is
considered the UR and /s/ is the SR. The two sounds differ by two
features, namely [continuant] and [coronal]. There also exists another
sound, /t/, which differs from /s/ by [continuant], but not by [coronal]
(or any other feature). In other words, /t/ is more similar to /s/ than
/p/ is to /s/. If such an “in-between” sound can be found, then in the
“spurious allophones?” column, the results will say ‘Yes.’

If the two sounds differ by more than 1 feature, but no in-between sound
can be found, then the “spurious allophones?” results will say ‘Maybe.’

Note too that a more direct comparison of the acoustic similarity of
sounds can also be conducted using the functions in Acoustic Similarity.

Calculating Kullback-Leibler Divergence in the GUI

To implement the KL function in the GUI, select “Analysis” / “Calculate
Kullback-Leibler...” and then follow these steps:

	Pair of sounds: First, select which pairs of sounds you want the functional
load to be calculated for. Do this by clicking on either “Add pair of sounds”
or “Add pair of features” – use the former for selecting segments (even if
the segments are chosen using features); use the latter for selecting
featural differences to calculate KL divergence for (e.g., the KL score
for [+/-high]).
See Sound Selection or Feature Selection for more on how to
interact with these options.

	Tier: Select which tier the KL-divergence should be calculated from.
The default is the “transcription” tier, i.e., looking at the entire
word transcriptions. If another tier has been created (see Creating new tiers in the corpus),
KL can be calculated on the basis of that tier. For example,
if a vowel tier has been created, then the sounds will be considered only in
terms of their adjacent vowels, ignoring intervening consonants.

	Pronunciation variants: If the corpus contains multiple pronunciation
variants for lexical items, select what strategy should be used. For details,
see Pronunciation Variants.

	Type or token frequency: Select whether probabilities should be
based on type or token frequencies.

	Contexts: Using KL requires a notion of “context,” and there are three
options: left, right, or both. Consider the example word [atema]. If
using the “both” option, then this word consists of these environments:
[#_t], [a_e], [t_m], [e_a], and [m_#]. If the left-side option is chosen,
then only the left-hand side is used, i.e., the word consists of the
environments [#_], [a_], [t_], [e_], and [m_]. If the right-side option
is chosen, then the environments in the word are [_t], [_e], [_m], [_a],
and [_#]. Note that the word boundaries don’t count as elements of words,
but can count as parts of environments.

	Results: Once all selections have been made, click “Calculate
Kullback-Leibler.” If you want to start a new results table, click
that button; if you’ve already done at least one calculation and
want to add new calculations to the same table, select the button
with “add to current results table.” Results will appear in a pop-up
window on screen. Each member of the pair is listed, along with which
context was selected, what tier was used, what strategy was used for pronunciation variants, what kind of frequency was used, the entropy of each segment, the KL score, which
of the two members of the pair is more likely to be the UR (as described
above), and PCT’s judgment as to whether this is a possible case of
spurious allophones based on the featural distance.

	Output file / Saving results: If you want to save the table of results,
click on “Save to file” at the bottom of the table. This opens up a
system dialogue box where the directory and name can be selected.

To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

An example of calculating the KL scores in the Example corpus (which has canonical forms only), with the
sounds [s], [ʃ], [t], [n], [m], [e], [u] selected (and therefore all
pairwise comparisons thereof calculated), examining only right-hand side
contexts:

The “Select segment pair” dialogue box, within the “Kullback-Leibler”
dialogue box:

[image: _images/segmentpair.png]
The “Kullback-Leibler” dialogue box, with pairs of sounds and contexts
selected:

[image: _images/kldialog.png]
The resulting table of results:

[image: _images/klresults.png]

Implementing the KL-divergence function on the command line

In order to perform this analysis on the command line, you must enter
a command in the following format into your Terminal:

pct_funcload CORPUSFILE [additional arguments]

...where CORPUSFILE is the name of your *.corpus file. If calculating
FL from a file of segment pairs, it must list the pairs
of segments whose functional load you wish to calculate with each pair
separated by a tab (\t) and one pair on each line. Note that you must either
specify a file or segment (using -p) or request the functional loads of all
segment pairs in the inventory (using -l). You may also use
command line options to change various parameters of your functional
load calculations. Descriptions of these arguments can be viewed by
running pct_funcload –h or pct_funcload --help. The help text from
this command is copied below, augmented with specifications of default values:

Positional arguments:

	
corpus_file_name

	Name of corpus file

	
seg1

	First segment

	
seg2

	Second segment

	
side

	Context to check. Options are ‘right’, ‘left’ and
‘both’. You can enter just the first letter.

Optional arguments:

	
-h

	
--help

	Show help message and exit

	
-s SEQUENCE_TYPE

	
--sequence_type SEQUENCE_TYPE

	The attribute of Words to calculate KL-divergence over. Normally this will be
the transcription, but it can also be the spelling or a user-specified tier.

	
-t TYPE_OR_TOKEN

	
--type_or_token TYPE_OR_TOKEN

	Specifies whether quantifications are based on type
or token frequency.

	
-c CONTEXT_TYPE

	
--context_type CONTEXT_TYPE

	How to deal with variable pronunciations. Options are
‘Canonical’, ‘MostFrequent’, ‘SeparatedTokens’, or
‘Weighted’. See documentation for details.

	
-o OUTFILE

	
--outfile OUTFILE

	Name of output file

EXAMPLE 1: If your corpus file is example.corpus (no prounciation variants)
and you want to calculate the KL-divergence of the segments
[m] and [n] considering contexts on both sides and using defaults for all
optional arguments, you would run the following command in your terminal window:

pct_kl example.corpus m n both

Classes and functions

For further details about the relevant classes and functions in PCT’s
source code, please refer to Kullback-Leibler divergence.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

String similarity

About the function

String similarity is any measure of how similar any two sequences of
characters are. These character strings can be strings of letters or
phonemes; both of the methods of calculation included in PCT allow for
calculations using either type of character. It is, therefore, a basic
measure of overall form-based similarity.

String similarity finds more widespread use in areas of linguistics other
than phonology; it is, for example, used in Natural Language Processing
applications to determine, for example, possible alternative spellings
when a word has been mistyped. It is, however, also useful for determining
how phonologically close any two words might be.

String similarity could be part of a calculation of morphological
relatedness, if used in conjunction with a measure of semantic similarity
(see, e.g., [Hall2014b]). In particular, it can be used in conjunction
with the Frequency of Alternation function of PCT (see Frequency of alternation) as a means
of calculating the frequency with which two sounds alternate with each
other in a language.

Some measure of string similarity is also used to calculate neighbourhood
density (e.g. [Greenberg1964]; [Luce1998]; [Yao2011]),
which has been shown to affect phonological processing. A phonological
“neighbour” of some word X is a word that is similar in some close way
to X. For example, it might differ by maximally one phone (through deletion,
addition, or subsitution) from X. X’s neighbourhood density, then, is the
number of words that fit the criterion for being a neighbour.

Method of calculation

Levenshtein Edit Distance

Edit distance is defined as the minimum number of one-symbol deletions,
additions, and substitutions necessary to turn one string into another.
For example, turn and burn would have an edit distance of 1, as the only
change necessary is to turn the <t> into a , while the edit distance
between turn and surfs would be 3, with <t> becoming <s>, <n> becoming
<f>, and ∅ becoming <s> at the end of the word. All such one-symbol
changes are treated as equal in Levenshtein edit distance, unlike
phonological edit distance, described in the following section. Generally
speaking, the neighbourhood density of a particular lexical item is
measured by summing the number of lexical items that have an edit distance
of 1 from that item [Luce1998].

Phonological Edit Distance

Phonological edit distance is quite similar to Levenshtein edit distance,
in that it calculates the number of one-symbol changes between strings,
but it differs in that changes are weighted based on featural similarity.
For example, depending on the feature system used, changing <t> to <s>
might involve a single feature change (from [-cont] to [+cont]), while
changing <t> to might involve two (from [-voice, +cor] to [+voice,
-cor]). By default, the formula for calculating the phonological distance
between two segments—or between a segment and “silence”, i.e. insertion
or deletion—is the one used in the Sublexical Learner [Allen2014].
When comparing two segments, the distance between them is equal to the
sum of the distances between each of their feature values: the distance
between two feature values that are identical is 0, while the distance
between two opposing values (+/- or -/+) is 1, and the distance between
two feature values in the case that just one of them is 0 (unspecified)
is set to by default to 0.25. When comparing a segment to “silence”
(insertion/deletion), the silence is given feature values of 0 for
all features and then compared to the segment as normal.

Khorsi (2012) Similarity Metric

Khorsi (2012) proposes a particular measure of string similarity based
on orthography, which he suggests can be used as a direct measure of
morphological relatedness. PCT allows one to calculate this measure,
which could be used, as Khorsi describes, on its own, or could be used
in conjunction with other measures (e.g., semantic similarity) to create
a more nuanced view.

This measure starts with the sum of the log of the inverse of the
frequency of occurrence of each of the letters in the longest common
shared sequence between two words, and then subtracts the sum of the
log of the inverse of the frequency of the letters that are not shared,
as shown below.

Formula for string similarity from [Khorsi2012]:

\(\sum_{i=1}^{\lVert LCS(w_1,w_2) \rVert} log (\frac{1}{freq(LCS(w_1,w_2)[i])})
- \sum_{i=1}^{\lVert \overline{LCS(w_1,w_2)} \rVert} log (\frac{1}{freq(\overline{LCS(w_1,w_2)}[i])})\)

Note:

	w1, w2 are two words whose string similarity is to be measured

	LCS(w1, w2) represents the Longest Common Shared Sequence of symbols
between the two words

As with other functions, the frequency measure used for each character
will be taken from the current corpus. This means that the score will
be different for a given pair of words (e.g., pressed vs. pressure)
depending on the frequency of the individual characters in the loaded corpus.

Calculating string similarity in the GUI

To start the analysis, click on “Analysis” / “Calculate string similarity...”
in the main menu, and then follow these steps:

	String similarity algorithm: The first step is to choose which of the
three methods described above is to be used to calculate string similarity.
The options are phonological edit distance, standard (Levenshtein) edit
distance, and the algorithm described above and in [Khorsi2012].

	Comparison type: Next, choose what kind of comparison is to be done.
One can either take a single word and get its string similarity score
to every other word in the corpus (useful, for example, when trying
to figure out which words are most / least similar to a given word,
as one might for stimuli creation), or can compare individual pairs
of words (useful if a limited set of pre-determined words is of
interest). For each of these, you can use words that already exist
in the corpus or calculate the similarity for words (or non-words)
that are not in the corpus. Note that these words will NOT be added
to the corpus itself; if you want to globally add the word (and
therefore have its own properties affect calculations), please use
the instructions in Adding a word.
	One word in the corpus: To compare the similarity of one word that
already exists in the corpus to every other word in the corpus,
simply select “Compare one word to entire corpus” and enter the
single word into the dialogue box, using its standard orthographic
representation. Note that you can choose later which tier string
similarity will be calculated on (spelling, transcription, etc.);
this simply identifies the word for PCT.

	One word not in the corpus: Click on “Calculate for a word/nonword
not in the corpus” and then select “Create word/nonword” to enter
the new word.
	Spelling: Enter the spelling for your new word / nonword using
the regular input keyboard on your computer.

	Transcription: To add in the phonetic transcription of the new
word, it is best to use the provided inventory. While it is
possible to type directly in to the transcription box, using
the provided inventory will ensure that all characters are
understood by PCT to correspond to existing characters in the
corpus (with their concomitant featural interpretation). Click
on “Show inventory.” (See also Edit inventory categories
for more on how to
set up the inventory window.) Clicking on the individual
segments will add them to the transcription. Note that
you do NOT need to include word boundaries at the beginning
and end of the word, even when the boundary symbol is included
as a member of the inventory; these will be assumed
automatically by PCT.

	Frequency and other columns: These can be left at the default.
Note that entering values will NOT affect the calculation;
there is no particular need to enter anything here (it is an
artifact of using the same dialogue box here as in the “Add Word”
function described in Adding a word).

	Create word: To finish and return to the “String similarity”
dialogue box, click on “Create word.”

	Single word pair (in or not in) the corpus: If the similarity of an
individual word pair is to be calculated, one can enter the pair
directly into the dialogue box. For each word that is in the corpus,
simply enter its standard orthographic form. For each word that is
not in the corpus, you can add it by selecting “Create word/nonword”
and following the steps described immediately above in (2b).

	List of pairs of words (in the corpus): If there is a long list of pairs
of words, one can simply create a tab-delimited plain .txt file
with one word pair per line. In this case, click on “Choose file” and select the .txt file in the resulting system
dialogue box. Note that this option is currently available only
for words that already exist in the corpus, and that these pairs
should be listed using their standard orthographic representations.

	Tier: The tier from which string similarity is to be calculated can
be selected. Generally, one is likely to care most about either
spelling or transcription, but other tiers (e.g., a vowel tier)
can also be selected; in this case, all information removed from
the tier is ignored. Words should always be entered orthographically
(e.g., when telling PCT what word pairs to compare). If similarity is
to be calculated on the basis of spelling, words that are entered are
broken into their letter components. If similarity is to be calculated
on the basis of transcription, the transcriptions are looked up in the
corpus, or taken from the created nonword (see step # 1b above).

	Pronunciation variants: If the corpus contains multiple pronunciation variants for lexical items, select what strategy should be used. For details, see Pronunciation Variants. Note that here, the only choices currently available are canonical or most-frequent forms.

	Frequency type: If Khorsi similarity is to be calculated, the frequencies
of the symbols is relevant, and so will be looked up in the currently
loaded corpus. Either type frequency or token frequency can be used for
the calculation. This option will not be available for either edit
distance algorithm, because frequency isn’t taken into account in
either one.

	Minimum / Maximum similarity: If one is calculating the similarity of
one word to all others in the corpus, an arbitrary minimum and maximum
can be set to filter out words that are particularly close or distant.
For example, one could require that only words with an edit distance
of both at least and at most 1 are returned, to get the members of
the standard neighbourhood of a particular lexical item. (Recall
that the Khorsi calculation is a measure of similarity, while edit
distance and phonological edit distance are measures of difference.
Thus, a minimum similarity value is analogous to a maximum distance
value. PCT will automatically interpret “minimum” and “maximum”
relative to the string-similarity algorithm chosen.

Here’s an example for calculating the Khorsi similarity of the pair
mata (which occurs in the corpus) and mitoo [mitu] (which does not),
in the sample corpus, using token frequencies and comparing transcriptions:

[image: _images/stringsimilaritydialog.png]

	Results: Once all options have been selected, click “Calculate string
similarity.” If this is not the first calculation, and you want to
add the results to a pre-existing results table, select the choice
that says “add to current results table.” Otherwise, select “start
new results table.” A dialogue box will open, showing a table of the
results, including word 1, word 2, the result (i.e., the similarity
score for Khorsi or distance score for either of the edit algorithms), what choice was made regarding pronunciation variants, whether type or token frequency was used (if the Khorsi method is
selected; otherwise, N/A), and which algorithm was used. Note that
the entries in the table will be written in spelling regardless of
whether spelling or transcriptions were used. This file can be saved
to a desired location by selecting “Save to file” at the bottom of
the table.

Here’s an example result file for the above selection:

[image: _images/stringsimilarityresults.png]
To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

Classes and functions

For further details about the relevant classes and functions in PCT’s
source code, please refer to Symbol similarity.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Neighbourhood density

About the functions

Some measures of String similarity are used to calculate neighbourhood
density (e.g. [Greenberg1964]; [Luce1998]; [Yao2011]),
which has been shown to affect phonological processing. A phonological
“neighbor” of some word X is a word that is similar in some close way
to X. For example, it might differ by maximally one phone (through deletion,
addition, or subsitution) from X. X’s neighborhood density, then, is the
number of words that fit the criterion for being a neighbour.

Method of calculation

A word’s neighborhood density is equal to the number of other words in the
corpus similar to that word (or, if using token frequencies, the sum of
those words’ counts). The threshold that defines whether two words are
considered similar to each other can becalculated using any of the three
distance metrics described in Method of calculation:
Levenshtein edit distance,
phonological edit distance, or Khorsi (2012) similarity. As implemented
in PCT, for a query word, each other word in the corpus is checked for
its similarity to the query word and then added to a list of neighbors
if sufficiently similar.

For further detail about the available distance/similarity metrics,
refer to Method of calculation.

Calculating neighbourhood density in the GUI

To start the analysis, click on “Analysis” / “Calculate neighbourhood
density...” in the main menu, and then follow these steps:

	String similarity algorithm: The first step is to choose which of the
three methods of String similarity is to be used to calculate
neighbourhood density. Note that the standard way of calculating
density is using regular (Levenshtein) edit distance. We include the
other two algorithms here as options primarily for the purpose of
allowing users to explore whether they might be useful measures; we
make no claims that either phonological edit distance or the Khorsi
algorithm might be better than edit distance for any reason.
	Minimal pair counts / Substitution neighbours: It is also possible to
calculate neighbourhood density by using a variation of edit distance
that allows for “substitutions only” (not deletions or insertions).
This is particularly useful if, for example, you wish to know the
number of or identity of all minimal pairs for a given word in the
corpus, as minimal pairs are generally assumed to be substitution
neighbours with an edit distance of 1. (Note that the substitution
neighbours algorithm automatically assumes a threshold of 1; multiple
substitutions are not allowed.)

	Query type: Neighbourhood density can be calculated for one of four
types of inputs:
	One word in the corpus: The neighbourhood density of a single word
can be calculated by entering that word’s orthographic representation
in the query box.

	One word not in the corpus: (Note that this will NOT add the word
itself to the corpus, and will not affect any subsequent calculations.
To globally add a word to the corpus itself, please see the
instructions in Adding a word.) Select “Calculate for a word/nonword
in the corpus,” then choose “Create word/nonword” to enter the
new word and do the following:
	Spelling: Enter the spelling for your new word / nonword using
the regular input keyboard on your computer.

	Transcription: To add in the phonetic transcription of the new
word, it is best to use the provided inventory. While it is
possible to type directly in to the transcription box, using
the provided inventory will ensure that all characters are
understood by PCT to correspond to existing characters in the
corpus (with their concomitant featural interpretation). Click
on “Show inventory.” (See also Edit inventory categories for more on how to set up the inventory window.) Clicking on the individual segments will add them to
the transcription. Note that
you do NOT need to include word boundaries at the beginning
and end of the word, even when the boundary symbol is included
as a member of the inventory; these will be assumed
automatically by PCT.

	Frequency and other columns: These can be left at the default.
Note that entering values will NOT affect the calculation; there
is no particular need to enter anything here (it is an artifact
of using the same dialogue box here as in the “Add Word” function
described in Adding a word).

	Create word: To finish and return to the “String similarity”
dialogue box, click on “Create word.”

	List of words: If there is a specific list of words for which density
is to be calculated (e.g., the stimuli list for an experiment), that
list can be saved as a .txt file with one word per line and uploaded
into PCT for analysis. Note that in this case, if the words are in
the corpus, either transcription- or spelling-based neighbourhood
density can be calculated; either way, the words on the list should be
written in standard orthography (their transcriptions will be looked
up in the corpus if needed). If the words are not in the corpus, then
only spelling-based neighbourhood density can currently be calculated;
again, the words should be written orthographically.

	Whole corpus: Alternatively, the neighbourhood density for every word
in the corpus can be calculated. This is useful, for example, if one
wishes to find words that match a particular neighbourhood density.
The density of each word will be added to the corpus itself, as a
separate column; in the “query” box, simply enter the name of that
column (the default is “Neighborhood Density”).

	Tier: Neighbourhood density can be calculated from most of the available
tiers in a corpus (e.g., spelling, transcription, or tiers that
represent subsets of entries, such as a vowel or consonant tier).
(If neighbourhood density is being calculated with phonological edit
distance as the similarity metric, spelling cannot be used.) Standard
neighbourhood density is calculated using edit distance on transcriptions.

	Pronunciation variants: If the corpus contains multiple pronunciation variants for lexical items, select what strategy should be used. For details, see Pronunciation Variants. Note that here, the only choices currently available are canonical or most-frequent forms.

	Type vs. token frequency: If the Khorsi algorithm is selected as the
string similarity metric, similarity can be calculated using either
type or token frequency, as described in Khorsi (2012) Similarity Metric.

	Distance / Similarity Threshold: A specific threshold must be set to
determine what counts as a “neighbour.” If either of the edit distance
metrics is selected, this should be the maximal distance that is
allowed – in standard calculations of neighbourhood density, this
would be 1, signifying a maximum 1-phone change from the starting
word. If the Khorsi algorithm is selected, this should be the
minimum similarity score that is required. Because this is not the
standard way of calculating neighbourhood density, we have no
recommendations for what value(s) might be good defaults here;
instead, we recommend experimenting with the string similarity
algorithm to determine what kinds of values are common for words
that seem to count as neighbours, and working backward from that.

	Output file: If this option is left blank, PCT will simply return
the actual neighbourhood density for each word that is calculated
(i.e., the number of neighbours of each word). If a file is chosen,
then the number will still be returned, but additionally, a file
will be created that lists all of the actual neighbours for each word.

	Results: Once all options have been selected, click “Calculate
neighborhood density.” If this is not the first calculation, and
you want to add the results to a pre-existing results table, select
the choice that says “add to current results table.” Otherwise,
select “start new results table.” A dialogue box will open, showing
a table of the results, including the word, its neighbourhood density,
the string type from which neighbourhood density was calculated, what choice was made regarding pronunciation variants,
whether type or token frequency was used (if applicable), the string
similarity algorithm that was used, and the threshold value. If the
neighbourhood density for all words in the corpus is being calculated,
simply click on the “start new results table” option, and you will be
returned to your corpus, where a new column has been added automatically.

	Saving results: The results tables can each be saved to tab-delimited
.txt files by selecting “Save to file” at the bottom of the window.
Any output files containing actual lists of neighbours are already
saved as .txt files in the location specified (see step 7). If all
neighbourhood densities are calculated for a corpus, the corpus itself
can be saved by going to “File” / “Export corpus as text file,” from
where it can be reloaded into PCT for use in future sessions with the
neighbourhood densities included.

Here’s an example of neighbourhood density being calculated on
transcriptions for the entire example corpus, using edit distance
with a threshold of 1:

[image: _images/neighdendialog.png]
The corpus with all words’ densities added:

[image: _images/neighdencolumn.png]
An example of calculating all the transcription neighbours for a given word in the
IPHOD corpus, and saving the resulting list of neighbours to an output file:

[image: _images/neighdendialogoutput.png]
The on-screen results table, which can be saved to a file itself:

[image: _images/neighdenresults.png]
And the saved output file listing all 45 of the neighbours of cat in the IPHOD corpus:

[image: _images/neighdenoutput.png]
An example .txt file containing one word per line, that can be uploaded
into PCT so that the neighbourhood density of each word is calculated:

[image: _images/neighdeninput.png]
The resulting table of neighbourhood densities for each word on the list
(in the IPHOD corpus, with standard edit distance and a threshold of 1):

[image: _images/neighdeninputresults.png]
To return to the function dialogue box with your most recently used
selections after any results table has been created, click on “Reopen
function dialog.” Otherwise, the results table can be closed and you
will be returned to your corpus view.

Implementing the neighbourhood density function on the command line

In order to perform this analysis on the command line, you must enter a
command in the following format into your Terminal:

pct_neighdens CORPUSFILE ARG2

...where CORPUSFILE is the name of your *.corpus file and ARG2 is either
the word whose neighborhood density you wish to calculate or the name
of your word list file (if calculating the neighborhood density of each
word). The word list file must contain one word (specified using either
spelling or transcription) on each line. You may also use command line
options to change various parameters of your neighborhood density
calculations. Descriptions of these arguments can be viewed by running
pct_neighdens –h or pct_neighdens –help. The help text from this
command is copied below, augmented with specifications of default values:

Positional arguments:

	
corpus_file_name

	Name of corpus file

	
query

	Name of word to query, or name of file including a list of words

Optional arguments:

	
-h

	
--help

	Show this help message and exit

	
-c CONTEXT_TYPE

	
--context_type CONTEXT_TYPE

	How to deal with variable pronunciations. Options are
‘Canonical’, ‘MostFrequent’, ‘SeparatedTokens’, or
‘Weighted’. See documentation for details.

	
-a ALGORITHM

	
--algorithm ALGORITHM

	The algorithm used to determine distance

	
-d MAX_DISTANCE

	
--max_distance MAX_DISTANCE

	Maximum edit distance from the queried word to consider a word a neighbor.

	
-s SEQUENCE_TYPE

	
--sequence_type SEQUENCE_TYPE

	The name of the tier on which to calculate distance

	
-w COUNT_WHAT

	
--count_what COUNT_WHAT

	If ‘type’, count neighbors in terms of their type frequency. If
‘token’, count neighbors in terms of their token frequency.

	
-m

	
--find_mutation_minpairs

	This flag causes the script not to calculate neighborhood density,
but rather to find minimal pairs–see documentation.

	
-o OUTFILE

	
--outfile OUTFILE

	Name of output file.

EXAMPLE 1: If your corpus file is example.corpus (no pronunciation variants)
and you want to calculate the neighborhood density of the word ‘nata’ using defaults
for all optional arguments, you would run the following command in your
terminal window:

pct_neighdens example.corpus nata

EXAMPLE 2: Suppose you want to calculate the neighborhood distance of a
list of words located in the file mywords.txt . Your corpus file is again
example.corpus. You want to use the phonological edit distance metric,
and you wish to count as a neighbor any word with a distance less than
0.75 from the query word. In addition, you want the script to produce an
output file called output.txt . You would need to run the following command:

pct_neighdens example.corpus mywords.txt -a phonological_edit_distance -d 0.75 -o output.txt

EXAMPLE 3: You wish to find a list of the minimal pairs of the word ‘nata’.
You would need to run the following command:

pct_neighdens example.corpus nata -m

Classes and functions

For further details about the relevant classes and functions in PCT’s
source code, please refer to Neighborhood density.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Frequency of alternation

About the function

The occurrence of alternations can be used in assessing whether two
phonemes in a language are contrastive or allophonic, with alternations
promoting the analysis of allophony (e.g., [Silverman2006], [Johnson2010],
[Lu2012]), though it’s clear that not all alternating sounds are
allophonic (e.g., the [k]~[s] alternation in electric~electricity).

In general, two phonemes are considered to alternate if they occur in
corresponding positions in two related words. For example, [s]/[ʃ]
would be considered an alternation in the words [dəpɹɛs] and [dəpɹɛʃən]
as they occur in corresponding positions and the words are morphologically
related. [Johnson2010] make the point that alternations may be
more or less frequent in a language, and imply that this frequency may
affect the influence of the alternations on phonological relations. As far
as we know, however, there is no literature that directly tests this claim
or establishes how frequency of alternation could actually be quantified
(though see discussion in [Hall2014b]).

Method of calculation

In PCT, frequency of alternation [1] is the ratio of the number of words
that have an alternation of two phonemes to the total number of words
that contain either phoneme, as in:

\(Frequency\ of\ alternation = \frac{Words\ with\ an\ alternation\ of\ s_1\ and\ s_2}
{Words\ with\ s_1\ +\ words\ with\ s_2}\)

To determine whether two words have an alternation of the targeted phonemes,
one word must contain phoneme 1, the other must contain phoneme 2, and some
threshold of “relatedness” must be met. In an ideal world, this would be
determined by a combination of orthographic, phonological, and semantic
similarity; see discussion in [Hall2014b]. Within PCT,
however, a much more basic relatedness criterion is used: string similarity.
This is indeed what [Khorsi2012] proposes as a measure of morphological
relatedness, and though we caution that this is not in particularly close
alignment with the standard linguistic interpretation of morphological
relatedness, it is a useful stand-in for establishing an objective
criterion. If both conditions are met, the two words are considered to
have an alternation and are added to the pool of “words with an
alternation of s1 and s2.”

It is also possible to require a third condition, namely, that the
location of phoneme 1 and phoneme 2 be roughly phonologically aligned
across the two words (e.g., preceded by the same material). Requiring
phonological alignment will make PCT more conservative in terms of what
it considers to “count” as alternations. However, the phonological
alignment algorithm is based on [Allen2014] and currently
only works with English-type morphology, i.e., a heavy reliance on
prefixes and suffixes rather than any other kinds of morphological
alternations. Thus, it should not be used with non-affixing languages.

Again, we emphasize that we do not believe this to currently be a
particularly accurate reflection of morphological relatedness, so the
resulting calculation of frequency of alternation should be treated with
extreme caution. We include it primarily because it is a straightforward
function of string similarity that has been claimed to be relevant, not
because the current instantiation is thought to be particularly valid.

Calculating frequency of alternation in the GUI

To start the analysis, click on “Analysis” / “Calculate frequency of
alternation...” in the main menu, and then follow these steps:

	Segments: First, select which pairs of sounds you want the functional
load to be calculated for. Do this by clicking on “Add pair of sounds”;
the “Select segment pair” dialogue box will open. The order that the sounds are selected in is irrelevant; picking [i] first and [u] second will yield the same
results as picking [u] first and [i] second. Once sounds
have been selected, click “Add.” Pairs will appear in the “Functional
load” dialogue box. See more about interacting with the sound selection box (including, e.g., the use of features in selecting sounds and the options for selecting multiple pairs) in Sound Selection.

	String similarity algorithm: Next, choose which distance / similarity
metric to use. Refer to Method of calculation for more details.

	Threshold values: If the Khorsi algorithm is selected, enter the minimum
similarity value required for two words to count as being related.
Currently the default is -15; this is an arbitrary (and relatively
low / non-conservative) value. We recommend reading [Khorsi2012] and
examining the range of values obtained using the string similarity
algorithm before selecting an actual value here. Alternatively, if
one of the edit distance algorithms is selected, you should instead
enter a maximum distance value that is allowed for two words to count
as being related. Again, there is a default (6) that is relatively
high and non-conservative; an understanding of edit distances is crucial
for applying this threshold in a meaningful way.

	Tier: The tier from which string similarity is to be calculated can
be selected. Generally, one is likely to care most about full
transcriptions, but other tiers (e.g., a vowel tier) can also be
selected; in this case, all information removed from the tier is
ignored.

	Pronunciation variants: If the corpus contains multiple pronunciation variants for lexical items, select what strategy should be used. For details, see Pronunciation Variants. Note that here, the only choices currently available are canonical or most-frequent forms.

	Frequency Type: Next, select which frequency type to use for your
similarity metric, either type or token frequency. This parameter is
only available if using the Khorsi similarity metric, which relies on
counting the frequency of occurrence of the sounds in the currently
selected corpus; neither edit distance metric involves frequency.

	Minimal pairs: Then, select whether you wish to include alternations
that occur in minimal pairs. If, for example, the goal is to populate
a list containing all instances where two segments potentially
alternate, select “include minimal pairs.” Alternatively, if one
wishes to discard known alternations that are contrastive, select
“ignore minimal pairs.” (E.g., “bat” and “pat” look like a potential
“alternation” of [b] and [p] to PCT, because they are extremely similar
except for the sounds in question, which are also phonologically aligned.)

	Phonological alignment: Choose whether you want to require the phones
to be phonologically aligned or not, as per the above explanation.

	Corpus size: Calculating the full set of possible alternations for a
pair of sounds may be extremely time-consuming, as all words in the
corpus must be compared pairwise. To avoid this problem, a subset of
the corpus can be selected (in which case, we recommend running the
calculation several times so as to achieve different random subsets
for comparison). To do so, enter either (1) the number of words you’d
like PCT to extract from the corpus as a subset (e.g., 5000) or (2) a
decimal, which will result in that percentage of the corpus being used
as a subset (e.g., 0.05 for 5% of the corpus).

	Output alternations: You can choose whether you want PCT to output
a list of all the words it considers to be “alternations.” This is useful
for determining how accurate the calculation is. If you do want the
list to be created, enter a file path or select it using the system
dialogue box that opens when you click on “Select file location.” If
you do not want such a list, leave this option blank.

An example of selecting the parameters for frequency of alternation,
using the sample corpus:

[image: _images/freqaltdialog.png]

	Results: Once all options have been selected, click “Calculate
frequency of alternation.” If this is not the first calculation,
and you want to add the results to a pre-existing results table,
select the choice that says “add to current results table.” Otherwise,
select “start new results table.” A dialogue box will open, showing
a table of the results, including sound 1, sound 2, the total number
of words with either sound, and total number of words with an
alternation, the frequency of alternation and information about
the specified similarity / distance metric and selected threshold
values, and the selected option with respect to pronunciation variants. To save these results to a .txt file, click on “Save to file”
at the bottom of the table.

An example of the results table:

[image: _images/freqaltresults.png]
To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

	[1]	As emphasized throughout this section, the algorithm implemented
in PCT is an extremely inaccurate way of calculating frequency of
alternation, and should be used only with a full understanding of
its severe limitations.

Classes and functions

For further details about the relevant classes and functions in PCT’s
source code, please refer to Frequency of alternation.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Mutual Information

About the function

Mutual information [1] is a measure of how much dependency there is between
two random variables, X and Y. That is, there is a certain amount of
information gained by learning that X is present and also a certain amount
of information gained by learning that Y is present. But knowing that X
is present might also tell you something about the likelihood of Y being
present, and vice versa. If X and Y always co-occur, then knowing that
one is present already tells you that the other must also be present. On
the other hand, if X and Y are entirely independent, then knowing that
one is present tells you nothing about the likelihood that the other is
present.

In phonology, there are two primary ways in which one could interpret X
and Y as random variables. In one version, X and Y are equivalent random
variables, each varying over “possible speech sounds in some unit” (where
the unit could be any level of representation, e.g. a word or even a
non-meaningful unit such as a bigram). In this case, one is measuring
how much the presence of X anywhere in the defined unit affects the
presence of Y in that same unit, regardless of the order in which X and
Y occur, such that the mutual information of (X; Y) is the same as the
mutual information of (Y; X), and furthermore, the pointwise mutual
information of any individual value of each variable (X = a; Y = b) is
the same as the pointwise mutual information of (X = b; Y = a). Although
his is perhaps the most intuitive version of mutual information, given
that it does give a symmetric measure for “how much information does the
presence of a provide about the presence of b,” we are not currently
aware of any work that has attempted to use this interpretation of MI
for phonological purposes.

The other interpretation of MI assumes that X and Y are different random
variables, with X being “possible speech sounds occurring as the first
member of a bigram” and Y being “possible speech sounds occurring as the
second member of a bigram.” This gives a directional interpretation to
mutual information, such that, while the mutual information of (X; Y) is
the same as the mutual information of (Y; X), the pointwise mutual
information of (X = a; Y = b) is NOT the same as the pointwise mutual
information of (X = b; Y = a), because the possible values for X and Y
are different. (It is still, trivially, the case that the pointwise mutual
information of (X = a; Y = b) and (Y = b; X = a) are equal.)

This latter version of mutual information has primarily been used as a
measure of co-occurrence restrictions (harmony, phonotactics, etc.). For
example, [Goldsmith2012] use pointwise mutual information as a
way of examining Finnish vowel harmony; see also discussion in
[Goldsmith2002]. Mutual information has also been used instead of
transitional probability as a way of finding boundaries between words
in running speech, with the idea that bigrams that cross word boundaries
will have, on average, lower values of mutual information than bigrams
that are within words (see [Brent1999], [Rytting2004]). Note, however, that
in order for this latter use of mutual information to be useful, one must
be using a corpus based on running text rather than a corpus that is
simply a list of individual words and their token frequencies.

Method of calculation

Both of the interpretations of mutual information described above are
implemented in PCT. We refer to the first one, in which X and Y are
interpreted as equal random variables, varying over “possible speech
sounds in a unit,” as word-internal co-occurrence pointwise mutual
information (pMI), because we specifically use the word as the unit in
which to measure pMI. We refer to the second one, in which X and Y are
different random variables, over either the first or second members of
bigrams, as ordered pair pMI.

The general formula for pointwise mutual information is given below;
it is the binary logarithm of the joint probability of X = a and Y = b,
divided by the product of the individual probabilities that X = a and Y = b.

\(pMI = log_2 (\frac{p(X=a \& Y = b)}{p(X=a)*p(Y=b)})\)

Word-internal co-occurrence pMI: In this version, the joint probability
that X = a and Y = b is equal to the probability that some unit
(here, a word) contains both a and b (in any order). Therefore, the
pointwise mutual information of the sounds a and b is equal to the binary
logarithm of the probability of some word containing both a and b, divided
by the product of the individual probabilities of a word containing a and
a word containing b.

Pointwise mutual information for individual segments:

\(pMI_{word-internal} = log_2 (\frac{p(a \in W \& b \in W)}
{p(a \in W)*p(b \in W)})\)

Ordered pair pMI: In this version, the joint probability that X = a and
Y = b is equal to the probability of occurrence of the sequence ab.
Therefore, the pointwise mutual information of a bigram (e.g., ab) is
equal to the binary logarithm of the probability of the bigram divided
by the product of the individual segment probabilities, as shown in the
formula below.

Pointwise mutual information for bigrams:

\(pMI_{ordered-pair} = log_2 (\frac{p(ab)}
{p(a)*p(b)})\)

For example, given the bigram [a, b], its pointwise mutual information
is the binary logarithm of the probability of the sequence [ab] in the
corpus divided by a quantity equal to the probability of [a] times the
probability of [b]. Bigram probabilities are calculated by dividing counts
by the total number of bigrams, and unigram probabilities are calculated
equivalently.

Note that pMI can also be expressed in terms of the information content
of each of the members of the bigram. Information is measured as the
negative log of the probability of a unit \((I(a) = -log_2*p(a))\), so the
pMI of a bigram ab is also equal to \(I(a) + I(b) – I(ab)\).

Note that in PCT, calculations are not rounded until the final stage,
whereas in [Goldsmith2012], rounding was done at some
intermediate stages as well, which may result in slightly different
final pMI values being calculated.

Calculating mutual information in the GUI

To start the analysis, click on “Analysis” / “Calculate mutual information...”
in the main menu, and then follow these steps:

	Bigram: Click on the “Add bigram” button in the “Mutual Information”
dialogue box. A new window will open with an inventory of all
the segments that occur in your corpus. Select the bigram by clicking
on one segment from the “left-hand side” and one segment from the
“right-hand side.” Note that the order of the sounds matters in this function! To add more than one bigram, click “Add and create
another” to be automatically returned to the selection window. Once
the last bigram has been selected, simply click “Add” to return to
the Mutual Information dialogue box. All the selected bigrams will
appear in a list. To remove one, click on it and select “Remove
selected bigram.”

	Tier: Mutual information can be calculated on any available tier.
The default is transcription. If a vowel tier has been created,
for example, one could calculate the mutual information between
vowels on that tier, ignoring intervening consonants, to examine
harmony effects.

	Pronunciation variants: If the corpus contains multiple pronunciation variants for lexical items, select what strategy should be used. For details, see Pronunciation Variants.

	Type vs. Token Frequency: Next, pick whether you want the calculation
to be done on types or tokens, assuming that token frequencies are
available in your corpus. If they are not, this option will not be
available. (Note: if you think your corpus does include token frequencies,
but this option seems to be unavailable, see Required format of corpus on the required
format for a corpus.)

	Domain: Choosing “set domain to word” will change the calculation so
that the calculation is for word-internal co-occurrence pMI. In this
case, the order and adjacency of the bigram does not matter; it is
simply treated as a pair of segments that could occur anywhere in a word.

	Word boundary count: A standard word object in PCT contains word
boundaries on both sides of it (e.g., [#kæt#] ‘cat’). If words were
concatenated in real running speech, however, one would expect to see
only one word boundary between each pair of words (e.g., [#mai#kæt#]
‘my cat’ instead of [#mai##kæt#]). To reproduce this effect and assume
that word boundaries occur only once between words (as is assumed in
[Goldsmith2012], choose “halve word boundary count.” Note that this
technically divides the number of boundaries in half and then adds one,
to compensate for the extra “final” boundary at the end of an utterance.
(It will make a difference only for calculations that include a boundary
as one member of the pair.)

	Results: Once all options have been selected, click “Calculate mutual
information.” If this is not the first calculation, and you want to add
the results to a pre-existing results table, select the choice that
says “add to current results table.” Otherwise, select “start new
results table.” A dialogue box will open, showing a table of the
results, including sound 1, sound 2, the tier used, and the mutual
information value. To save these results to a .txt file, click on
“Save to file” at the bottom of the table.

The following image shows the inventory window used for selecting bigrams
in the sample corpus:

[image: _images/bigram.png]
The selected bigrams appear in the list in the “Mutual Information” dialogue box:

[image: _images/midialog.png]
The resulting mutual information results table:

[image: _images/miresults.png]
To return to the function dialogue box with your most recently used selections,
click on “Reopen function dialog.” Otherwise, the results table can be
closed and you will be returned to your corpus view.

Implementing the mutual information function on the command line

In order to perform this analysis on the command line, you must enter a
command in the following format into your Terminal:

pct_mutualinfo CORPUSFILE [additional arguments]

...where CORPUSFILE is the name of your *.corpus file. If not calculating
the mutal informations of all bigrams (using -l), the query bigram must
be specified using -q, as -q QUERY. The bigram QUERY must
be in the format s1,s2 where s1 and s2 are the first and second
segments in the bigram. You may also use command line options to
change the sequency type to use for your calculations, or to specify
an output file name. Descriptions of these arguments can be viewed by
running pct_mutualinfo -h or pct_mutualinfo --help. The help text
from this command is copied below, augmented with specifications of
default values:

Positional arguments:

	
corpus_file_name

	Name of corpus file

Mandatory argument group (call must have one of these two):

	
-q QUERY

	
--query QUERY

	Bigram or segment pair, as str separated by comma

	
-l

	
--all_pairwise_mis

	Flag: calculate MI for all orders of all pairs of segments

Optional arguments:

	
-h

	
--help

	Show help message and exit

	
-c CONTEXT_TYPE

	
--context_type CONTEXT_TYPE

	How to deal with variable pronunciations. Options are
‘Canonical’, ‘MostFrequent’, ‘SeparatedTokens’, or
‘Weighted’. See documentation for details.

	
-s SEQUENCE_TYPE

	
--sequence_type SEQUENCE_TYPE

	The attribute of Words to calculate MI over. Normally, this will be
the transcription, but it can also be the spelling or a user-specified tier.

	
-o OUTFILE

	
--outfile OUTFILE

	Name of output file

EXAMPLE 1: If your corpus file is example.corpus (no pronunciation variants)
and you want to calculate the mutual information of the bigram ‘si’ using
defaults for all optional arguments, you would run the following command
in your terminal window:

pct_mutualinfo example.corpus -q s,i

EXAMPLE 2: Suppose you want to calculate the mutual information of the
bigram ‘si’ on the spelling tier. In addition, you want the script to
produce an output file called output.txt. You would need to run the
following command:

pct_mutualinfo example.corpus -q s,i -s spelling -o output.txt

EXAMPLE 3: Suppose you want to calculate the mutual information of all
bigram types in the corpus. In addition, you want the script to
produce an output file called output.txt. You would need to run the
following command:

pct_mutualinfo example.corpus -l -o output.txt

Classes and functions

For further details about the relevant classes and functions in PCT’s
source code, please refer to Mutual information.

	[1]	The algorithm in PCT calculates what is sometimes referred to
as the “pointwise” mutual information of a pair of units X and Y,
in contrast to “mutual information,” which would be the expected
average value of the pointwise mutual information of all possible
values of X and Y. We simplify to use “mutual information” throughout.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Acoustic Similarity

About the function

Acoustic similarity analyses quantify the degree to which waveforms of
linguistic objects (such as sounds or words) are similar to each other.
The acoustic similarity measures provided here have primarily been used
in the study of phonetic convergence between interacting speakers;
convergence is measured as a function of increasing similarity. These
measures are also commonly used in automatic speech and voice recognition
systems, where incoming speech is compared to stored representations.
Phonologically, acoustic similarity also has a number of applications.
For example, it has been claimed that sounds that are acoustically distant
from each other cannot be allophonically related, even if they are in
complementary distribution (e.g. [Pike1947]; [Janda1999]).

Acoustic similarity alogorithms work on an aggregate scale, quantifying,
on average, how similar one group of waveforms is to another.
Representations have traditionally been in terms of mel-frequency cepstrum
coefficents (MFCCs; [Delvaux2007]; [Mielke2012]), which is
used widely for automatic speech recognition, but one recent introduction
is multiple band amplitude envelopes [Lewandowski2012]. Both MFCCs and
amplitude envelopes will be described in more detail in the following
sections, and both are available as part of PCT.

The second dimension to consider is the algorithm used to match
representations. The most common one is dynamic time warping (DTW),
which uses dynamic programming to calculate the optimal path through a
distance matrix [Sakoe1971], and gives the best alignment of
two time series. Because one frame in one series can align to multiple
frames in another series without a significant cost, DTW provides a
distance independent of time. The other algorithm that is used is
cross-correlation (see discussion in [Lewandowski2012], which aligns
two time series at variable lags. Taking the max value of the alignment
gives a similarity value for the two time series, with higher values
corresponding to higher similarity.

Method of calculation

Preprocessing

Prior to conversion to MFCCs or amplitude envelopes, the waveform is
pre-emphasized to give a flatter spectrum and correct for the higher
drop off in amplitude of higher frequencies due to distance from the mouth.

MFCCs

The calculation of MFCCs in PCT’s function follows the Rastamat
[Ellis2005]‘s implementation of HTK-style MFCCs [HTK] in [Matlab].
Generating MFCCs involves windowing the acoustic waveform and transforming
the windowed signal to the linear frequency domain through a Fourier
transform. Following that, a filterbank of triangular filters is
constructed in the mel domain, which gives greater resolution to
lower frequencies than higher frequencies. Once the filterbank is
applied to the spectrum from the Fourier transform, the spectrum is
represented as the log of the power in each of the mel filters. Using
this mel spectrum, the mel frequency cepstrum is computed by performing
a discrete cosine transform. This transform returns orthogonal
coefficients describing the shape of the spectrum, with the first
coefficent as the average value, the second as the slope of the spectrum,
the third as the curvature, and so on, with each coefficient representing
higher order deviations. The first coefficent is discarded, and the next
X coefficents are taken, where X is the number of coefficents specified
when calling the function. The number of coefficents must be one less
than the number of filters, as the number of coefficents returned by the
discrete cosine transform is equal to the number of filters in the mel
filterbank.

Please note that the MFCCs calculated in PCT follow the HTK standard,
and are not the same as those produced by Praat [PRAAT].

Amplitude envelopes

The calculation of amplitude envelopes follows the Matlab implementation
found in [Lewandowski2012]. First, the signal is filtered into X number
of logarithmically spaced bands, where X is specified in the function call,
using 4th order Butterworth filters. For each band, the amplitude envelope
is calculated by converting the signal to its analytic signal through a
Hilbert transform. Each envelope is downsampled to 120 Hz.

Dynamic time warping (DTW)

PCT implements a standard DTW algorithm [SakoeChiba, 1971]_
and gives similar results as the dtw package [Giorgino2009)]_ in [R].
Given two representations, a 2D matrix is constructed where the dimensions
are equal to the number of frames in each representation. The initial
values for each cell of the matrix is the Euclidean distance between the
two feature vectors of those frames. The cells are updated so that they
equal the local distance plus the minimum distance of the possible previous
cells. At the end, the final cell contains the summed distance of the
best path through the matrix, and this is the minimum distance between
two representations.

Cross-correlation

Cross-correlation seeks to align two time series based on corresponding
peaks and valleys. From each representation a time series is extracted
for each frame’s feature and this time series is cross-correlated with
the respective time series in the other representation. For instance,
the time series for an amplitude envelope’s representation corresponds
to each frequency band, and each frequency band of the first representation
is cross-correlated with each respective frequency band of the second
representation. The time series are normalized so that they sum to 1,
and so matching signals receive a cross-correlation value of 1 and
completely opposite signals receive a cross-correlation value of 0.
The overall distance between two representations is the inverse of the
average cross-correlation values for each band.

Similarity across directories

The algorithm for assessing the similarity of two directories
(corresponding to segments) averages the similarity of each .wav
file in the first directory to each .wav file in the second directory.

Calculating acoustic similarity in the GUI

To start the analysis, click on the “Calculate acoustic similarity...” in
the Analysis menu and provide the following parameters. Note that unlike
the other functions, acoustic similarity is not tied directly to any corpus
that is loaded into PCT; sound files are accessed directly through
directories on your computer.

	Comparison type: There are three kinds of comparisons that can be done
in PCT: single-directory, two-directory, or pairwise.
	Single directory: If a single directory is selected (using the
“Choose directory...” dialogue box), two types of results will be
returned: (1) each of the pairwise comparisons and (2) an average
of all these comparisons (i.e., a single value).

	Two directories: Choose two directories, each corresponding to a
set of sounds to be compared. For example, if one were interested
in the similarity of [s] and [ʃ] in Hungarian, one directory would
contain .wav files of individual [s] tokens, and the other directory
would contain .wav files of individual [ʃ] tokens. Every sound file
in the first directory will be compared to every sound file in the
second directory, and the acoustic similarity measures that are
returned will again be (1) all the pairwise comparisons and (2)
an average of all these comparisons (i.e., a single value).

	Pairwise: One can also use a tab-delimied.txt file that lists all
of the pairwise comparisons of individual sound files by listing
their full path names. As with a single directory, each pairwise
comparison will be returned separately.

	Representation: Select whether the sound files should be represented
as MFCCs or amplitude envelopes (described in more detail above).

	Distance algorithm: Select whether comparison of sound files should
be done using dynamic time warping or cross-correlation (described in
more detail above).

	Frequency limits: Select a minimum frequency and a maximum frequency
to use when generating representations. The human voice typically
doesn’t go below 80 Hz, so that is the default cut off to avoid
low-frequency noise. The maximum frequency has a hard bound of the
Nyquist frequency of the sound files, that is, half their sampling rate.
The lowest sampling rate that is typically used for speech is 16,000 Hz,
so a cutoff near the Nyquist (8,000 Hz) is used as the default. The
range of human hearing is 20 Hz to 20 kHz, but most energy in speech
tends to fall off after 10 kHz.

	Frequency resolution: Select the number of filters to be used to divide
up the frequency range specified above. The default for MFCCs is for 26
filters to be constructed, and for amplitude envelopes, 8 filters.

	Number of coefficients (MFCC only): Select the number of coefficients
to be used in MFCC representations. The default is 12 coefficients,
as that is standard in the field. If the number of coefficients is
more than the number of filters minus one, the number of coefficients
will be set to the number of filters minus one.

	Output: Select whether to return results as similarity (inverse
distance) or to us ethe default, distance (inverse similarity).
Dynamic time warping natively returns a distance measure which gets
inverted to similarity and cross-correlation natively returns a
similarity value which gets inverted to distance.

	Multiprocessing: As the generation and comparison of representations
can be time-intensive, using multiprocessing on parts that can be
run in parallel can speed the process up overall. In order to make
this option available, the python-acoustic-similarity module must be
installed; multiprocessing itself can be enabled by going to
“Options” / “Preferences” / “Processing” (see also §3.9.1).

Here’s an example of the parameter-selection box:

[image: _images/acousticsimdialog.png]

	Calculating and saving results: The first time an analysis is run,
the option to “Calculate acoustic similarity (start new results
table)” should be selected. This will output the results to a
pop-up window that lists the directories, the representation choice,
the matching function, the minimum and maximum frequencies, the
number of filters, the number of coefficients, the raw result, and
whether the result is similarity (1) or distance (0). Subsequent
analyses can either be added to the current table (as long as it
hasn’t been closed between analyses) or put into a new table. Once
a table has been created, click on “Save to file” at the bottom of
the table window in order to open a system dialogue box and choose
a directory; the table will be saved as a tab-delimited .txt file.

Here’s an example of the results file:

[image: _images/asresults.png]
To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

Classes and functions

For further details about the relevant classes and functions in PCT’s
source code, please refer to API Reference.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Citing PCT and the algorithms used therein

Please cite PCT as the following (all authors after K. C. Hall are listed
alphabetically):

Hall, Kathleen Currie, Blake Allen, Michael Fry, Scott Mackie, and
Michael McAuliffe. (2015). Phonological CorpusTools, Version 1.1.
[Computer program]. Available from PCT GitHub page [http://phonologicalcorpustools.github.io/CorpusTools/].

If you need to cite a more traditional academic source rather than the
software itself, please use:

Mackie, Scott, Kathleen Currie Hall, Blake Allen, Michael McAuliffe,
Michael Fry. (2014). Phonological CorpusTools: A free, open-source tool
for phonological analysis. Presented at the 14th Conference for Laboratory
Phonology, Tokyo, Japan.

If you are using the IPHOD corpus as distributed with PCT, please also be
sure to cite:

Vaden, K. I., Halpin, H. R., Hickok, G. S. (2009). Irvine Phonotactic Online
Dictionary, Version 2.0. [Data file]. Available from http://www.iphod.com.

and if you are making use of the SUBTLEX token frequencies as part of the
IPHOD corpus, you should cite:

Brysbaert, Marc, & Boris New. (2009). Moving beyond Kučera and Francis:
A critical evaluation of current word frequency norms and the introduction
of a new and improved word frequency measure for American English.
Behavior Research Methods 41(4): 977-990.

More generally, the algorithms that are implemented in PCT are taken from
published sources. As mentioned in the introduction, we highly encourage
users of PCT to cite the original sources of the algorithms rather than,
for example, saying that “functional load was calculated using PCT” and
just citing PCT itself. First, there are multiple parameters within PCT
that can be selected for any given calculation, and these should themselves
be specified for maximum clarity and replicability. Second, credit for the
original creation or application of the algorithms should obviously be given
to the proper sources. We have attempted to make this as easy as possible
by both giving these sources here in the user’s manual and also embedding
them in each function in the “About” option for each.

Furthermore, if you are the author of a function that is currently implemented
in PCT and you disagree with the way in which it has been implemented, please
contact us to let us know! We have done our best to faithfully replicate published
descriptions, but it is obviously possible that we have made errors.

Finally, if you are the author of a function that you would like to see
implemented in PCT, please contact us to discuss the possibility.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

References

	[Allen2014]	Allen, Blake & Michael Becker (2014).
Learning alternations from surface forms with sublexical phonology.
Ms. University of British Columbia and Stony Brook University.
See also http://sublexical.phonologist.org/.

	[Archangeli2013]	Archangeli, Diana & Douglas Pulleyblank. 2013.
The role of UG in phonology. Proceedings of the West Coast Conference
on Formal Linguistics 31. Somerville, MA: Cascadilla Press.

	[PRAAT]	Boersma, Paul & Weenink, David (2014). Praat: doing phonetics by computer
[Computer program]. Available from http://www.praat.org/

	[Brent1999]	Brent, Michael R. 1999. An efficient, probabilistically sound algorithm
for segmentation and word discovery. Machine Learning 34.71-105.

	[SUBTLEX]	Brysbaert, Marc, & Boris New. 2009. Moving beyond Kučera and Francis:
A critical evaluation of current word frequency norms and the introduction
of a new and improved word frequency measure for American English.
Behavior Research Methods 41(4): 977-990.

	[Bybee2001]	Bybee, Joan L. 2001. Phonology and language use. Cambridge: Cambridge UP.

	[SPE]	Chomsky, Noam & Morris Halle. 1968. The sound pattern of English.
New York: Harper & Row.

	[Connine2008]	Connine, Cynthia M., Larissa J. Ranbom, and David J. Patterson. 2008.
Processing variant forms in spoken word recognition: The role of variant frequency.
Perception & Psychophysics 70:403-411.

	[Delvaux2007]	Delvaux, V., Soquet, A., 2007. The influence of ambient speech on adult
speech productions through unintentional imitation.
Phonetica 64 (2-3), 145–173.

	[Ellis2005]	Ellis, D. P. W. (2005). PLP and RASTA (and MFCC), and inversion) in Matlab.
Online web resource. http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

	[Ernestus2011]	Ernestus, Mirjam. 2011. Gradience and categoricality in phonological theory.
In The Blackwell Companion to Phonology, ed. by M. van Oostendorp,
C.J. Ewen, E. Hume & K. Rice, 2115-36. Oxford: Wiley-Blackwell.

	[HTK]	Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., ... & Woodland, P.
(1997). The HTK book (Vol. 2). Cambridge: Entropic Cambridge Research Laboratory.

	[Frisch2011]	Frisch, Stefan A. 2011. Frequency effects. In The Blackwell Companion to
Phonology, ed. by M. van Oostendorp, C.J. Ewen, E. Hume & K. Rice,
2137-63. Oxford: Wiley-Blackwell.

	[Frisch2004]	Frisch, Stefan, Janet B. Pierrehumbert & Michael B. Broe. 2004. Similarity
avoidance and the OCP. Natural Language and Linguistic Theory 22.179-228.

	[TIMIT]	Garofolo, John, et al. 1993. TIMIT Acoustic-Phonetic Continuous Speech Corpus
LDC93S1. Web Download. Philadelphia: Linguistic Data Consortium.

	[Giorgino2009]	Giorgino, T. (2009). Computing and visualizing dynamic time warping
alignments in R: the dtw package.
Journal of statistical Software, 31(7), 1-24.

	[Goldsmith2002]	Goldsmith, John. 2002. Probabilistic models of grammar: phonology as
information minimization. Phonological Studies 5.21-46.

	[Goldsmith2012]	Goldsmith, John & Jason Riggle. 2012. Information theoretic approaches
to phonological structure: the case of Finnish vowel harmony. Natural Language and Linguistic Theory 30.859-96.

	[Greenberg1964]	Greenberg, J.H. & J. Jenkins. 1964. Studies in the psychological
correlated of the sound system of American English. Word 20.157-77.

	[Hall2013a]	Hall, Daniel Currie & Kathleen Currie Hall. 2013. Marginal contrasts and
the Contrastivist Hypothesis. Paper presented to the Linguistics
Association of Great Britain, London, 2013.

	[Hall2009]	Hall, Kathleen Currie. 2009. A probabilistic model of phonological
relationships from contrast to allophony. Columbus, OH: The Ohio
State University Doctoral dissertation.

	[Hall2012]	Hall, Kathleen Currie. 2012. Phonological relationships: A probabilistic
model. McGill Working Papers in Linguistics 22.

	[Hall2013b]	Hall, Kathleen Currie. 2013. Documenting phonological change: A
comparison of two Japanese phonemic splits. In: Luo, S. (Ed.),
Proceedings of the 2013 Annual Meeting of the Canadian Linguistic
Association. Canadian Linguistic Association, Toronto, published
online at http://homes.chass.utoronto.ca/~cla-acl/actes2013/actes2013.html.

	[Hall2014a]	Hall, Kathleen Currie, and Elizabeth Hume. 2014. Modeling Perceptual
Similarity: Phonetic, Phonological and Other Influences on the
Perception of French Vowels. Ms., University of British Columbia &
University of Canterbury.

	[Hall2014b]	Hall, Kathleen Currie, Claire Allen, Tess Fairburn, Kevin McMullin,
Michael Fry, & Masaki Noguchi. 2014. Measuring perceived morphological
relatedness. Paper presented at the Canadian Linguistics Association
annual meeting.

	[Hayes2009]	Hayes, Bruce. 2009. Introductory Phonology. Malden, MA: Blackwell - Wiley.

	[Hockett1955]	Hockett, Charles F. (1955). A manual of phonology. International
Journal of American Linguistics, 21(4).

	[Hockett1966]	Hockett, Charles F. 1966. The quantification of functional load:
A linguistic problem. U.S. Air Force Memorandum RM-5168-PR.

	[Hume2015]	Hume, Elizabeth, Kathleen Currie Hall & Andrew Wedel. to appear.
Strategic responses to uncertainty: Strong and weak sound patterns.
Proceedings of the 5th International Conference on Phonology
and Morphology. Korea.

	[Hume2013]	Hume, Elizabeth, Hall, Kathleen Currie, Wedel, Andrew, Ussishkin, Adam,
Adda-Decker, Martine, & Gendrot, Cédric. (2013). Anti-markedness
patterns in French epenthesis: An information-theoretic approach.
In C. Cathcart, I.-H. Chen, G. Finley, S. Kang, C. S. Sandy & E.
Stickles (Eds.), Proceedings of the Thirty-Seventh Annual Meeting
of the Berkeley Linguistics Society (pp. 104-123). Berkeley:
Berkeley Linguistics Society.

	[Janda1999]	Janda, Richard D. (1999). Accounts of phonemic split have been greatly
exaggerated – but not enough. Proceedings of the 14th International
Congress of Phonetic Sciences, 329-332.

	[Johnson2010]	Johnson, Keith, & Molly Babel. 2010. On the perceptual basis of distinctive
features: Evidence from the perception of fricatives by Dutch and English
speakers. Journal of Phonetics 38: 127-136.

	[Khorsi2012]	Khorsi, Ahmed. 2012. On morphological relatedness. Natural Language Engineering.1-19.

	[King1967]	King, Robert D. (1967). Functional load and sound change. Language, 43(4), 831-852.

	[Kucera1963]	Kučera, Henry. (1963). Entropy, redundancy, and functional load in
Russian and Czech. American contributions to the Fifth
International Conference of Slavists (Sofia), 191-219.

	[Kullback1951]	Kullback, S.; Leibler, R.A. (1951).
“On information and sufficiency”. Annals of Mathematical
Statistics 22 (1): 79–86. doi:10.1214/aoms/1177729694.

	[HKCAC]	Leung, Man-Tak, and Sam-Po Law. 2001. HKCAC: The Hong Kong
Cantonese Adult Language Corpus. International Journal of Corpus
Linguistics 6:305-325.

	[Lewandowski2012]	Lewandowski, Natalie. 2012. Talent in nonnative
phonetic convergence: Universität Stuttgart Doctoral dissertation.

	[Lu2012]	Lu, Yu-an. 2012. The role of alternation in phonological relationships:
Stony Brook University Doctoral dissertation.

	[Luce1998]	Luce, Paul A. & David B. Pisoni. 1998. Recognizing spoken words:
The neighborhood activation model. Ear Hear 19.1-36.

	[Maekawa2003]	Maekawa, Kikuo. 2003. Corpus of Spontaneous Japanese: Its Design and
Evaluation. Proceedings of ISCA and IEEE Workshop on Spontaneous
Speech Processing and Recognition (SSPR2003).7-12.

	[CSJ]	Maekawa, Kikuo. 2004. Design, compilation, and some preliminary
analyses of the Corpus of Spontaneous Japanese. Spontaneous
speech: Data and analysis, ed. by K. Maekawa & K. Yoneyama, 87-108.
Tokyo: The National Institute of Japanese Language.

	[Matlab]	The MathWorks Inc. (2014). MATLAB, Version R2014a.

	[Mielke2008]	Mielke, Jeff. 2008. The emergence of distinctive features.
Oxford: Oxford UP.

	[Mielke2012]	Mielke, J. 2012. A phonetically based metric of sound similarity.
Lingua, 122(2), 145-163.

	[LEXIQUE]	New, Boris, Christophe Pallier, Marc Brysbaert, and Ludovic Ferrand.
2004. Lexique 2: A new French lexical database. Behavior Research Methods,
Instruments, and Computers 36:516-524.

	[Peperkamp2003]	Peperkamp, Sharon, Michèle Pettinato & Emmanuel Dupoux. 2003.
Allophonic variation and the acquisition of phoneme categories.
Proceedings of the 27th Annual Boston University Conference on Language
Development, 650-61. Somerville, MA: Cascadilla Press.

	[Peperkamp2006]	Peperkamp, Sharon, Le Calvez, Rozenn, Nadal, Jean-Pierre, & Dupoux,
Emmanuel. (2006). The acquisition of allophonic rules:
Statistical learning with linguistic constraints. Cognition, 101, B31-B41.

	[Pike1947]	Pike, Kenneth L. (1947). Phonemics. Ann Arbor: The University
of Michigan Press.

	[Pinnow2014]	Pinnow, Eleni, and Cynthia M. Connine. 2014. Phonological variant
recognition: Representations and rules. Language and Speech 57:42-67.

	[Pitt2009]	Pitt, Mark A. 2009. The strength and time course of lexical activation of
pronunciation variants. Journal of experimental Psychology: Human Perception and
Performance 35:896-910.

	[BUCKEYE]	Pitt, M.A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W.,
Hume, E. and Fosler-Lussier, E. (2007) Buckeye Corpus of
Conversational Speech (2nd release) [www.buckeyecorpus.osu.edu]
Columbus, OH: Department of Psychology, Ohio State University (Distributor).

	[Pitt2011]	Pitt, Mark A., Laura Dilley, and Michael Tat. 2011. Exploring the role of
exposure frequency in recognizing pronunciation variants. Journal of Phonetics
39:304-311.

	[R]	R Core Team (2014). R: A Language and Environment for Statistical
Computing, Version 3.1.0. http://www.R-project.org/

	[Rytting2004]	Rytting, C. Anton. 2004. Segment predictability as a cue in word
segmentation: Application to Modern Greek. Proceedings of the
Workshop of the ACL Special Interest Group on Computational Phonology (SIGPHON).

	[Sakoe1971]	Sakoe, H., & Chiba, S. (1971). A dynamic programming approach to
continuous speech recognition. In Proceedings of the seventh
international congress on acoustics (Vol. 3, pp. 65-69).

	[Shannon1949]	Shannon, Claude E., & Weaver, Warren. (1949). The Mathematical Theory of
Communication (1998 ed.). Urbana-Champaign: University of Illinois Press.

	[Silverman2006]	Silverman, Daniel. 2006. A critical introduction to phonology: Of sound, mind, and body. London/New York: Continuum.

	[Sumner2009]	Sumner, Mehan, and Arthur G. Samuel. 2009. The effect of experience on the
perception and representation of dialect variants. Journal of Memory and Language
60:487-501.

	[Surendran2003]	Surendran, Dinoj & Partha Niyogi. 2003. Measuring the functional load
of phonological contrasts. In Tech. Rep. No. TR-2003-12. Chicago.

	[Thakur2011]	Thakur, Purnima (2011). Sibilants in Gujarati phonology.
Paper presented at Information-theoretic approaches to linguistics,
University of Colorado - Boulder.

	[Todd2012]	Todd, Simon. 2012. Functional load and length-based Māori vowel
contrast. Poster presented at the Annual Meeting of the New
Zealand Linguistic Society. Auckland, Dec. 2012.

	[IPHOD]	Vaden, K. I., H. R. Halpin & G. S. Hickok. 2009. Irvine Phonotactic
Online Dictionary, Version 2.0. [Data file.] Available from:
http://www.iphod.com.

	[Vitevitch1999]	Vitevitch, M.S. and Luce, P.A. (1999). Probabilistic phonotactics and
neighborhood activation in spoken word recognition. Journal of
Memory & Language, 40, 374-408.

	[Vitevitch2004]	Vitevitch, M.S. & Luce, P.A. (2004). A web-based interface to calculate
phonotactic probability for words and nonwords in English. Behavior
Research Methods, Instruments, and Computers, 36, 481-487.

	[Wedel2013]	Wedel, Andrew, Abby Kaplan & Scott Jackson. (2013). High functional
load inhibits phonological contrast loss: A corpus study.
Cognition 128.179-86.

	[CMU]	Weide, Robert L. (1994). CMU Pronouncing Dictionary.
http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

	[Yao2011]	Yao, Yao. (2011). The effects of phonological neighborhoods on
pronunciation variation in conversational speech. Berkeley:
University of California, Berkeley Doctoral dissertation.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

API Reference

Lexicon classes

	lexicon.Attribute(name,att_type[,...])
	Attributes are for collecting summary information about attributes of

	lexicon.Corpus(name)
	Lexicon to store information about Words, such as transcriptions,

	lexicon.Inventory([data])
	Inventories contain information about a Corpus’ segmental inventory.

	lexicon.FeatureMatrix(name,feature_entries)
	An object that stores feature values for segments

	lexicon.Segment(symbol)
	Class for segment symbols

	lexicon.Transcription(seg_list)
	Transcription object, sequence of symbols

	lexicon.Word(**kwargs)
	An object representing a word in a corpus

	lexicon.EnvironmentFilter(middle_segments[,...])
	Filter to use for searching words to generate Environments that match

	lexicon.Environment(middle,position[,lhs,rhs])
	Specific sequence of segments that was a match for an EnvironmentFilter

Speech corpus classes

	spontaneous.Discourse(**kwargs)
	Discourse objects are collections of linear text with word tokens

	spontaneous.Speaker(name,**kwargs)
	Speaker objects contain information about the producers of WordTokens

	spontaneous.SpontaneousSpeechCorpus(name,...)
	SpontaneousSpeechCorpus objects a collection of Discourse objects and Corpus objects for frequency information.

	spontaneous.WordToken(**kwargs)
	WordToken objects are individual productions of Words

Corpus context managers

	contextmanagers.BaseCorpusContext(corpus,...)
	Abstract Corpus context class that all other contexts inherit from.

	contextmanagers.CanonicalVariantContext(...)
	Corpus context that uses canonical forms for transcriptions and tiers

	contextmanagers.MostFrequentVariantContext(...)
	Corpus context that uses the most frequent pronunciation variants

	contextmanagers.SeparatedTokensVariantContext(...)
	Corpus context that treats pronunciation variants as separate types

	contextmanagers.WeightedVariantContext(...)
	Corpus context that weights frequency of pronunciation variants by the

Corpus IO functions

Corpus binaries

	binary.download_binary(name,path[,call_back])
	Download a binary file of example corpora and feature matrices.

	binary.load_binary(path)
	Unpickle a binary file

	binary.save_binary(obj,path)
	Pickle a Corpus or FeatureMatrix object for later loading

Loading from CSV

	csv.load_corpus_csv(corpus_name,path,delimiter)
	Load a corpus from a column-delimited text file

	csv.load_feature_matrix_csv(name,path,...)
	Load a FeatureMatrix from a column-delimited text file

Export to CSV

	csv.export_corpus_csv(corpus,path[,...])
	Save a corpus as a column-delimited text file

	csv.export_feature_matrix_csv(...[,delimiter])
	Save a FeatureMatrix as a column-delimited text file

TextGrids

	textgrid.inspect_discourse_textgrid
	

	textgrid.load_discourse_textgrid
	

	textgrid.load_directory_textgrid
	

Running text

	text_spelling.inspect_discourse_spelling(path)
	Generate a list of AnnotationTypes for a specified text file for parsing

	text_spelling.load_discourse_spelling(...[,...])
	Load a discourse from a text file containing running text of

	text_spelling.load_directory_spelling(...[,...])
	Loads a directory of orthographic texts

	text_spelling.export_discourse_spelling(...)
	Export an orthography discourse to a text file

	text_transcription.inspect_discourse_transcription(path)
	Generate a list of AnnotationTypes for a specified text file for parsing

	text_transcription.load_discourse_transcription(...)
	Load a discourse from a text file containing running transcribed text

	text_transcription.load_directory_transcription(...)
	Loads a directory of transcribed texts.

	text_transcription.export_discourse_transcription(...)
	Export an transcribed discourse to a text file

Interlinear gloss text

	text_ilg.inspect_discourse_ilg(path[,number])
	Generate a list of AnnotationTypes for a specified text file for parsing

	text_ilg.load_discourse_ilg(corpus_name,...)
	Load a discourse from a text file containing interlinear glosses

	text_ilg.load_directory_ilg(corpus_name,...)
	Loads a directory of interlinear gloss text files

	text_ilg.export_discourse_ilg(discourse,path)
	Export a discourse to an interlinear gloss text file, with a maximal

Other standards

	multiple_files.inspect_discourse_multiple_files(...)
	Generate a list of AnnotationTypes for a specified dialect

	multiple_files.load_discourse_multiple_files(...)
	Load a discourse from a text file containing interlinear glosses

	multiple_files.load_directory_multiple_files(...)
	Loads a directory of corpus standard files (separated into words files

Analysis functions

Frequency of alternation

	freq_of_alt.calc_freq_of_alt(corpus_context,...)
	Returns a double that is a measure of the frequency of

Functional load

	functional_load.minpair_fl(corpus_context,...)
	Calculate the functional load of the contrast between two segments as a count of minimal pairs.

	functional_load.deltah_fl(corpus_context,...)
	Calculate the functional load of the contrast between between two segments as the decrease in corpus entropy caused by a merger.

	functional_load.relative_minpair_fl(...[,...])
	Calculate the average functional load of the contrasts between a segment and all other segments, as a count of minimal pairs.

	functional_load.relative_deltah_fl(...[,...])
	Calculate the average functional load of the contrasts between a segment and all other segments, as the decrease in corpus entropy caused by a merger.

Kullback-Leibler divergence

	kl.KullbackLeibler(corpus_context,seg1,...)
	Calculates KL distances between two Phoneme objects in some context, either the left or right-hand side.

Mutual information

	mutual_information.pointwise_mi(...[,...])
	Calculate the mutual information for a bigram.

Neighborhood density

	neighborhood_density.neighborhood_density(...)
	Calculate the neighborhood density of a particular word in the corpus.

	neighborhood_density.find_mutation_minpairs(...)
	Find all minimal pairs of the query word based only on segment

Phonotactic probability

	phonotactic_probability.phonotactic_probability_vitevitch(...)
	Calculate the phonotactic_probability of a particular word using

Predictability of distribution

	pred_of_dist.calc_prod_all_envs(...[,...])
	Main function for calculating predictability of distribution for two segments over a corpus, regardless of environment.

	pred_of_dist.calc_prod(corpus_context,envs)
	Main function for calculating predictability of distribution for two segments over specified environments in a corpus.

Symbol similarity

	string_similarity.string_similarity(...)
	This function computes similarity of pairs of words across a corpus.

	edit_distance.edit_distance(word1,word2,...)
	Returns the Levenshtein edit distance between a string from two words word1 and word2, code drawn from http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python.

	khorsi.khorsi(word1,word2,freq_base,...)
	Calculate the string similarity of two words given a set of

	phono_edit_distance.phono_edit_distance(...)
	Returns an analogue to Levenshtein edit distance but uses

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

Attribute

	
class corpustools.corpus.classes.lexicon.Attribute(name, att_type, display_name=None, default_value=None)[source]

	Attributes are for collecting summary information about attributes of
Words or WordTokens, with different types of attributes allowing for
different behaviour

	Parameters:	name : str

Python-safe name for using getattr and setattr on Words and
WordTokens

att_type : str

Either ‘spelling’, ‘tier’, ‘numeric’ or ‘factor’

display_name : str

Human-readable name of the Attribute, defaults to None

default_value : object

Default value for initializing the attribute

Attributes

	name
	(string) Python-readable name for the Attribute on Word and WordToken objects

	display_name
	(string) Human-readable name for the Attribute

	default_value
	(object) Default value for the Attribute. The type of default_value is dependent on the attribute type. Numeric Attributes have a float default value. Factor and Spelling Attributes have a string default value. Tier Attributes have a Transcription default value.

	range
	(object) Range of the Attribute, type depends on the attribute type. Numeric Attributes have a tuple of floats for the range for the minimum and maximum. The range for Factor Attributes is a set of all factor levels. The range for Tier Attributes is the set of segments in that tier across the corpus. The range for Spelling Attributes is None.

Methods

	__init__(name,att_type[,display_name,...])
	

	guess_type(values[,trans_delimiters])
	Guess the attribute type for a sequence of values

	sanitize_name(name)
	Sanitize a display name into a Python-readable attribute name

	update_range(value)
	Update the range of the Attribute with the value specified.

	
static guess_type(values, trans_delimiters=None)[source]

	Guess the attribute type for a sequence of values

	Parameters:	values : list

List of strings to evaluate for the attribute type

trans_delimiters : list, optional

List of delimiters to look for in transcriptions, defaults
to ., ;, and ,

	Returns:	str

Attribute type that had the most success in parsing the
values specified

	
static sanitize_name(name)[source]

	Sanitize a display name into a Python-readable attribute name

	Parameters:	name : string

Display name to sanitize

	Returns:	str

Sanitized name

	
update_range(value)[source]

	Update the range of the Attribute with the value specified.
If the attribute is a Factor, the value is added to the set of levels.
If the attribute is Numeric, the value expands the minimum and
maximum values, if applicable. If the attribute is a Tier, the
value (a segment) is added to the set of segments allowed. If
the attribute is Spelling, nothing is done.

	Parameters:	value : object

Value to update range with, the type depends on the attribute
type

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

Corpus

	
class corpustools.corpus.classes.lexicon.Corpus(name)[source]

	Lexicon to store information about Words, such as transcriptions,
spellings and frequencies

	Parameters:	name : string

Name to identify Corpus

Attributes

	name
	(str) Name of the corpus, used only for easy of reference

	attributes
	(list of Attributes) List of Attributes that Words in the Corpus have

	wordlist
	(dict) Dictionary where every key is a unique string representing a word in a corpus, and each entry is a Word object

	words
	(list of strings) All the keys for the wordlist of the Corpus

	specifier
	(FeatureSpecifier) See the FeatureSpecifier object

	inventory
	(Inventory) Inventory that contains information about segments in the Corpus

Methods

	__init__(name)
	

	add_abstract_tier(attribute,spec)
	Add a abstract tier (currently primarily for generating CV skeletons from tiers).

	add_attribute(attribute[,initialize_defaults])
	Add an Attribute of any type to the Corpus or replace an existing Attribute.

	add_count_attribute(attribute,...)
	Add an Numeric Attribute that is a count of a segments in a tier that match a given specification.

	add_tier(attribute,spec)
	Add a Tier Attribute based on the transcription of words as a new Attribute that includes all segments that match the specification.

	add_word(word[,allow_duplicates])
	Add a word to the Corpus.

	check_coverage()
	Checks the coverage of the specifier (FeatureMatrix) of the Corpus over the

	features_to_segments(feature_description)
	Given a feature description, return the segments in the inventory

	find(word[,keyerror,ignore_case])
	Search for a Word in the corpus

	find_all(spelling)
	Find all Word objects with the specified spelling

	get_features()
	Get a list of the features used to describe Segments

	get_or_create_word(**kwargs)
	Get a Word object that has the spelling and transcription specified or create that Word, add it to the Corpus and return it.

	get_random_subset(size[,new_corpus_name])
	Get a new corpus consisting a random selection from the current corpus

	iter_sort()
	Sorts the keys in the corpus dictionary, then yields the

	iter_words()
	Sorts the keys in the corpus dictionary,

	key(word)
	

	keys()
	

	random_word()
	Return a randomly selected Word

	remove_attribute(attribute)
	Remove an Attribute from the Corpus and from all its Word objects.

	remove_word(word_key)
	Remove a Word from the Corpus using its identifier in the Corpus.

	segment_to_features(seg)
	Given a segment, return the features for that segment.

	set_feature_matrix(matrix)
	Set the feature system to be used by the corpus and make sure every word is using it too.

	subset(filters)
	Generate a subset of the corpus based on filters.

	update_inventory(transcription)
	Update the inventory of the Corpus to ensure it contains all

	
add_abstract_tier(attribute, spec)[source]

	Add a abstract tier (currently primarily for generating CV skeletons
from tiers).

Specifiers for abstract tiers should be dictionaries with keys that
are the abstract symbol (such as ‘C’ or ‘V’) and the values are
iterables of segments that should count as that abstract symbols
(such as all consonants or all vowels).

Currently only operates on the transcription of words.

	Parameters:	attribute : Attribute

Attribute to add/replace

spec : dict

Mapping for creating abstract tier

	
add_attribute(attribute, initialize_defaults=False)[source]

	Add an Attribute of any type to the Corpus or replace an existing Attribute.

	Parameters:	attribute : Attribute

Attribute to add or replace

initialize_defaults : boolean

If True, words will have this attribute set to the default_value
of the attribute, defaults to False

	
add_count_attribute(attribute, sequence_type, spec)[source]

	Add an Numeric Attribute that is a count of a segments in a tier that
match a given specification.

The specification should be either a list of segments or a string of
the format ‘+feature1,-feature2’ that specifies the set of segments.

	Parameters:	attribute : Attribute

Attribute to add or replace

sequence_type : string

Specifies whether to use ‘spelling’, ‘transcription’ or the name of a
transcription tier to use for comparisons

spec : list or str

Specification of what segments should be counted

	
add_tier(attribute, spec)[source]

	Add a Tier Attribute based on the transcription of words as a new Attribute
that includes all segments that match the specification.

The specification should be either a list of segments or a string of
the format ‘+feature1,-feature2’ that specifies the set of segments.

	Parameters:	attribute : Attribute

Attribute to add or replace

spec : list or str

Specification of what segments should be counted

	
add_word(word, allow_duplicates=True)[source]

	Add a word to the Corpus.
If allow_duplicates is True, then words with identical spelling can
be added. They are kept sepearate by adding a “silent” number to them
which is never displayed to the user. If allow_duplicates is False,
then duplicates are simply ignored.

	Parameters:	word : Word

Word object to be added

allow_duplicates : bool

If False, duplicate Words with the same spelling as an existing
word in the corpus will not be added

	
check_coverage()[source]

	Checks the coverage of the specifier (FeatureMatrix) of the Corpus over the
inventory of the Corpus

	Returns:	list

List of segments in the inventory that are not in the specifier

	
features_to_segments(feature_description)[source]

	Given a feature description, return the segments in the inventory
that match that feature description

Feature descriptions should be either lists, such as
[‘+feature1’, ‘-feature2’] or strings that can be separated into
lists by ‘,’, such as ‘+feature1,-feature2’.

	Parameters:	feature_description : string or list

Feature values that specify the segments, see above for format

	Returns:	list of Segments

Segments that match the feature description

	
find(word, keyerror=True, ignore_case=False)[source]

	Search for a Word in the corpus
If keyerror == True, then raise a KeyError if the word is not found
If keyerror == False, then return an EmptyWord if the word is not found

	Parameters:	word : str

String representing the spelling of the word (not transcription)

keyerror : bool

Set whether a KeyError should be raised if a word is not found

	Returns:	Word

Word that matches the spelling specified

	Raises:	KeyError

If keyerror == True and word is not found

	
find_all(spelling)[source]

	Find all Word objects with the specified spelling

	Parameters:	spelling : string

Spelling to look up

	Returns:	list of Words

Words that have the specified spelling

	
get_features()[source]

	Get a list of the features used to describe Segments

	Returns:	list of str

	
get_or_create_word(**kwargs)[source]

	Get a Word object that has the spelling and transcription
specified or create that Word, add it to the Corpus and return it.

	Parameters:	spelling : string

Spelling to search for

transcription : list

Transcription to search for

	Returns:	Word

Existing or newly created Word with the spelling and transcription
specified

	
get_random_subset(size, new_corpus_name='randomly_generated')[source]

	Get a new corpus consisting a random selection from the current corpus

	Parameters:	size : int

Size of new corpus

new_corpus_name : str

	Returns:	new_corpus : Corpus

New corpus object with len(new_corpus) == size

	
iter_sort()[source]

	Sorts the keys in the corpus dictionary, then yields the
values in that order

	Returns:	generator

Sorted Words in the corpus

	
iter_words()[source]

	Sorts the keys in the corpus dictionary,
then yields the values in that order

	Returns:	generator

Sorted Words in the corpus

	
random_word()[source]

	Return a randomly selected Word

	Returns:	Word

Random Word

	
remove_attribute(attribute)[source]

	Remove an Attribute from the Corpus and from all its Word objects.

	Parameters:	attribute : Attribute

Attribute to remove

	
remove_word(word_key)[source]

	Remove a Word from the Corpus using its identifier in the Corpus.

If the identifier is not found, nothing happens.

	Parameters:	word_key : string

Identifier to use to remove the Word

	
segment_to_features(seg)[source]

	Given a segment, return the features for that segment.

	Parameters:	seg : string or Segment

Segment or Segment symbol to look up

	Returns:	dict

Dictionary with keys as features and values as featue values

	
set_feature_matrix(matrix)[source]

	Set the feature system to be used by the corpus and make sure
every word is using it too.

	Parameters:	matrix : FeatureMatrix

New feature system to use in the corpus

	
subset(filters)[source]

	Generate a subset of the corpus based on filters.

Filters for Numeric Attributes should be tuples of an Attribute
(of the Corpus), a comparison callable (__eq__, __neq__,
__gt__, __gte__, __lt__, or __lte__) and a value
to compare all such attributes in the Corpus to.

Filters for Factor Attributes should be tuples of an Attribute,
and a set of levels for inclusion in the subset.

Other attribute types cannot currently be the basis for filters.

	Parameters:	filters : list of tuples

See above for format

	Returns:	Corpus

Subset of the corpus that matches the filter conditions

	
update_inventory(transcription)[source]

	Update the inventory of the Corpus to ensure it contains all
the segments in the given transcription

	Parameters:	transcription : list

Segment symbols to add to the inventory if needed

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

Inventory

	
class corpustools.corpus.classes.lexicon.Inventory(data=None)[source]

	Inventories contain information about a Corpus’ segmental inventory.
In many cases, they are similar to FeatureMatrices, but more tailored
to a specific corpus. Where a FeatureMatrix would deal in feature
specifications, inventories will deal primarily in sets of segments.

	Parameters:	data : dict, optional

Mapping from segment symbol to Segment objects

Attributes

	features
	(list) List of all features used as specifications for segments

	possible_values
	(set) Set of values that segments use for features

	stresses
	(dict) Mapping of stress values to segments that bear that stress

	places
	(dict) Mapping from place of articulation labels to sets of segments

	manners
	(dict) Mapping from manner of articulation labels to sets of segments

	height
	(dict) Mapping from vowel height labels to sets of segments

	backness
	(dict) Mapping from vowel backness labels to sets of segments

	vowel_feature
	(str) Feature value (i.e., ‘+voc’) that separates vowels from consonants

	voice_feature
	(str) Feature value (i.e., ‘+voice’) that codes voiced obstruents

	diph_feature
	(str) Feature value (i.e., ‘+diphthong’ or ‘.high’) that separates diphthongs from monophthongs

	rounded_feature
	(str) Feature value (i.e., ‘+round’) that codes rounded vowels

Methods

	__init__([data])
	

	categorize(seg)
	Categorize a segment into consonant/vowel, place of articulation, manner of articulation, voicing, vowel height, vowel backness, and vowel rounding.

	features_to_segments(feature_description)
	Given a feature description, return the segments in the inventory

	find_min_feature_pairs(features[,others])
	Find sets of segments that differ only in certain features,

	get_redundant_features(features[,others])
	Autodetects redundent features, with the ability to subset

	items()
	

	keys()
	

	specify(specifier)
	Specify segments in the inventory using a FeatureMatrix

	valid_feature_strings()
	Get all combinations of possible_values and features

	values()
	

	
categorize(seg)[source]

	Categorize a segment into consonant/vowel, place of articulation,
manner of articulation, voicing, vowel height, vowel backness, and vowel
rounding.

For consonants, the category is of the format:

(‘Consonant’, PLACE, MANNER, VOICING)

For vowels, the category is of the format:

(‘Vowel’, HEIGHT, BACKNESS, ROUNDED)

Diphthongs are categorized differently:

(‘Diphthong’, ‘Vowel’)

	Parameters:	seg : Segment

Segment to categorize

	Returns:	tuple or None

Returns categories according to the formats above, if any are
unable to be calculated, returns None in those places.
Returns None if a category cannot be found.

	
features_to_segments(feature_description)[source]

	Given a feature description, return the segments in the inventory
that match that feature description

Feature descriptions should be either lists, such as
[‘+feature1’, ‘-feature2’] or strings that can be separated into
lists by ‘,’, such as ‘+feature1,-feature2’.

	Parameters:	feature_description : string or list

Feature values that specify the segments, see above for format

	Returns:	list of Segments

Segments that match the feature description

	
find_min_feature_pairs(features, others=None)[source]

	Find sets of segments that differ only in certain features,
optionally limited by a feature specification

	Parameters:	features : list

List of features (i.e. ‘back’ or ‘round’)

others : list, optional

Feature specification to limit sets

	Returns:	dict

Dictionary with keys that correspond to the values of features
and values that are the set of segments with those feature values

	
get_redundant_features(features, others=None)[source]

	Autodetects redundent features, with the ability to subset
the segments

	Parameters:	features : list

List of features to find other features that consistently
covary with them

others : list, optional

Feature specification that specifies a subset to look at

	Returns:	list

List of redundant features

	
specify(specifier)[source]

	Specify segments in the inventory using a FeatureMatrix

	Parameters:	specifier : FeatureMatrix

Specifier to use for updating feature specifications

	
valid_feature_strings()[source]

	Get all combinations of possible_values and features

	Returns:	list

List of valid feature strings

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

FeatureMatrix

	
class corpustools.corpus.classes.lexicon.FeatureMatrix(name, feature_entries)[source]

	An object that stores feature values for segments

	Parameters:	name : str

Name to give the FeatureMatrix

feature_entries : list

List of dict with one dictionary per segment, requires the key
of symbol which identifies the segment

Attributes

	features
	Get a list of features that are used in this feature system

	name
	(str) An informative identifier for the feature matrix

	possible_values
	(set) Set of values used in the FeatureMatrix

	default_value
	(str) Default feature value, usually corresponding to unspecified features

	stresses
	(dict) Mapping of stress values to segments that bear that stress

	places
	(dict) Mapping from place of articulation labels to a feature specification

	manners
	(dict) Mapping from manner of articulation labels to a feature specification

	height
	(dict) Mapping from vowel height labels to a feature specification

	backness
	(dict) Mapping from vowel backness labels to a feature specification

	vowel_feature
	(str) Feature value (i.e., ‘+voc’) that separates vowels from consonants

	voice_feature
	(str) Feature value (i.e., ‘+voice’) that codes voiced obstruents

	diph_feature
	(str) Feature value (i.e., ‘+diphthong’ or ‘.high’) that separates diphthongs from monophthongs

	rounded_feature
	(str) Feature value (i.e., ‘+round’) that codes rounded vowels

Methods

	__init__(name,feature_entries)
	

	add_feature(feature[,default])
	Add a feature to the feature system

	add_segment(seg,feat_spec)
	Add a segment with a feature specification to the feature system

	categorize(seg)
	Categorize a segment into consonant/vowel, place of articulation, manner of articulation, voicing, vowel height, vowel backness, and vowel rounding.

	features_to_segments(feature_description)
	Given a feature description, return the segments in the inventory

	generate_generic()
	

	generate_generic_hayes()
	

	generate_generic_names()
	

	generate_generic_spe()
	

	seg_to_feat_line(symbol)
	Get a list of feature values for a given segment in the order

	valid_feature_strings()
	Get all combinations of possible_values and features

	validate()
	Make sure that all segments in the matrix have all the features.

	
add_feature(feature, default=None)[source]

	Add a feature to the feature system

Attributes

	feature
	(str) Name of the feature to add to the feature system

	default
	(str, optional) If specified, set the value for all segments to this value, otherwise use the FeatureMatrix’s default_value

	
add_segment(seg, feat_spec)[source]

	Add a segment with a feature specification to the feature system

Attributes

	seg
	(str) Segment symbol to add to the feature system

	feat_spec
	(dictionary) Dictionary with features as keys and feature values as values

	
categorize(seg)[source]

	Categorize a segment into consonant/vowel, place of articulation,
manner of articulation, voicing, vowel height, vowel backness, and vowel
rounding.

For consonants, the category is of the format:

(‘Consonant’, PLACE, MANNER, VOICING)

For vowels, the category is of the format:

(‘Vowel’, HEIGHT, BACKNESS, ROUNDED)

Diphthongs are categorized differently:

(‘Diphthong’, ‘Vowel’)

	Parameters:	seg : Segment

Segment to categorize

	Returns:	tuple or None

Returns categories according to the formats above, if any are
unable to be calculated, returns None in those places.
Returns None if a category cannot be found.

	
features

	Get a list of features that are used in this feature system

	Returns:	list

Sorted list of the names of all features in the matrix

	
features_to_segments(feature_description)[source]

	Given a feature description, return the segments in the inventory
that match that feature description

Feature descriptions should be either lists, such as
[‘+feature1’, ‘-feature2’] or strings that can be separated into
lists by ‘,’, such as ‘+feature1,-feature2’.

	Parameters:	feature_description : str, list, or dict

Feature values that specify the segments, see above for format

	Returns:	list of Segments

Segments that match the feature description

	
seg_to_feat_line(symbol)[source]

	Get a list of feature values for a given segment in the order
that features are return in get_feature_list

Use for display purposes

	Returns:	list

List of feature values for the symbol, as well as the symbol itself

Attributes

	symbol
	(str) Segment symbol to look up

	
segments

	Return a list of segment symbols that are specified in the feature
system

	Returns:	list

List of all the segments with feature specifications

	
valid_feature_strings()[source]

	Get all combinations of possible_values and features

	Returns:	list

List of valid feature strings

	
validate()[source]

	Make sure that all segments in the matrix have all the features.
If not, add an unspecified value for that feature to them.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

Segment

	
class corpustools.corpus.classes.lexicon.Segment(symbol)[source]

	Class for segment symbols

	Parameters:	symbol : str

Segment symbol

Attributes

	features
	(dict) Feature specification for the segment

Methods

	__init__(symbol)
	

	feature_match(specification)
	Return true if segment matches specification, false otherwise.

	minimal_difference(other,features)
	Check if this segment is a minimal feature difference with another

	specify(feature_dict)
	Specify a segment with a new feature specification

	
feature_match(specification)[source]

	Return true if segment matches specification, false otherwise.

	Parameters:	specification : object

Specification can be a single feature value ‘+feature’, a list of
feature values [‘+feature1’,’-feature2’], or a dictionary of
features and values {‘feature1’: ‘+’, ‘feature2’: ‘-‘}

	Returns:	bool

True if this segment contains the feature values in the specification

	
minimal_difference(other, features)[source]

	Check if this segment is a minimal feature difference with another
segment (ignoring some features)

	Parameters:	other : Segment

Segment to compare with

features : list

Features that are allowed to vary between the two segments

	Returns:	bool

True if all features other than the specified ones match,
False otherwise

	
specify(feature_dict)[source]

	Specify a segment with a new feature specification

	Parameters:	feature_dict : dict

Feature specification

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

Transcription

	
class corpustools.corpus.classes.lexicon.Transcription(seg_list)[source]

	Transcription object, sequence of symbols

	Parameters:	seg_list : list

List of segments that form the transcription.
Elements in the list, can be Segments, strings, or BaseAnnotations

Attributes

	_list
	(list) List of strings representing segment symbols

	stress_pattern: dict
	Dictionary with keys of segment indices and values of the stress for that segment

	boundaries
	(dict) Possible keys of ‘morpheme’ or ‘tone’ that keeps track of where morpheme or tone boundaries are inserted

Methods

	__init__(seg_list)
	

	find(environment)
	Find instances of an EnvironmentFilter in the Transcription

	find_nonmatch(environment)
	Find all instances of an EnvironmentFilter in the Transcription

	match_segments(segments)
	Returns a matching segments from a list of segments

	with_word_boundaries()
	Return the string of segments with word boundaries surrounding them

	
find(environment)[source]

	Find instances of an EnvironmentFilter in the Transcription

	Parameters:	environment : EnvironmentFilter

EnvironmentFilter to search for

	Returns:	list

List of Environments that fit the EnvironmentFilter

	
find_nonmatch(environment)[source]

	Find all instances of an EnvironmentFilter in the Transcription
that match in the middle segments, but don’t match on the sides

	Parameters:	environment : EnvironmentFilter

EnvironmentFilter to search for

	Returns:	list

List of Environments that fit the EnvironmentFilter’s middle
but not the sides

	
match_segments(segments)[source]

	Returns a matching segments from a list of segments

	Parameters:	segments : list

List of Segments or strings to filter the Transcription

	Returns:	list

List of segments (in their original order) that match the
segment parameter

	
with_word_boundaries()[source]

	Return the string of segments with word boundaries surrounding them

	Returns:	list

Transcription with word boundaries

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

Word

	
class corpustools.corpus.classes.lexicon.Word(**kwargs)[source]

	An object representing a word in a corpus

Information about the attributes are contained in the Corpus’ attributes.

Attributes

	spelling
	(str) A representation of a word that lacks phonological information.

	transcription
	(Transcription) A representation of a word that includes phonological information.

	frequency
	(float) Token frequency in a corpus

Methods

	__init__(**kwargs)
	

	add_abstract_tier(tier_name,tier_segments)
	Add an abstract tier to the Word

	add_attribute(tier_name,value)
	Add an arbitrary attribute to the Word

	add_tier(tier_name,tier_segments)
	Adds a new tier attribute to the Word

	remove_attribute(attribute_name)
	Deletes a tier attribute from a Word

	variants([sequence_type])
	Get variants and frequencies for a Word

	
add_abstract_tier(tier_name, tier_segments)[source]

	Add an abstract tier to the Word

	Parameters:	tier_name : str

Attribute name

tier_segments: dict

Dictionary with keys of the abstract segments (i.e., ‘C’ or ‘V’)
and values that are sets of segments

	
add_attribute(tier_name, value)[source]

	Add an arbitrary attribute to the Word

	Parameters:	tier_name : str

Attribute name

value: object

Attribute value

	
add_tier(tier_name, tier_segments)[source]

	Adds a new tier attribute to the Word

	Parameters:	tier_name : str

Name for the new tier

tier_segments: list of segments

Segments that count for inclusion in the tier

	
remove_attribute(attribute_name)[source]

	Deletes a tier attribute from a Word

	Parameters:	attribute_name : str

Name of tier attribute to be deleted.

Notes

If attribute_name is not a valid attribute, this function does nothing. It
does not raise an error.

	
variants(sequence_type='transcription')[source]

	Get variants and frequencies for a Word

	Parameters:	sequence_type : str, optional

Tier name to get variants

	Returns:	dict

Dictionary with keys of Transcriptions and values of their frequencies

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

EnvironmentFilter

	
class corpustools.corpus.classes.lexicon.EnvironmentFilter(middle_segments, lhs=None, rhs=None)[source]

	Filter to use for searching words to generate Environments that match

	Parameters:	middle_segments : set

Set of segments to center environments

lhs : list, optional

List of set of segments on the left of the middle

rhs : list, optional

List of set of segments on the right of the middle

Methods

	__init__(middle_segments[,lhs,rhs])
	

	compile_re_pattern()
	

	is_applicable(sequence)
	Check whether the Environment filter is applicable to the sequence

	lhs_count()
	Get the number of elements on the left hand side

	rhs_count()
	Get the number of elements on the right hand side

	set_lhs(lhs)
	

	set_rhs(rhs)
	

	
is_applicable(sequence)[source]

	Check whether the Environment filter is applicable to the sequence
(i.e., the sequence must be greater or equal in length to the
EnvironmentFilter)

	Parameters:	sequence : list

Sequence to check applicability

	Returns:	bool

True if the sequence is equal length or longer than the
EnvironmentFilter

	
lhs_count()[source]

	Get the number of elements on the left hand side

	Returns:	int

Length of the left hand side

	
rhs_count()[source]

	Get the number of elements on the right hand side

	Returns:	int

Length of the right hand side

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

Environment

	
class corpustools.corpus.classes.lexicon.Environment(middle, position, lhs=None, rhs=None)[source]

	Specific sequence of segments that was a match for an EnvironmentFilter

	Parameters:	middle : str

Middle segment

position : int

Position of the middle segment in the word (to differentiate between
repetitions of an environment in the same word

lhs : list, optional

Segments to the left of the middle segment

rhs : list, optional

Segments to the right of the middle segment

Methods

	__init__(middle,position[,lhs,rhs])
	

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

Discourse

	
class corpustools.corpus.classes.spontaneous.Discourse(**kwargs)[source]

	Discourse objects are collections of linear text with word tokens

	Parameters:	name : str

Identifier for the Discourse

speaker : Speaker

Speaker producing the tokens/text (defaults to an empty Speaker)

Attributes

	attributes
	(list of Attributes) The Discourse object tracks all of the attributes used by its WordToken objects

	words
	(dict of WordTokens) The keys are the beginning times of the WordTokens (or their place in a text if it’s not a speech discourse) and the values are the WordTokens

Methods

	__init__(**kwargs)
	

	add_attribute(attribute[,initialize_defaults])
	Add an Attribute of any type to the Discourse or replace an existing Attribute.

	add_word(wordtoken)
	Adds a WordToken to the Discourse

	create_lexicon()
	Create a Corpus object from the Discourse

	find_wordtype(wordtype)
	Look up all WordTokens that are instances of a Word

	keys()
	Returns a sorted list of keys for looking up WordTokens

	
add_attribute(attribute, initialize_defaults=False)[source]

	Add an Attribute of any type to the Discourse or replace an existing Attribute.

	Parameters:	attribute : Attribute

Attribute to add or replace

initialize_defaults : bool

If True, word tokens will have this attribute set to the default_value
of the attribute, defaults to False

	
add_word(wordtoken)[source]

	Adds a WordToken to the Discourse

	Parameters:	wordtoken : WordToken

WordToken to be added

	
create_lexicon()[source]

	Create a Corpus object from the Discourse

	Returns:	Corpus

Corpus with spelling and transcription from previous Corpus
and token frequency from the Discourse

	
find_wordtype(wordtype)[source]

	Look up all WordTokens that are instances of a Word

	Parameters:	wordtype : Word

Word to look up

	Returns:	list of WordTokens

List of the given Word’s WordTokens in this Discourse

	
has_audio

	Checks whether the Discourse is associated with a .wav file

	Returns:	bool

True if a .wav file is associated and if that file exists,
False otherwise

	
keys()[source]

	Returns a sorted list of keys for looking up WordTokens

	Returns:	list

List of begin times or indices of WordTokens in the Discourse

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

Speaker

	
class corpustools.corpus.classes.spontaneous.Speaker(name, **kwargs)[source]

	Speaker objects contain information about the producers of WordTokens
or Discourses

	Parameters:	name : string

Name to identify the Speaker

Attributes

	name
	(string) Name of Speaker

	gender
	(string) Gender of Speaker

	age
	(int or string) Age of Speaker

Methods

	__init__(name,**kwargs)
	

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

SpontaneousSpeechCorpus

	
class corpustools.corpus.classes.spontaneous.SpontaneousSpeechCorpus(name, directory)[source]

	SpontaneousSpeechCorpus objects a collection of Discourse objects and
Corpus objects for frequency information.

	Parameters:	name : str

Name to identify the SpontaneousSpeechCorpus

directory : str

Directory associated with the SpontaneousSpeechCorpus

Attributes

	lexicon
	(Corpus) Corpus object with token frequencies from its Discourses

	discourses
	(dict) Discourses of the SpontaneousSpeechCorpus indexed by the names of the Discourses

Methods

	__init__(name,directory)
	

	add_discourse(discourse)
	Add a discourse to the SpontaneousSpeechCorpus

	
add_discourse(discourse)[source]

	Add a discourse to the SpontaneousSpeechCorpus

	Parameters:	discourse : Discourse

Discourse to be added

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

WordToken

	
class corpustools.corpus.classes.spontaneous.WordToken(**kwargs)[source]

	WordToken objects are individual productions of Words

	Parameters:	word : Word

Word that the WordToken is associated with

transcription : iterable of str

Transcription for the WordToken (can be different than the
transcription of the Word type). Defaults to None if not
specified

spelling : str

Spelling for the WordToken (can be different than the
spelling of the Word type). Defaults to None if not
specified

begin : float or int

Beginning of the WordToken (can be specified as either in seconds
of time or in position from the beginning of the Discourse)

end : float or int

End of the WordToken (can be specified as either in seconds
of time or in position from the beginning of the Discourse)

previous_token : WordToken

The preceding WordToken in the Discourse, defaults to None if
not specified

following_token : WordToken

The following WordToken in the Discourse, defaults to None if
not specified

discourse : Discourse

Parent Discourse object that the WordToken belongs to

speaker : Speaker

The Speaker that produced the token

Attributes

	transcription
	(Transcription) The WordToken’s transcription, or the word type’s transcription if the WordToken’s transcription is None

	spelling
	(str) The WordToken’s spelling, or the word type’s spelling if the WordToken’s spelling is None

	previous_token
	(WordToken) The previous WordToken in the Discourse

	following_token
	(WordToken) The following WordToken in the Discourse

	duration
	(float) The duration of the WordToken

Methods

	__init__(**kwargs)
	

	add_attribute(tier_name,default_value)
	

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

BaseCorpusContext

	
class corpustools.contextmanagers.BaseCorpusContext(corpus, sequence_type, type_or_token, attribute=None, frequency_threshold=0)[source]

	Abstract Corpus context class that all other contexts inherit from.

	Parameters:	corpus : Corpus

Corpus to form context from

sequence_type : str

Sequence type to evaluate algorithms on (i.e., ‘transcription’)

type_or_token : str

The type of frequency to use for calculations

attribute : Attribute, optional

Attribute to save results to for calculations involving all words
in the Corpus

frequency_threshold: float, optional

If specified, ignore words below this token frequency

Methods

	__init__(corpus,sequence_type,type_or_token)
	

	get_frequency_base([gramsize,halve_edges,...])
	Generate (and cache) frequencies for each segment in the Corpus.

	get_phone_probs([gramsize,probability,...])
	Generate (and cache) phonotactic probabilities for segments in the Corpus.

	
get_frequency_base(gramsize=1, halve_edges=False, probability=False)[source]

	Generate (and cache) frequencies for each segment in the Corpus.

	Parameters:	halve_edges : boolean

If True, word boundary symbols (‘#’) will only be counted once
per word, rather than twice. Defaults to False.

gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency,
defaults to False

	Returns:	dict

Keys are segments (or sequences of segments) and values are
their frequency in the Corpus

	
get_phone_probs(gramsize=1, probability=True, preserve_position=True, log_count=True)[source]

	Generate (and cache) phonotactic probabilities for segments in
the Corpus.

	Parameters:	gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency,
defaults to False

preserve_position : boolean

If True, segments will in different positions in the transcription
will not be collapsed, defaults to True

log_count : boolean

If True, token frequencies will be logrithmically-transformed
prior to being summed

	Returns:	dict

Keys are segments (or sequences of segments) and values are
their phonotactic probability in the Corpus

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

CanonicalVariantContext

	
class corpustools.contextmanagers.CanonicalVariantContext(corpus, sequence_type, type_or_token, attribute=None, frequency_threshold=0)[source]

	Corpus context that uses canonical forms for transcriptions and tiers

See the documentation of BaseCorpusContext for additional information

Methods

	__init__(corpus,sequence_type,type_or_token)
	

	get_frequency_base([gramsize,halve_edges,...])
	Generate (and cache) frequencies for each segment in the Corpus.

	get_phone_probs([gramsize,probability,...])
	Generate (and cache) phonotactic probabilities for segments in the Corpus.

	
get_frequency_base(gramsize=1, halve_edges=False, probability=False)

	Generate (and cache) frequencies for each segment in the Corpus.

	Parameters:	halve_edges : boolean

If True, word boundary symbols (‘#’) will only be counted once
per word, rather than twice. Defaults to False.

gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency,
defaults to False

	Returns:	dict

Keys are segments (or sequences of segments) and values are
their frequency in the Corpus

	
get_phone_probs(gramsize=1, probability=True, preserve_position=True, log_count=True)

	Generate (and cache) phonotactic probabilities for segments in
the Corpus.

	Parameters:	gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency,
defaults to False

preserve_position : boolean

If True, segments will in different positions in the transcription
will not be collapsed, defaults to True

log_count : boolean

If True, token frequencies will be logrithmically-transformed
prior to being summed

	Returns:	dict

Keys are segments (or sequences of segments) and values are
their phonotactic probability in the Corpus

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

MostFrequentVariantContext

	
class corpustools.contextmanagers.MostFrequentVariantContext(corpus, sequence_type, type_or_token, attribute=None, frequency_threshold=0)[source]

	Corpus context that uses the most frequent pronunciation variants
for transcriptions and tiers

See the documentation of BaseCorpusContext for additional information

Methods

	__init__(corpus,sequence_type,type_or_token)
	

	get_frequency_base([gramsize,halve_edges,...])
	Generate (and cache) frequencies for each segment in the Corpus.

	get_phone_probs([gramsize,probability,...])
	Generate (and cache) phonotactic probabilities for segments in the Corpus.

	
get_frequency_base(gramsize=1, halve_edges=False, probability=False)

	Generate (and cache) frequencies for each segment in the Corpus.

	Parameters:	halve_edges : boolean

If True, word boundary symbols (‘#’) will only be counted once
per word, rather than twice. Defaults to False.

gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency,
defaults to False

	Returns:	dict

Keys are segments (or sequences of segments) and values are
their frequency in the Corpus

	
get_phone_probs(gramsize=1, probability=True, preserve_position=True, log_count=True)

	Generate (and cache) phonotactic probabilities for segments in
the Corpus.

	Parameters:	gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency,
defaults to False

preserve_position : boolean

If True, segments will in different positions in the transcription
will not be collapsed, defaults to True

log_count : boolean

If True, token frequencies will be logrithmically-transformed
prior to being summed

	Returns:	dict

Keys are segments (or sequences of segments) and values are
their phonotactic probability in the Corpus

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

SeparatedTokensVariantContext

	
class corpustools.contextmanagers.SeparatedTokensVariantContext(corpus, sequence_type, type_or_token, attribute=None, frequency_threshold=0)[source]

	Corpus context that treats pronunciation variants as separate types
for transcriptions and tiers

See the documentation of BaseCorpusContext for additional information

Methods

	__init__(corpus,sequence_type,type_or_token)
	

	get_frequency_base([gramsize,halve_edges,...])
	Generate (and cache) frequencies for each segment in the Corpus.

	get_phone_probs([gramsize,probability,...])
	Generate (and cache) phonotactic probabilities for segments in the Corpus.

	
get_frequency_base(gramsize=1, halve_edges=False, probability=False)

	Generate (and cache) frequencies for each segment in the Corpus.

	Parameters:	halve_edges : boolean

If True, word boundary symbols (‘#’) will only be counted once
per word, rather than twice. Defaults to False.

gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency,
defaults to False

	Returns:	dict

Keys are segments (or sequences of segments) and values are
their frequency in the Corpus

	
get_phone_probs(gramsize=1, probability=True, preserve_position=True, log_count=True)

	Generate (and cache) phonotactic probabilities for segments in
the Corpus.

	Parameters:	gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency,
defaults to False

preserve_position : boolean

If True, segments will in different positions in the transcription
will not be collapsed, defaults to True

log_count : boolean

If True, token frequencies will be logrithmically-transformed
prior to being summed

	Returns:	dict

Keys are segments (or sequences of segments) and values are
their phonotactic probability in the Corpus

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

WeightedVariantContext

	
class corpustools.contextmanagers.WeightedVariantContext(corpus, sequence_type, type_or_token, attribute=None, frequency_threshold=0)[source]

	Corpus context that weights frequency of pronunciation variants by the
number of variants or the token frequency
for transcriptions and tiers

See the documentation of BaseCorpusContext for additional information

Methods

	__init__(corpus,sequence_type,type_or_token)
	

	get_frequency_base([gramsize,halve_edges,...])
	Generate (and cache) frequencies for each segment in the Corpus.

	get_phone_probs([gramsize,probability,...])
	Generate (and cache) phonotactic probabilities for segments in the Corpus.

	
get_frequency_base(gramsize=1, halve_edges=False, probability=False)

	Generate (and cache) frequencies for each segment in the Corpus.

	Parameters:	halve_edges : boolean

If True, word boundary symbols (‘#’) will only be counted once
per word, rather than twice. Defaults to False.

gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency,
defaults to False

	Returns:	dict

Keys are segments (or sequences of segments) and values are
their frequency in the Corpus

	
get_phone_probs(gramsize=1, probability=True, preserve_position=True, log_count=True)

	Generate (and cache) phonotactic probabilities for segments in
the Corpus.

	Parameters:	gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency,
defaults to False

preserve_position : boolean

If True, segments will in different positions in the transcription
will not be collapsed, defaults to True

log_count : boolean

If True, token frequencies will be logrithmically-transformed
prior to being summed

	Returns:	dict

Keys are segments (or sequences of segments) and values are
their phonotactic probability in the Corpus

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

download_binary

	
corpustools.corpus.io.binary.download_binary(name, path, call_back=None)[source]

	Download a binary file of example corpora and feature matrices.

Names of available corpora: ‘example’ and ‘iphod’

Names of available feature matrices: ‘ipa2spe’, ‘ipa2hayes’,
‘celex2spe’, ‘celex2hayes’, ‘arpabet2spe’, ‘arpabet2hayes’,
‘cpa2spe’, ‘cpa2hayes’, ‘disc2spe’, ‘disc2hayes’, ‘klatt2spe’,
‘klatt2hayes’, ‘sampa2spe’, and ‘sampa2hayes’

	Parameters:	name : str

Identifier of file to download

path : str

Full path for where to save downloaded file

call_back : callable

Function that can handle strings (text updates of progress),
tuples of two integers (0, total number of steps) and an integer
for updating progress out of the total set by a tuple

	Returns:	bool

True if file was successfully saved to the path specified, False
otherwise

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

load_binary

	
corpustools.corpus.io.binary.load_binary(path)[source]

	Unpickle a binary file

	Parameters:	path : str

Full path of binary file to load

	Returns:	Object

Object generated from the text file

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

save_binary

	
corpustools.corpus.io.binary.save_binary(obj, path)[source]

	Pickle a Corpus or FeatureMatrix object for later loading

	Parameters:	obj : Corpus or FeatureMatrix

Object to save

path : str

Full path for where to save object

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

load_corpus_csv

	
corpustools.corpus.io.csv.load_corpus_csv(corpus_name, path, delimiter, annotation_types=None, feature_system_path=None, stop_check=None, call_back=None)[source]

	Load a corpus from a column-delimited text file

	Parameters:	corpus_name : str

Informative identifier to refer to corpus

path : str

Full path to text file

delimiter : str

Character to use for spliting lines into columns

annotation_types : list of AnnotationType, optional

List of AnnotationType specifying how to parse text files

feature_system_path : str

Full path to pickled FeatureMatrix to use with the Corpus

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

	Returns:	Corpus

Corpus object generated from the text file

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

load_feature_matrix_csv

	
corpustools.corpus.io.csv.load_feature_matrix_csv(name, path, delimiter, stop_check=None, call_back=None)[source]

	Load a FeatureMatrix from a column-delimited text file

	Parameters:	name : str

Informative identifier to refer to feature system

path : str

Full path to text file

delimiter : str

Character to use for spliting lines into columns

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

	Returns:	FeatureMatrix

FeatureMatrix generated from the text file

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

export_corpus_csv

	
corpustools.corpus.io.csv.export_corpus_csv(corpus, path, delimiter=', ', trans_delimiter='.', variant_behavior=None)[source]

	Save a corpus as a column-delimited text file

	Parameters:	corpus : Corpus

Corpus to save to text file

path : str

Full path to write text file

delimiter : str

Character to mark boundaries between columns. Defaults to ‘,’

trans_delimiter : str

Character to mark boundaries in transcriptions. Defaults to ‘.’

variant_behavior : str, optional

How to treat variants, ‘token’ will have a line for each variant,
‘column’ will have a single column for all variants for a word,
and the default will not include variants in the output

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

export_feature_matrix_csv

	
corpustools.corpus.io.csv.export_feature_matrix_csv(feature_matrix, path, delimiter=', ')[source]

	Save a FeatureMatrix as a column-delimited text file

	Parameters:	feature_matrix : FeatureMatrix

FeatureMatrix to save to text file

path : str

Full path to write text file

delimiter : str

Character to mark boundaries between columns. Defaults to ‘,’

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

inspect_discourse_spelling

	
corpustools.corpus.io.text_spelling.inspect_discourse_spelling(path, support_corpus_path=None)[source]

	Generate a list of AnnotationTypes for a specified text file for parsing
it as an orthographic text

	Parameters:	path : str

Full path to text file

support_corpus_path : str, optional

Full path to a corpus to look up transcriptions from spellings
in the text

	Returns:	list of AnnotationTypes

Autodetected AnnotationTypes for the text file

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

load_discourse_spelling

	
corpustools.corpus.io.text_spelling.load_discourse_spelling(corpus_name, path, annotation_types=None, lexicon=None, support_corpus_path=None, ignore_case=False, stop_check=None, call_back=None)[source]

	Load a discourse from a text file containing running text of
orthography

	Parameters:	corpus_name : str

Informative identifier to refer to corpus

path : str

Full path to text file

annotation_types : list of AnnotationType, optional

List of AnnotationType specifying how to parse text files

lexicon : Corpus, optional

Corpus to store Discourse word information

support_corpus_path : str, optional

Full path to a corpus to look up transcriptions from spellings
in the text

ignore_case : bool, optional

Specify whether to ignore case when using spellings in the text
to look up transcriptions

stop_check : callable, optional

Callable that returns a boolean for whether to exit before
finishing full calculation

call_back : callable, optional

Function that can handle strings (text updates of progress),
tuples of two integers (0, total number of steps) and an integer
for updating progress out of the total set by a tuple

	Returns:	Discourse

Discourse object generated from the text file

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

load_directory_spelling

	
corpustools.corpus.io.text_spelling.load_directory_spelling(corpus_name, path, annotation_types=None, support_corpus_path=None, ignore_case=False, stop_check=None, call_back=None)[source]

	Loads a directory of orthographic texts

	Parameters:	corpus_name : str

Name of corpus

path : str

Path to directory of text files

annotation_types : list of AnnotationType, optional

List of AnnotationType specifying how to parse text files

support_corpus_path : str, optional

File path of corpus binary to load transcriptions from

ignore_case : bool, optional

Specifies whether lookups in the support corpus should ignore case

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

	Returns:	SpontaneousSpeechCorpus

Corpus containing Discourses corresponding to the text files

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

export_discourse_spelling

	
corpustools.corpus.io.text_spelling.export_discourse_spelling(discourse, path, single_line=False)[source]

	Export an orthography discourse to a text file

	Parameters:	discourse : Discourse

Discourse object to export

path : str

Path to export to

single_line : bool, optional

Flag to enforce all text to be on a single line, defaults to False.
If False, lines are 10 words long.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

inspect_discourse_transcription

	
corpustools.corpus.io.text_transcription.inspect_discourse_transcription(path)[source]

	Generate a list of AnnotationTypes for a specified text file for parsing
it as a transcribed text

	Parameters:	path : str

Full path to text file

	Returns:	list of AnnotationTypes

Autodetected AnnotationTypes for the text file

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

load_discourse_transcription

	
corpustools.corpus.io.text_transcription.load_discourse_transcription(corpus_name, path, annotation_types=None, lexicon=None, feature_system_path=None, stop_check=None, call_back=None)[source]

	Load a discourse from a text file containing running transcribed text

	Parameters:	corpus_name : str

Informative identifier to refer to corpus

path : str

Full path to text file

annotation_types : list of AnnotationType, optional

List of AnnotationType specifying how to parse text files

lexicon : Corpus, optional

Corpus to store Discourse word information

feature_system_path : str, optional

Full path to pickled FeatureMatrix to use with the Corpus

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the loading

	Returns:	Discourse

Discourse object generated from the text file

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

load_directory_transcription

	
corpustools.corpus.io.text_transcription.load_directory_transcription(corpus_name, path, annotation_types=None, feature_system_path=None, stop_check=None, call_back=None)[source]

	Loads a directory of transcribed texts.

	Parameters:	corpus_name : str

Name of corpus

path : str

Path to directory of text files

annotation_types : list of AnnotationType, optional

List of AnnotationType specifying how to parse text files

feature_system_path : str, optional

File path of FeatureMatrix binary to specify segments

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the loading

	Returns:	SpontaneousSpeechCorpus

Corpus containing Discourses corresponding to the text files

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

export_discourse_transcription

	
corpustools.corpus.io.text_transcription.export_discourse_transcription(discourse, path, trans_delim='.', single_line=False)[source]

	Export an transcribed discourse to a text file

	Parameters:	discourse : Discourse

Discourse object to export

path : str

Path to export to

trans_delim : str, optional

Delimiter for segments, defaults to .

single_line : bool, optional

Flag to enforce all text to be on a single line, defaults to False.
If False, lines are 10 words long.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

inspect_discourse_ilg

	
corpustools.corpus.io.text_ilg.inspect_discourse_ilg(path, number=None)[source]

	Generate a list of AnnotationTypes for a specified text file for parsing
it as an interlinear gloss text file

	Parameters:	path : str

Full path to text file

number : int, optional

Number of lines per gloss, if not supplied, it is auto-detected

	Returns:	list of AnnotationTypes

Autodetected AnnotationTypes for the text file

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

load_discourse_ilg

	
corpustools.corpus.io.text_ilg.load_discourse_ilg(corpus_name, path, annotation_types, lexicon=None, feature_system_path=None, stop_check=None, call_back=None)[source]

	Load a discourse from a text file containing interlinear glosses

	Parameters:	corpus_name : str

Informative identifier to refer to corpus

path : str

Full path to text file

annotation_types : list of AnnotationType

List of AnnotationType specifying how to parse the glosses.
Can be generated through inspect_discourse_ilg.

lexicon : Corpus, optional

Corpus to store Discourse word information

feature_system_path : str

Full path to pickled FeatureMatrix to use with the Corpus

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the loading

	Returns:	Discourse

Discourse object generated from the text file

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

load_directory_ilg

	
corpustools.corpus.io.text_ilg.load_directory_ilg(corpus_name, path, annotation_types, feature_system_path=None, stop_check=None, call_back=None)[source]

	Loads a directory of interlinear gloss text files

	Parameters:	corpus_name : str

Name of corpus

path : str

Path to directory of text files

annotation_types : list of AnnotationType

List of AnnotationType specifying how to parse the glosses.
Can be generated through inspect_discourse_ilg.

feature_system_path : str, optional

File path of FeatureMatrix binary to specify segments

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the loading

	Returns:	SpontaneousSpeechCorpus

Corpus containing Discourses corresponding to the text files

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

export_discourse_ilg

	
corpustools.corpus.io.text_ilg.export_discourse_ilg(discourse, path, trans_delim='.')[source]

	Export a discourse to an interlinear gloss text file, with a maximal
line size of 10 words

	Parameters:	discourse : Discourse

Discourse object to export

path : str

Path to export to

trans_delim : str, optional

Delimiter for segments, defaults to .

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

inspect_discourse_multiple_files

	
corpustools.corpus.io.multiple_files.inspect_discourse_multiple_files(word_path, dialect)[source]

	Generate a list of AnnotationTypes for a specified dialect

	Parameters:	word_path : str

Full path to text file

dialect : str

Either ‘buckeye’ or ‘timit’

	Returns:	list of AnnotationTypes

Autodetected AnnotationTypes for the dialect

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

load_discourse_multiple_files

	
corpustools.corpus.io.multiple_files.load_discourse_multiple_files(corpus_name, word_path, phone_path, dialect, annotation_types=None, lexicon=None, feature_system_path=None, stop_check=None, call_back=None)[source]

	Load a discourse from a text file containing interlinear glosses

	Parameters:	corpus_name : str

Informative identifier to refer to corpus

word_path : str

Full path to words text file

phone_path : str

Full path to phones text file

dialect : str

One of ‘buckeye’ or ‘timit’

annotation_types : list of AnnotationType, optional

List of AnnotationType specifying how to parse the glosses.
Auto-generated based on dialect.

lexicon : Corpus, optional

Corpus to store Discourse word information

feature_system_path : str

Full path to pickled FeatureMatrix to use with the Corpus

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the loading

	Returns:	Discourse

Discourse object generated from the text file

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

load_directory_multiple_files

	
corpustools.corpus.io.multiple_files.load_directory_multiple_files(corpus_name, path, dialect, annotation_types=None, feature_system_path=None, stop_check=None, call_back=None)[source]

	Loads a directory of corpus standard files (separated into words files
and phones files)

	Parameters:	corpus_name : str

Name of corpus

path : str

Path to directory of text files

dialect : str

One of ‘buckeye’ or ‘timit’

annotation_types : list of AnnotationType, optional

List of AnnotationType specifying how to parse the glosses.
Auto-generated based on dialect.

feature_system_path : str, optional

File path of FeatureMatrix binary to specify segments

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the loading

	Returns:	SpontaneousSpeechCorpus

Corpus containing Discourses corresponding to the text files

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

calc_freq_of_alt

	
corpustools.freqalt.freq_of_alt.calc_freq_of_alt(corpus_context, seg1, seg2, algorithm, output_filename=None, min_rel=None, max_rel=None, phono_align=False, min_pairs_okay=False, from_gui=False, stop_check=None, call_back=None)[source]

	Returns a double that is a measure of the frequency of
alternation of two sounds in a given corpus

	Parameters:	corpus_context : CorpusContext

Context manager for a corpus

seg1: char

A sound segment, e.g. ‘s’, ‘t’

seg2: char

A sound segment

algorithm: string

The string similarity algorithm

max_rel: double

Filters out all words that are higher than max_rel from a relatedness measure

min_rel: double

Filters out all words that are lower than min_rel from a relatedness measure

phono_align: boolean (1 or 0), optional

1 means ‘only count alternations that are likely phonologically aligned,’
defaults to not force phonological alignment

min_pairs_okay: bool, optional

True means allow minimal pairs (e.g. in English, ‘s’ and ‘t’ do not
alternate in minimal pairs,
so allowing minimal pairs may skew results)

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

	Returns:	double

The frequency of alternation of two sounds in a given corpus

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

minpair_fl

	
corpustools.funcload.functional_load.minpair_fl(corpus_context, segment_pairs, relative_count=True, distinguish_homophones=False, stop_check=None, call_back=None)[source]

	Calculate the functional load of the contrast between two segments
as a count of minimal pairs.

	Parameters:	corpus_context : CorpusContext

Context manager for a corpus

segment_pairs : list of length-2 tuples of str

The pairs of segments to be conflated.

relative_count : bool, optional

If True, divide the number of minimal pairs by the total count
by the total number of words that contain either of the two segments.

distinguish_homophones : bool, optional

If False, then you’ll count sock~shock (sock=clothing) and
sock~shock (sock=punch) as just one minimal pair; but if True,
you’ll overcount alternative spellings of the same word, e.g.
axel~actual and axle~actual. False is the value used by Wedel et al.

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

	Returns:	tuple(int or float, list)

Tuple of: 0. if relative_count`==False, an int of the raw number of
minimal pairs; if `relative_count`==True, a float of that
count divided by the total number of words in the corpus that
include either `s1 or s2; and 1. list of minimal pairs.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

deltah_fl

	
corpustools.funcload.functional_load.deltah_fl(corpus_context, segment_pairs, stop_check=None, call_back=None)[source]

	Calculate the functional load of the contrast between between two
segments as the decrease in corpus entropy caused by a merger.

	Parameters:	corpus_context : CorpusContext

Context manager for a corpus

segment_pairs : list of length-2 tuples of str

The pairs of segments to be conflated.

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

	Returns:	float

The difference between a) the entropy of the choice among
non-homophonous words in the corpus before a merger of s1
and s2 and b) the entropy of that choice after the merger.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

relative_minpair_fl

	
corpustools.funcload.functional_load.relative_minpair_fl(corpus_context, segment, relative_count=True, distinguish_homophones=False, output_filename=None, stop_check=None, call_back=None)[source]

	Calculate the average functional load of the contrasts between a
segment and all other segments, as a count of minimal pairs.

	Parameters:	corpus_context : CorpusContext

Context manager for a corpus

segment : str

The target segment.

relative_count : bool, optional

If True, divide the number of minimal pairs by the total count
by the total number of words that contain either of the two segments.

distinguish_homophones : bool, optional

If False, then you’ll count sock~shock (sock=clothing) and
sock~shock (sock=punch) as just one minimal pair; but if True,
you’ll overcount alternative spellings of the same word, e.g.
axel~actual and axle~actual. False is the value used by Wedel et al.

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

	Returns:	int or float

If relative_count`==False, returns an int of the raw number of
minimal pairs. If `relative_count`==True, returns a float of
that count divided by the total number of words in the corpus
that include either `s1 or s2.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

relative_deltah_fl

	
corpustools.funcload.functional_load.relative_deltah_fl(corpus_context, segment, stop_check=None, call_back=None)[source]

	Calculate the average functional load of the contrasts between a
segment and all other segments, as the decrease in corpus entropy
caused by a merger.

	Parameters:	corpus_context : CorpusContext

Context manager for a corpus

segment : str

The target segment.

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

	Returns:	float

The difference between a) the entropy of the choice among
non-homophonous words in the corpus before a merger of s1
and s2 and b) the entropy of that choice after the merger.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

KullbackLeibler

	
corpustools.kl.kl.KullbackLeibler(corpus_context, seg1, seg2, side, outfile=None, stop_check=False, call_back=False)[source]

	Calculates KL distances between two Phoneme objects in some context,
either the left or right-hand side.
Segments with identical distributions (ie. seg1==seg2) have a KL of zero.
Segments with similar distributions therefore have low numbers, so high
numbers indicate possible allophones.

	Parameters:	corpus_context : CorpusContext

Context manager for a corpus

seg1 : str

First segment

seg2 : str

Second segment

side : str

One of ‘right’, ‘left’ or ‘both’

outfile : str

Full path to save output

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the function

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

pointwise_mi

	
corpustools.mutualinfo.mutual_information.pointwise_mi(corpus_context, query, halve_edges=False, in_word=False, stop_check=None, call_back=None)[source]

	Calculate the mutual information for a bigram.

	Parameters:	corpus_context : CorpusContext

Context manager for a corpus

query : tuple

Tuple of two strings, each a segment/letter

halve_edges : bool

Flag whether to only count word boundaries once per word rather than
twice, defaults to False

in_word : bool

Flag to calculate non-local, non-ordered mutual information,
defaults to False

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the function

	Returns:	float

Mutual information of the bigram

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

neighborhood_density

	
corpustools.neighdens.neighborhood_density.neighborhood_density(corpus_context, query, algorithm='edit_distance', max_distance=1, stop_check=None, call_back=None)[source]

	Calculate the neighborhood density of a particular word in the corpus.

	Parameters:	corpus_context : CorpusContext

Context manager for a corpus

query : Word

The word whose neighborhood density to calculate.

algorithm : str

The algorithm used to determine distance

max_distance : float, optional

Maximum edit distance from the queried word to consider a word a neighbor.

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

	Returns:	tuple(int, set)

Tuple of the number of neighbors and the set of neighbor Words.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

find_mutation_minpairs

	
corpustools.neighdens.neighborhood_density.find_mutation_minpairs(corpus_context, query, stop_check=None, call_back=None)[source]

	Find all minimal pairs of the query word based only on segment
mutations (not deletions/insertions)

	Parameters:	corpus_context : CorpusContext

Context manager for a corpus

query : Word

The word whose minimal pairs to find

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the function

	Returns:	list

The found minimal pairs for the queried word

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

phonotactic_probability_vitevitch

	
corpustools.phonoprob.phonotactic_probability.phonotactic_probability_vitevitch(corpus_context, query, probability_type='unigram', stop_check=None, call_back=None)[source]

	Calculate the phonotactic_probability of a particular word using
the Vitevitch & Luce algorithm

	Parameters:	corpus_context : CorpusContext

Context manager for a corpus

query : Word

The word whose neighborhood density to calculate.

probability_type : str

Either ‘unigram’ or ‘bigram’ probability

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the function

	Returns:	float

Phonotactic probability of the word

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

calc_prod_all_envs

	
corpustools.prod.pred_of_dist.calc_prod_all_envs(corpus_context, seg1, seg2, all_info=False, stop_check=None, call_back=None)[source]

	Main function for calculating predictability of distribution for
two segments over a corpus, regardless of environment.

	Parameters:	corpus_context : CorpusContext

Context manager for a corpus

seg1 : str

The first segment

seg2 : str

The second segment

all_info : bool

If true, all the intermediate numbers for calculating predictability
of distribution will be returned. If false, only the final entropy
will be returned. Defaults to False.

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

	Returns:	float or list

A list of [entropy, frequency of environment, frequency of seg1,
frequency of seg2] if all_info is True, or just entropy if
all_info is False.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

calc_prod

	
corpustools.prod.pred_of_dist.calc_prod(corpus_context, envs, strict=True, all_info=False, stop_check=None, call_back=None)[source]

	Main function for calculating predictability of distribution for
two segments over specified environments in a corpus.

	Parameters:	corpus_context : CorpusContext

Context manager for a corpus

envs : list of EnvironmentFilter

List of EnvironmentFilter objects that specify environments

strict : bool

If true, exceptions will be raised for non-exhausive environments
and non-unique environments. If false, only warnings will be
shown. Defaults to True.

all_info : bool

If true, all the intermediate numbers for calculating predictability
of distribution will be returned. If false, only the final entropy
will be returned. Defaults to False.

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

	Returns:	dict

Keys are the environments specified and values are either a list
of [entropy, frequency of environment, frequency of seg1, frequency
of seg2] if all_info is True, or just entropy if all_info is False.

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

string_similarity

	
corpustools.symbolsim.string_similarity.string_similarity(corpus_context, query, algorithm, **kwargs)[source]

	This function computes similarity of pairs of words across a corpus.

	Parameters:	corpus_context : CorpusContext

Context manager for a corpus

query: string, tuple, or list of tuples

If this is a string, every word in the corpus will be compared to it,
if this is a tuple with two strings, those words will be compared to
each other,
if this is a list of tuples, each tuple’s strings will be compared to
each other.

algorithm: string

The algorithm of string similarity to be used, currently supports
‘khorsi’, ‘edit_distance’, and ‘phono_edit_distance’

max_rel: double

Filters out all words that are higher than max_rel from a relatedness measure

min_rel: double

Filters out all words that are lower than min_rel from a relatedness measure

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the function

	Returns:	list of tuples:

The first two elements of the tuple are the words that were compared
and the final element is their relatedness score

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

edit_distance

	
corpustools.symbolsim.edit_distance.edit_distance(word1, word2, sequence_type, max_distance=None)[source]

	Returns the Levenshtein edit distance between a string from
two words word1 and word2, code drawn from
http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python.
The number is the number of operations needed to transform word1 into word2,
three operations are possible: insert, delete, substitute

	Parameters:	word1: Word

the first word object to be compared

word2: Word

the second word object to be compared

string_type : string

String specifying what attribute of the Word objects to compare,
can be “spelling”, “transcription” or a tier

	Returns:	int:

the edit distance between two words

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

khorsi

	
corpustools.symbolsim.khorsi.khorsi(word1, word2, freq_base, sequence_type, max_distance=None)[source]

	Calculate the string similarity of two words given a set of
characters and their frequencies in a corpus based on Khorsi (2012)

	Parameters:	word1: Word

First Word object to compare

word2: Word

Second Word object to compare

freq_base: dictionary

a dictionary where each segment is mapped to its frequency of
occurrence in a corpus

sequence_type: string

The type of segments to be used (‘spelling’ = Roman letters,
‘transcription’ = IPA symbols)

	Returns:	float

A number representing the relatedness of two words based on Khorsi (2012)

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	API Reference

phono_edit_distance

	
corpustools.symbolsim.phono_edit_distance.phono_edit_distance(word1, word2, sequence_type, features)[source]

	Returns an analogue to Levenshtein edit distance but uses
phonological features instead of characters

	Parameters:	word1: Word

Word object containing transcription tiers which will be compared
to another word containing transcription tiers

word2: Word

The other word containing transcription tiers to which word1 will
be compared

sequence_type: string

Name of the sequence type (transcription or a tier) to use for comparisons

features: FeatureMatrix

FeatureMatrix that contains all the segments in both transcriptions
to be compared

	Returns:	float

the phonological edit distance between two words

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Release Notes

	CorpusTools 1.0.1 Release Notes
	New features

	Functional load

	Corpora

	TextGrid support

	GUI

	CorpusTools 1.1.0 Release Notes
	Importing corpora

	Pronunciation variants

	Functional load

	Phonotactic probability

	Kullback-Leibler divergence

	GUI

	CorpusTools 1.1.1 Release Notes

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	Release Notes

CorpusTools 1.0.1 Release Notes

This is primarily a bugfix release in the 1.0.x series

New features

	Implemented the ability to check for updates to PCT from the executable
versions through the help menu of the main window

Functional load

	Fixed a bug in functional load calculations that undercounted the number
of minimal pairs found if homophones were present

Corpora

	Numeric filters for subsetting corpora should be working as intended now

TextGrid support

	Improved importing of TextGrids by allowing users to specify what the
labels for orthography and transcription tiers are

	Fixed a bug in TextGrid loading where the last segment from the previous
word’s transcription was duplicated in the following word’s transcription

	Fixed a bug where loading TextGrids resulted in an empty segment inventory

GUI

	Improved error messages

	Fixed a bug that blocked subsetting a corpus

	Fix for running text window not getting cleared when switching corpora

	Segments should now correctly default to a grid layout when the inventory
is displayed and the feature system is missing some Hayes- or SPE-like
features

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	Release Notes

CorpusTools 1.1.0 Release Notes

This is a major version release for Phonological CorpusTools.

Importing corpora

	Importing corpora functionality in the GUI received a large overhaul

	All types of corpora are imported through a single dialog

	PCT should autodetect many settings based on selected files or directories

	Autodetected settings can be edited and refined by the user

	Basic logging support saves parsing details entered by the user (i.e.,
multicharacter segments)

	Numbers in transcriptions can be parsed as stress, tone, or as a normal
character (note that tone and stress are currently not supported in functions
or phonological search)

Pronunciation variants

	All algorithms that analyze segments support four strategies for dealing with
pronunciation variants: canonical forms, most frequent variants, separated
tokens as types, and tokens weighted by their relative frequenies

	Algorithms that analyze words support two strategies for pronunciation
variants: canonical forms and most frequent variants

	Exporting corpora can now export pronunciation variants (and their frequencies)

Functional load

	Added support for finding the average functional load of single segments

Phonotactic probability

	Fixed an issue where calculating biphone probabilities on single segment
words would cause errors; now assigns a probability of 0 to those words

Kullback-Leibler divergence

	Added options to bring KL divergence in line with the other functions

	Added command line script for calculating KL divergence

GUI

	Added a dialog to the “View/change feature system” dialog to edit the
categorization of segments into a coherent segment chart via features

	Features can be used as input to the analysis functions, i.e. functional load
of voice in the corpus (segements that are +voice compared to segments that
are -voice)

Segment selection

	Segment selection has been redone

	Segments can be selected via the inventory

	Features can be typed into the filter field, which will highlight
segments that will be included with that feature selection

	Once a feature specification has been entered, that segment set can
be locked in

Environments

	Environment creation has been revamped

	Users can select a set of center segments

	Right hand and left hand can be added, with multiple sets of segments
on each side

Known issues

	Help pages for the Mac binary require internet connection to view, due
to issues including .html files in the .app binary

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

 	Release Notes

CorpusTools 1.1.1 Release Notes

This is a bugfix release for version 1.1.0.

	Fixed an issue where inventory charts were not properly generated when
a feature specifying diphthongs was not present

	Fixed an issue where corpus importing was ignoring user specified corpus names

	Fixed an issue with loading TextGrid and running text corpora with feature systems

	Fixed an issue where inventory charts were sometimes not properly generated
for corpora generated before 1.1.0 sometime

	Fixed an issue where feature pairs could not be selected if a segment in the
inventory was unspecified or underspecified

	Added a check for unspecified segments on associating feature systems with corpora

	Added a check for columns named transcription that are not parsed as transcription

	Increased initial size of the parsing preview section when importing corpora

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Phonological CorpusTools 1.0.0 documentation

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	

 	
 --algorithm ALGORITHM

 	

 	command line option, [1]

 	
 --all_pairwise_fls

 	

 	command line option

 	
 --all_pairwise_mis

 	

 	command line option

 	
 --context_type CONTEXT_TYPE

 	

 	command line option, [1], [2], [3]

 	
 --count_what COUNT_WHAT

 	

 	command line option

 	
 --delimiter DELIMITER

 	

 	command line option

 	
 --distinguish_homophones DISTINGUISH_HOMOPHONES

 	

 	command line option

 	
 --find_mutation_minpairs

 	

 	command line option

 	
 --frequency_cutoff FREQUENCY_CUTOFF

 	

 	command line option

 	
 --help

 	

 	command line option, [1], [2], [3], [4]

 	
 --max_distance MAX_DISTANCE

 	

 	command line option

 	
 --outfile OUTFILE

 	

 	command line option, [1], [2], [3]

 	
 --pairs_file_name_or_segment PAIRS_FILE_NAME_OR_SEGMENT

 	

 	command line option

 	
 --query QUERY

 	

 	command line option

 	
 --relative_fl RELATIVE_FL

 	

 	command line option

 	
 --sequence_type SEQUENCE_TYPE

 	

 	command line option, [1], [2], [3]

 	
 --trans_delimiter TRANS_DELIMITER

 	

 	command line option

 	
 --type_or_token TYPE_OR_TOKEN

 	

 	command line option, [1]

 	

 	
 -a ALGORITHM

 	

 	command line option, [1]

 	
 -c CONTEXT_TYPE

 	

 	command line option, [1], [2], [3]

 	
 -d DELIMITER

 	

 	command line option

 	
 -d DISTINGUISH_HOMOPHONES

 	

 	command line option

 	
 -d MAX_DISTANCE

 	

 	command line option

 	
 -e RELATIVE_FL

 	

 	command line option

 	
 -f FREQUENCY_CUTOFF

 	

 	command line option

 	
 -h

 	

 	command line option, [1], [2], [3], [4]

 	
 -l

 	

 	command line option, [1]

 	
 -m

 	

 	command line option

 	
 -o OUTFILE

 	

 	command line option, [1], [2], [3]

 	
 -p PAIRS_FILE_NAME_OR_SEGMENT

 	

 	command line option

 	
 -q QUERY

 	

 	command line option

 	
 -s SEQUENCE_TYPE

 	

 	command line option, [1], [2], [3]

 	
 -t TRANS_DELIMITER

 	

 	command line option

 	
 -t TYPE_OR_TOKEN

 	

 	command line option, [1]

 	
 -w COUNT_WHAT

 	

 	command line option

A

 	

 	add_abstract_tier() (corpustools.corpus.classes.lexicon.Corpus method)

 	

 	(corpustools.corpus.classes.lexicon.Word method)

 	add_attribute() (corpustools.corpus.classes.lexicon.Corpus method)

 	

 	(corpustools.corpus.classes.lexicon.Word method)

 	(corpustools.corpus.classes.spontaneous.Discourse method)

 	add_count_attribute() (corpustools.corpus.classes.lexicon.Corpus method)

 	add_discourse() (corpustools.corpus.classes.spontaneous.SpontaneousSpeechCorpus method)

 	add_feature() (corpustools.corpus.classes.lexicon.FeatureMatrix method)

 	

 	add_segment() (corpustools.corpus.classes.lexicon.FeatureMatrix method)

 	add_tier() (corpustools.corpus.classes.lexicon.Corpus method)

 	

 	(corpustools.corpus.classes.lexicon.Word method)

 	add_word() (corpustools.corpus.classes.lexicon.Corpus method)

 	

 	(corpustools.corpus.classes.spontaneous.Discourse method)

 	Attribute (class in corpustools.corpus.classes.lexicon)

B

 	

 	BaseCorpusContext (class in corpustools.contextmanagers)

C

 	

 	calc_freq_of_alt() (in module corpustools.freqalt.freq_of_alt)

 	calc_prod() (in module corpustools.prod.pred_of_dist)

 	calc_prod_all_envs() (in module corpustools.prod.pred_of_dist)

 	CanonicalVariantContext (class in corpustools.contextmanagers)

 	categorize() (corpustools.corpus.classes.lexicon.FeatureMatrix method)

 	

 	(corpustools.corpus.classes.lexicon.Inventory method)

 	

 	check_coverage() (corpustools.corpus.classes.lexicon.Corpus method)

 	
 command line option

 	

 	--algorithm ALGORITHM, [1]

 	--all_pairwise_fls

 	--all_pairwise_mis

 	--context_type CONTEXT_TYPE, [1], [2], [3]

 	--count_what COUNT_WHAT

 	--delimiter DELIMITER

 	--distinguish_homophones DISTINGUISH_HOMOPHONES

 	--find_mutation_minpairs

 	--frequency_cutoff FREQUENCY_CUTOFF

 	--help, [1], [2], [3], [4]

 	--max_distance MAX_DISTANCE

 	--outfile OUTFILE, [1], [2], [3]

 	--pairs_file_name_or_segment PAIRS_FILE_NAME_OR_SEGMENT

 	--query QUERY

 	--relative_fl RELATIVE_FL

 	--sequence_type SEQUENCE_TYPE, [1], [2], [3]

 	--trans_delimiter TRANS_DELIMITER

 	--type_or_token TYPE_OR_TOKEN, [1]

 	-a ALGORITHM, [1]

 	-c CONTEXT_TYPE, [1], [2], [3]

 	-d DELIMITER

 	-d DISTINGUISH_HOMOPHONES

 	-d MAX_DISTANCE

 	-e RELATIVE_FL

 	-f FREQUENCY_CUTOFF

 	-h, [1], [2], [3], [4]

 	-l, [1]

 	-m

 	-o OUTFILE, [1], [2], [3]

 	-p PAIRS_FILE_NAME_OR_SEGMENT

 	-q QUERY

 	-s SEQUENCE_TYPE, [1], [2], [3]

 	-t TRANS_DELIMITER

 	-t TYPE_OR_TOKEN, [1]

 	-w COUNT_WHAT

 	corpus_file_name, [1], [2], [3]

 	query

 	seg1

 	seg2

 	side

 	Corpus (class in corpustools.corpus.classes.lexicon)

 	
 corpus_file_name

 	

 	command line option, [1], [2], [3]

 	create_lexicon() (corpustools.corpus.classes.spontaneous.Discourse method)

D

 	

 	deltah_fl() (in module corpustools.funcload.functional_load)

 	Discourse (class in corpustools.corpus.classes.spontaneous)

 	

 	download_binary() (in module corpustools.corpus.io.binary)

E

 	

 	edit_distance() (in module corpustools.symbolsim.edit_distance)

 	Environment (class in corpustools.corpus.classes.lexicon)

 	EnvironmentFilter (class in corpustools.corpus.classes.lexicon)

 	export_corpus_csv() (in module corpustools.corpus.io.csv)

 	

 	export_discourse_ilg() (in module corpustools.corpus.io.text_ilg)

 	export_discourse_spelling() (in module corpustools.corpus.io.text_spelling)

 	export_discourse_transcription() (in module corpustools.corpus.io.text_transcription)

 	export_feature_matrix_csv() (in module corpustools.corpus.io.csv)

F

 	

 	feature_match() (corpustools.corpus.classes.lexicon.Segment method)

 	FeatureMatrix (class in corpustools.corpus.classes.lexicon)

 	features (corpustools.corpus.classes.lexicon.FeatureMatrix attribute)

 	features_to_segments() (corpustools.corpus.classes.lexicon.Corpus method)

 	

 	(corpustools.corpus.classes.lexicon.FeatureMatrix method)

 	(corpustools.corpus.classes.lexicon.Inventory method)

 	find() (corpustools.corpus.classes.lexicon.Corpus method)

 	

 	(corpustools.corpus.classes.lexicon.Transcription method)

 	

 	find_all() (corpustools.corpus.classes.lexicon.Corpus method)

 	find_min_feature_pairs() (corpustools.corpus.classes.lexicon.Inventory method)

 	find_mutation_minpairs() (in module corpustools.neighdens.neighborhood_density)

 	find_nonmatch() (corpustools.corpus.classes.lexicon.Transcription method)

 	find_wordtype() (corpustools.corpus.classes.spontaneous.Discourse method)

G

 	

 	get_features() (corpustools.corpus.classes.lexicon.Corpus method)

 	get_frequency_base() (corpustools.contextmanagers.BaseCorpusContext method)

 	

 	(corpustools.contextmanagers.CanonicalVariantContext method)

 	(corpustools.contextmanagers.MostFrequentVariantContext method)

 	(corpustools.contextmanagers.SeparatedTokensVariantContext method)

 	(corpustools.contextmanagers.WeightedVariantContext method)

 	get_or_create_word() (corpustools.corpus.classes.lexicon.Corpus method)

 	get_phone_probs() (corpustools.contextmanagers.BaseCorpusContext method)

 	

 	(corpustools.contextmanagers.CanonicalVariantContext method)

 	(corpustools.contextmanagers.MostFrequentVariantContext method)

 	(corpustools.contextmanagers.SeparatedTokensVariantContext method)

 	(corpustools.contextmanagers.WeightedVariantContext method)

 	

 	get_random_subset() (corpustools.corpus.classes.lexicon.Corpus method)

 	get_redundant_features() (corpustools.corpus.classes.lexicon.Inventory method)

 	guess_type() (corpustools.corpus.classes.lexicon.Attribute static method)

H

 	

 	has_audio (corpustools.corpus.classes.spontaneous.Discourse attribute)

I

 	

 	inspect_discourse_ilg() (in module corpustools.corpus.io.text_ilg)

 	inspect_discourse_multiple_files() (in module corpustools.corpus.io.multiple_files)

 	inspect_discourse_spelling() (in module corpustools.corpus.io.text_spelling)

 	inspect_discourse_transcription() (in module corpustools.corpus.io.text_transcription)

 	

 	Inventory (class in corpustools.corpus.classes.lexicon)

 	is_applicable() (corpustools.corpus.classes.lexicon.EnvironmentFilter method)

 	iter_sort() (corpustools.corpus.classes.lexicon.Corpus method)

 	iter_words() (corpustools.corpus.classes.lexicon.Corpus method)

K

 	

 	keys() (corpustools.corpus.classes.spontaneous.Discourse method)

 	khorsi() (in module corpustools.symbolsim.khorsi)

 	

 	KullbackLeibler() (in module corpustools.kl.kl)

L

 	

 	lhs_count() (corpustools.corpus.classes.lexicon.EnvironmentFilter method)

 	load_binary() (in module corpustools.corpus.io.binary)

 	load_corpus_csv() (in module corpustools.corpus.io.csv)

 	load_directory_ilg() (in module corpustools.corpus.io.text_ilg)

 	load_directory_multiple_files() (in module corpustools.corpus.io.multiple_files)

 	load_directory_spelling() (in module corpustools.corpus.io.text_spelling)

 	

 	load_directory_transcription() (in module corpustools.corpus.io.text_transcription)

 	load_discourse_ilg() (in module corpustools.corpus.io.text_ilg)

 	load_discourse_multiple_files() (in module corpustools.corpus.io.multiple_files)

 	load_discourse_spelling() (in module corpustools.corpus.io.text_spelling)

 	load_discourse_transcription() (in module corpustools.corpus.io.text_transcription)

 	load_feature_matrix_csv() (in module corpustools.corpus.io.csv)

M

 	

 	match_segments() (corpustools.corpus.classes.lexicon.Transcription method)

 	minimal_difference() (corpustools.corpus.classes.lexicon.Segment method)

 	

 	minpair_fl() (in module corpustools.funcload.functional_load)

 	MostFrequentVariantContext (class in corpustools.contextmanagers)

N

 	

 	neighborhood_density() (in module corpustools.neighdens.neighborhood_density)

P

 	

 	phono_edit_distance() (in module corpustools.symbolsim.phono_edit_distance)

 	phonotactic_probability_vitevitch() (in module corpustools.phonoprob.phonotactic_probability)

 	

 	pointwise_mi() (in module corpustools.mutualinfo.mutual_information)

Q

 	

 	
 query

 	

 	command line option

R

 	

 	random_word() (corpustools.corpus.classes.lexicon.Corpus method)

 	relative_deltah_fl() (in module corpustools.funcload.functional_load)

 	relative_minpair_fl() (in module corpustools.funcload.functional_load)

 	

 	remove_attribute() (corpustools.corpus.classes.lexicon.Corpus method)

 	

 	(corpustools.corpus.classes.lexicon.Word method)

 	remove_word() (corpustools.corpus.classes.lexicon.Corpus method)

 	rhs_count() (corpustools.corpus.classes.lexicon.EnvironmentFilter method)

S

 	

 	sanitize_name() (corpustools.corpus.classes.lexicon.Attribute static method)

 	save_binary() (in module corpustools.corpus.io.binary)

 	
 seg1

 	

 	command line option

 	
 seg2

 	

 	command line option

 	seg_to_feat_line() (corpustools.corpus.classes.lexicon.FeatureMatrix method)

 	Segment (class in corpustools.corpus.classes.lexicon)

 	segment_to_features() (corpustools.corpus.classes.lexicon.Corpus method)

 	segments (corpustools.corpus.classes.lexicon.FeatureMatrix attribute)

 	

 	SeparatedTokensVariantContext (class in corpustools.contextmanagers)

 	set_feature_matrix() (corpustools.corpus.classes.lexicon.Corpus method)

 	
 side

 	

 	command line option

 	Speaker (class in corpustools.corpus.classes.spontaneous)

 	specify() (corpustools.corpus.classes.lexicon.Inventory method)

 	

 	(corpustools.corpus.classes.lexicon.Segment method)

 	SpontaneousSpeechCorpus (class in corpustools.corpus.classes.spontaneous)

 	string_similarity() (in module corpustools.symbolsim.string_similarity)

 	subset() (corpustools.corpus.classes.lexicon.Corpus method)

T

 	

 	Transcription (class in corpustools.corpus.classes.lexicon)

U

 	

 	update_inventory() (corpustools.corpus.classes.lexicon.Corpus method)

 	

 	update_range() (corpustools.corpus.classes.lexicon.Attribute method)

V

 	

 	valid_feature_strings() (corpustools.corpus.classes.lexicon.FeatureMatrix method)

 	

 	(corpustools.corpus.classes.lexicon.Inventory method)

 	validate() (corpustools.corpus.classes.lexicon.FeatureMatrix method)

 	

 	variants() (corpustools.corpus.classes.lexicon.Word method)

W

 	

 	WeightedVariantContext (class in corpustools.contextmanagers)

 	with_word_boundaries() (corpustools.corpus.classes.lexicon.Transcription method)

 	

 	Word (class in corpustools.corpus.classes.lexicon)

 	WordToken (class in corpustools.corpus.classes.spontaneous)

 Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

 _modules/corpustools/funcload/functional_load.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.funcload.functional_load

import re
from collections import defaultdict
from math import *
import itertools
import queue
import copy
from math import factorial
import time

from corpustools.exceptions import FuncLoadError
from .io import save_minimal_pairs

def matches(first, second):
 """
 Determine if two neutralized transcriptions are a minimal pair or not

 Parameters

 first : tuple
 Tuple of the neutralized sequence, the spelling of the word,
 and the unneutralized sequence
 second : tuple
 Tuple of the neutralized sequence, the spelling of the word,
 and the unneutralized sequence

 Returns

 bool
 Returns True if the neutralized sequences match, they both contain
 neutralized segments, and the spellings and original transcriptions
 are different; otherwise returns False
 """
 return (first[0] == second[0] and first[1] != second[1]
 and 'NEUTR:' in first[0] and 'NEUTR:' in second[0]
 and first[2] != second[2])

[docs]def minpair_fl(corpus_context, segment_pairs,
 relative_count = True, distinguish_homophones = False,
 stop_check = None, call_back = None):
 """Calculate the functional load of the contrast between two segments
 as a count of minimal pairs.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 segment_pairs : list of length-2 tuples of str
 The pairs of segments to be conflated.
 relative_count : bool, optional
 If True, divide the number of minimal pairs by the total count
 by the total number of words that contain either of the two segments.
 distinguish_homophones : bool, optional
 If False, then you'll count sock~shock (sock=clothing) and
 sock~shock (sock=punch) as just one minimal pair; but if True,
 you'll overcount alternative spellings of the same word, e.g.
 axel~actual and axle~actual. False is the value used by Wedel et al.
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function

 Returns

 tuple(int or float, list)
 Tuple of: 0. if `relative_count`==False, an int of the raw number of
 minimal pairs; if `relative_count`==True, a float of that
 count divided by the total number of words in the corpus that
 include either `s1` or `s2`; and 1. list of minimal pairs.
 """

 if stop_check is not None and stop_check():
 return
 all_segments = list(itertools.chain.from_iterable(segment_pairs))

 neutralized = []
 if call_back is not None:
 call_back('Finding and neutralizing instances of segments...')
 call_back(0, len(corpus_context))
 cur = 0
 for w in corpus_context:
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 100 == 0:
 call_back(cur)
 tier = getattr(w, corpus_context.sequence_type)
 if any([s in tier for s in all_segments]):
 n = [neutralize_segment(seg, segment_pairs)
 for seg in tier]
 neutralized.append(('.'.join(n), w, tier))
 if stop_check is not None and stop_check():
 return

 minpairs = []
 if call_back is not None:
 call_back('Counting minimal pairs...')
 call_back(0,factorial(len(neutralized))/(factorial(len(neutralized)-2)*2))
 cur = 0
 for first,second in itertools.combinations(neutralized, 2):
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 100 == 0:
 call_back(cur)
 if not matches(first,second):
 continue
 ordered_pair = sorted([(first[1],first[2]), (second[1], second[2])],
 key = lambda x: x[1])
 minpairs.append(tuple(ordered_pair))

 if not distinguish_homophones:
 actual_minpairs = {}
 for pair in minpairs:
 key = (pair[0][1], pair[1][1]) # Keys are tuples of tiers
 if key not in actual_minpairs:
 actual_minpairs[key] = (pair[0][0], pair[1][0]) # Values are words
 else:
 pair_freq = pair[0][0].frequency + pair[1][0].frequency
 existing_freq = actual_minpairs[key][0].frequency + \
 actual_minpairs[key][1].frequency
 if pair_freq > existing_freq:
 actual_minpairs[key] = (pair[0][0], pair[1][0])
 result = sum((x[0].frequency + x[1].frequency)/2
 for x in actual_minpairs.values())
 else:
 result = sum((x[0][0].frequency + x[1][0].frequency)/2 for x in minpairs)

 if relative_count and len(neutralized) > 0:
 result /= sum(x[1].frequency for x in neutralized)
 return (result, minpairs)

[docs]def deltah_fl(corpus_context, segment_pairs,
 stop_check = None, call_back = None):
 """Calculate the functional load of the contrast between between two
 segments as the decrease in corpus entropy caused by a merger.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 segment_pairs : list of length-2 tuples of str
 The pairs of segments to be conflated.
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function

 Returns

 float
 The difference between a) the entropy of the choice among
 non-homophonous words in the corpus before a merger of `s1`
 and `s2` and b) the entropy of that choice after the merger.
 """
 if call_back is not None:
 call_back('Finding instances of segments...')
 call_back(0, len(corpus_context))
 cur = 0
 freq_sum = 0
 original_probs = defaultdict(float)
 for w in corpus_context:
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 20 == 0:
 call_back(cur)

 f = w.frequency

 original_probs[getattr(w, corpus_context.sequence_type)] += f
 freq_sum += f

 original_probs = {k:v/freq_sum for k,v in original_probs.items()}

 if stop_check is not None and stop_check():
 return
 preneutr_h = entropy(original_probs.values())

 neutralized_probs = defaultdict(float)
 if call_back is not None:
 call_back('Neutralizing instances of segments...')
 call_back(0, len(list(original_probs.keys())))
 cur = 0
 for k,v in original_probs.items():
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 100 == 0:
 call_back(cur)
 neutralized_probs['.'.join([neutralize_segment(s, segment_pairs) for s in k])] += v
 postneutr_h = entropy(neutralized_probs.values())

 if stop_check is not None and stop_check():
 return
 result = preneutr_h - postneutr_h
 if result < 1e-10:
 result = 0.0

 return result

[docs]def relative_minpair_fl(corpus_context, segment,
 relative_count = True, distinguish_homophones = False,
 output_filename = None,
 stop_check = None, call_back = None):
 """Calculate the average functional load of the contrasts between a
 segment and all other segments, as a count of minimal pairs.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 segment : str
 The target segment.
 relative_count : bool, optional
 If True, divide the number of minimal pairs by the total count
 by the total number of words that contain either of the two segments.
 distinguish_homophones : bool, optional
 If False, then you'll count sock~shock (sock=clothing) and
 sock~shock (sock=punch) as just one minimal pair; but if True,
 you'll overcount alternative spellings of the same word, e.g.
 axel~actual and axle~actual. False is the value used by Wedel et al.
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function

 Returns

 int or float
 If `relative_count`==False, returns an int of the raw number of
 minimal pairs. If `relative_count`==True, returns a float of
 that count divided by the total number of words in the corpus
 that include either `s1` or `s2`.
 """
 all_segments = corpus_context.inventory
 segment_pairs = [(segment,other) for other in all_segments
 if other != segment and other != '#']
 results = []
 to_output = []
 for sp in segment_pairs:
 res = minpair_fl(corpus_context, [sp],
 relative_count = relative_count,
 distinguish_homophones = distinguish_homophones,
 stop_check = stop_check, call_back = call_back)
 results.append(res[0])

 if output_filename is not None:
 to_output.append((sp, res[1]))
 if output_filename is not None:
 save_minimal_pairs(output_filename, to_output)
 return sum(results)/len(segment_pairs)

[docs]def relative_deltah_fl(corpus_context, segment,
 stop_check = None, call_back = None):
 """Calculate the average functional load of the contrasts between a
 segment and all other segments, as the decrease in corpus entropy
 caused by a merger.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 segment : str
 The target segment.
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function

 Returns

 float
 The difference between a) the entropy of the choice among
 non-homophonous words in the corpus before a merger of `s1`
 and `s2` and b) the entropy of that choice after the merger.
 """
 all_segments = corpus_context.inventory
 segment_pairs = [(segment,other) for other in all_segments
 if other != segment and other != '#']
 results = []
 for sp in segment_pairs:
 results.append(deltah_fl(corpus_context, [sp],
 stop_check = stop_check, call_back = call_back))
 return sum(results)/len(segment_pairs)

def collapse_segpairs_fl(corpus_context, **kwargs):
 func_type = kwargs.get('func_type')
 segment_pairs = kwargs.get('segment_pairs')
 relative_count = kwargs.get('relative_count')
 distinguish_homophones = kwargs.get('distinguish_homophones')
 if func_type == 'min_pairs':
 fl = minpair_fl(corpus_context, segment_pairs,
 relative_count, distinguish_homophones)
 elif func_type == 'entropy':
 fl = deltah_fl(corpus_context, segment_pairs)

def individual_segpairs_fl(corpus_context, **kwargs):
 func_type = kwargs.get('func_type')
 segment_pairs = kwargs.get('segment_pairs')
 relative_count = kwargs.get('relative_count')
 distinguish_homophones = kwargs.get('distinguish_homophones')

 results = []
 for pair in segment_pairs:
 if func_type == 'min_pairs':
 fl = minpair_fl(corpus_context, [pair],
 relative_count, distinguish_homophones)
 elif func_type == 'entropy':
 fl = deltah_fl(corpus_context, [pair])
 results.append(fl)

def entropy(probabilities):
 """Calculate the entropy of a choice from the provided probability distribution.

 Parameters

 probabilities : list of floats
 Contains the probability of each item in the list.

 Returns

 float
 Entropy
 """
 return -(sum([p*log(p,2) if p > 0 else 0 for p in probabilities]))

def neutralize_segment(segment, segment_pairs):
 for sp in segment_pairs:
 try:
 s = segment.symbol
 except AttributeError:
 s = segment
 if s in sp:
 return 'NEUTR:'+''.join(str(x) for x in sp)
 return s

def all_pairwise_fls(corpus_context, relative_fl = False,
 algorithm = 'minpair',
 relative_count = True, distinguish_homophones = False):
 """Calculate the functional load of the contrast between two segments as a count of minimal pairs.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 relative_fl : bool
 If False, return the FL for all segment pairs. If True, return
 the relative (average) FL for each segment.
 algorithm : str {'minpair', 'deltah'}
 Algorithm to use for calculating functional load: "minpair" for
 minimal pair count or "deltah" for change in entropy.
 relative_count : bool, optional
 If True, divide the number of minimal pairs by the total count
 by the total number of words that contain either of the two segments.
 distinguish_homophones : bool, optional
 If False, then you'll count sock~shock (sock=clothing) and
 sock~shock (sock=punch) as just one minimal pair; but if True,
 you'll overcount alternative spellings of the same word, e.g.
 axel~actual and axle~actual. False is the value used by Wedel et al.

 Returns

 list of tuple(tuple(str, st), float)
 OR
 list of (str, float)
 Normally returns a list of all Segment pairs and their respective functional load values, as length-2 tuples ordered by FL.
 If calculating relative FL, returns a dictionary of each segment and its relative (average) FL, with entries ordered by FL.
 """
 fls = {}
 total_calculations = ((((len(corpus_context.inventory)-1)**2)-len(corpus_context.inventory)-1)/2)+1
 ct = 1
 t = time.time()
 if '' in corpus_context.inventory:
 raise Exception('Warning: Calculation of functional load for all segment pairs requires that all items in corpus have a non-null transcription.')
 for i, s1 in enumerate(corpus_context.inventory[:-1]):
 for s2 in corpus_context.inventory[i+1:]:
 if s1 != '#' and s2 != '#':
 print('Performing FL calculation {} out of {} possible'.format(str(ct), str(total_calculations)))
 ct += 1
 print('Duration of last calculation: {}'.format(str(time.time() - t)))
 t = time.time()
 if type(s1) != str:
 s1 = s1.symbol
 if type(s2) != str:
 s2 = s2.symbol
 if algorithm == 'minpair':
 fl = minpair_fl(corpus_context, [(s1, s2)],
 relative_count=relative_count,
 distinguish_homophones=distinguish_homophones)[0]
 elif algorithm == 'deltah':
 fl = deltah_fl(corpus_context, [(s1, s2)])
 fls[(s1, s2)] = fl
 if not relative_fl:
 ordered_fls = sorted([(pair, fls[pair]) for pair in fls], key=lambda p: p[1], reverse=True)
 return ordered_fls
 elif relative_fl:
 rel_fls = {}
 for s in corpus_context.inventory:
 if type(s) != str:
 s = s.symbol
 if s != '#':
 total = 0.0
 for pair in fls:
 if s == pair[0] or s == pair[1]:
 total += fls[pair]
 rel_fls[s] = total / (len(corpus_context.inventory) - 1)
 ordered_rel_fls = sorted([(s, rel_fls[s]) for s in rel_fls], key=lambda p: p[1], reverse=True)
 return ordered_rel_fls

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/phonoprob/phonotactic_probability.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.phonoprob.phonotactic_probability

-*- coding: utf-8 -*-

from corpustools.corpus.classes import Word

from corpustools.exceptions import PhonoProbError

from corpustools.contextmanagers import ensure_context

def phonotactic_probability_all_words(corpus_context, algorithm,
 probability_type = 'unigram',
 num_cores = -1,
 stop_check = None, call_back = None):
 """Calculate the phonotactic_probability of all words in the corpus and
 adds them as attributes of the words.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 algorithm : str
 Algorithm to use for calculating phonotactic probability (currently
 only 'vitevitch')
 probability_type : str
 Either 'unigram' or 'bigram' probability
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function
 """
 ensure_context(corpus_context)
 if call_back is not None:
 call_back('Calculating phonotactic probabilities...')
 call_back(0,len(corpus_context))
 cur = 0
 num_cores = -1 # Multiprocessing not yet implemented
 if num_cores == -1:
 for w in corpus_context:
 if stop_check is not None and stop_check():
 break
 if call_back is not None:
 cur += 1
 if cur % 20 == 0:
 call_back(cur)
 if algorithm == 'vitevitch':
 res = phonotactic_probability_vitevitch(corpus_context, w,
 probability_type = probability_type,
 stop_check = stop_check)
 setattr(w.original, corpus_context.attribute.name,res)
 if stop_check is not None and stop_check():
 corpus_context.corpus.remove_attribute(corpus_context.attribute)

def phonotactic_probability(corpus_context, query, algorithm,
 probability_type = 'unigram',
 stop_check = None, call_back = None):
 """Calculate the phonotactic_probability of a particular word.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 query : Word
 The word whose neighborhood density to calculate.
 algorithm : str
 Algorithm to use for calculating phonotactic probability (currently
 only 'vitevitch')
 probability_type : str
 Either 'unigram' or 'bigram' probability
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function

 Returns

 float
 Phonotactic probability of the word
 """
 if algorithm == 'vitevitch':
 return phonotactic_probability_vitevitch(corpus_context, query,
 probability_type,
 stop_check, call_back)

[docs]def phonotactic_probability_vitevitch(corpus_context, query,
 probability_type = 'unigram',
 stop_check = None, call_back = None):
 """Calculate the phonotactic_probability of a particular word using
 the Vitevitch & Luce algorithm

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 query : Word
 The word whose neighborhood density to calculate.
 probability_type : str
 Either 'unigram' or 'bigram' probability
 stop_check : callable or None
 Optional function to check whether to gracefully terminate early
 call_back : callable or None
 Optional function to supply progress information during the function

 Returns

 float
 Phonotactic probability of the word
 """
 ensure_context(corpus_context)

 if probability_type == 'unigram':
 gramsize = 1
 elif probability_type == 'bigram':
 gramsize = 2

 prob_dict = corpus_context.get_phone_probs(gramsize = gramsize)
 sequence = zip(*[getattr(query, corpus_context.sequence_type)[i:] for i in range(gramsize)])

 totprob = 0
 tot = 0
 for i,s in enumerate(sequence):
 try:
 totprob += prob_dict[s,i]
 except KeyError:
 notfound = []

 for seg in s:
 if seg not in corpus_context.inventory:
 notfound.append(seg)
 if len(notfound):
 raise(PhonoProbError("Segments not found in the corpus: {}".format(', '.join(notfound))))
 else:
 raise(PhonoProbError("Segments not found in the corpus: {} at position: {}".format(', '.join(s),i)))
 tot += 1
 try:
 totprob = totprob / tot
 except ZeroDivisionError:
 pass
 return totprob

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/prod/pred_of_dist.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.prod.pred_of_dist

from collections import defaultdict, OrderedDict
from math import log2
import os

from corpustools.corpus.classes import EnvironmentFilter
from corpustools.exceptions import ProdError, PCTError

def check_envs(corpus_context, envs, stop_check, call_back):
 """
 Search for the specified segments in the specified environments in
 the corpus.
"""

 env_matches = {env: {seg: 0 for seg in env.middle} for env in envs}
 is_sets = not all(isinstance(x, str) for x in envs[0].middle)
 missing_envs = defaultdict(set)
 overlapping_envs = defaultdict(dict)

 if call_back is not None:
 call_back('Finding instances of environments...')
 call_back(0,len(corpus_context))
 cur = 0
 for word in corpus_context:
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 100 == 0:
 call_back(cur)

 tier = getattr(word, corpus_context.sequence_type)
 overlaps = defaultdict(list)
 found_env = False
 for env in envs:
 a = env.is_applicable(tier.with_word_boundaries())
 if not a:
 continue
 es = tier.find(env)
 if es is not None:
 found_env = True
 for e in es:
 if is_sets:
 for x in env.middle:
 if e.middle in x:
 env_matches[env][x] += word.frequency
 else:
 env_matches[env][e.middle] += word.frequency
 overlaps[e].append(env)

 if not found_env and any(m in tier for m in envs[0].middle):
 actual_env = tier.find_nonmatch(envs[0])
 missing_envs[str(actual_env)].update([str(word)])

 for k,v in overlaps.items():
 if len(v) > 1:
 k = tuple(str(env) for env in v)
 k2 = str(k)
 if k2 not in overlapping_envs[k]:
 overlapping_envs[k][k2] = set()
 overlapping_envs[k][k2].update([str(word)])

 return env_matches, missing_envs, overlapping_envs

[docs]def calc_prod_all_envs(corpus_context, seg1, seg2, all_info = False, stop_check = None,
 call_back = None):
 """
 Main function for calculating predictability of distribution for
 two segments over a corpus, regardless of environment.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 seg1 : str
 The first segment
 seg2 : str
 The second segment
 all_info : bool
 If true, all the intermediate numbers for calculating predictability
 of distribution will be returned. If false, only the final entropy
 will be returned. Defaults to False.
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function

 Returns

 float or list
 A list of [entropy, frequency of environment, frequency of seg1,
 frequency of seg2] if all_info is True, or just entropy if
 all_info is False.
 """
 freq_base = corpus_context.get_frequency_base()
 if stop_check is not None and stop_check():
 return
 if isinstance(seg1, str):
 seg1_count = freq_base[seg1]
 elif isinstance(seg1, (tuple, list, set)):
 seg1_count = sum(freq_base[x] for x in seg1)
 else:
 raise(NotImplementedError)

 if isinstance(seg2, str):
 seg2_count = freq_base[seg2]
 elif isinstance(seg2, (tuple, list, set)):
 seg2_count = sum(freq_base[x] for x in seg2)
 else:
 raise(NotImplementedError)
 total_count = seg1_count + seg2_count
 if total_count:
 H = -1 * ((seg1_count/total_count) * log2(seg1_count/total_count) + (seg2_count/total_count) * log2(seg2_count/total_count))
 else:
 H = 0.0
 if all_info:
 H = [H, total_count, seg1_count, seg2_count]
 return H

[docs]def calc_prod(corpus_context, envs, strict = True, all_info = False, stop_check = None,
 call_back = None):
 """
 Main function for calculating predictability of distribution for
 two segments over specified environments in a corpus.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 envs : list of EnvironmentFilter
 List of EnvironmentFilter objects that specify environments
 strict : bool
 If true, exceptions will be raised for non-exhausive environments
 and non-unique environments. If false, only warnings will be
 shown. Defaults to True.
 all_info : bool
 If true, all the intermediate numbers for calculating predictability
 of distribution will be returned. If false, only the final entropy
 will be returned. Defaults to False.
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function

 Returns

 dict
 Keys are the environments specified and values are either a list
 of [entropy, frequency of environment, frequency of seg1, frequency
 of seg2] if all_info is True, or just entropy if all_info is False.
 """
 seg_list = envs[0].middle
 for e in envs:
 if e.middle != seg_list:
 raise(PCTError("Middle segments of all environments must be the same."))

 returned = check_envs(corpus_context, envs, stop_check, call_back)

 if stop_check is not None and stop_check():
 return
 env_matches, miss_envs, overlap_envs = returned
 if miss_envs or overlap_envs:
 if strict:
 raise(ProdError(envs, miss_envs, overlap_envs))

 H_dict = OrderedDict()

 #CALCULATE ENTROPY IN INDIVIDUAL ENVIRONMENTS FIRST
 total_matches = {x: 0 for x in seg_list}
 total_frequency = 0

 if call_back is not None:
 call_back('Calculating predictability of distribution...')
 call_back(0,len(corpus_context))
 cur = 0
 for env in env_matches:
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 call_back(cur)
 total_tokens = 0
 matches = {}
 for seg in seg_list:
 matches[seg] = env_matches[env][seg]
 total_matches[seg] += matches[seg]
 total_tokens += matches[seg]
 total_frequency += total_tokens

 if not total_tokens:
 H = 0
 else:
 seg_H = {}
 for seg in seg_list:
 seg_prob = matches[seg] / total_tokens
 seg_H[seg] = log2(seg_prob)*seg_prob if seg_prob > 0 else 0
 H = sum(seg_H.values())*-1
 if not H:
 H = H+0 #avoid the -0.0 problem
 H_dict[env] = [H, total_tokens] + [matches[x] for x in seg_list]

 #CALCULATE WEIGHTED ENTROPY LAST
 weighted_H = 0
 for env in env_matches:
 weighted_H += H_dict[env][0] * (H_dict[env][1] / total_frequency) if total_frequency>0 else 0

 try:
 avg_h = sum(total_matches.values())/total_frequency
 except ZeroDivisionError:
 avg_h = 0.0

 H_dict['AVG'] = [weighted_H, avg_h] + [total_matches[x] for x in seg_list]

 if not all_info:
 for k,v in H_dict.items():
 H_dict[k] = v[0]
 return H_dict

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/mutualinfo/mutual_information.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.mutualinfo.mutual_information

-*- coding: utf-8 -*-

import sys
import math
from collections import defaultdict
from corpustools.corpus.classes.lexicon import CorpusIntegrityError

import time

from corpustools.exceptions import MutualInfoError

[docs]def pointwise_mi(corpus_context, query, halve_edges = False, in_word = False,
 stop_check = None, call_back = None):
 """
 Calculate the mutual information for a bigram.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 query : tuple
 Tuple of two strings, each a segment/letter
 halve_edges : bool
 Flag whether to only count word boundaries once per word rather than
 twice, defaults to False
 in_word : bool
 Flag to calculate non-local, non-ordered mutual information,
 defaults to False
 stop_check : callable or None
 Optional function to check whether to gracefully terminate early
 call_back : callable or None
 Optional function to supply progress information during the function

 Returns

 float
 Mutual information of the bigram
 """
 if call_back is not None:
 call_back("Generating probabilities...")
 call_back(0,0)
 cur = 0
 if in_word:
 unigram_dict = get_in_word_unigram_frequencies(corpus_context, query)
 bigram_dict = get_in_word_bigram_frequency(corpus_context, query)
 else:
 unigram_dict = corpus_context.get_frequency_base(gramsize = 1, halve_edges = halve_edges, probability=True)
 bigram_dict = corpus_context.get_frequency_base(gramsize = 2, halve_edges = halve_edges, probability=True)

 #if '#' in query:
 # raise(Exception("Word boundaries are currently unsupported."))
 try:
 prob_s1 = unigram_dict[query[0]]
 except KeyError:
 raise(MutualInfoError('The segment {} was not found in the corpus'.format(query[0])))
 try:
 prob_s2 = unigram_dict[query[1]]
 except KeyError:
 raise(MutualInfoError('The segment {} was not found in the corpus'.format(query[1])))
 try:
 prob_bg = bigram_dict[query]
 except KeyError:
 raise MutualInfoError('The bigram {} was not found in the corpus using {}s'.format(''.join(query),sequence_type))

 if unigram_dict[query[0]] == 0.0:
 raise MutualInfoError('Warning! Mutual information could not be calculated because the unigram {} is not in the corpus.'.format(query[0]))
 if unigram_dict[query[1]] == 0.0:
 raise MutualInfoError('Warning! Mutual information could not be calculated because the unigram {} is not in the corpus.'.format(query[1]))
 if bigram_dict[query] == 0.0:
 raise MutualInfoError('Warning! Mutual information could not be calculated because the bigram {} is not in the corpus.'.format(str(query)))

 return math.log((prob_bg/(prob_s1*prob_s2)), 2)

def get_in_word_unigram_frequencies(corpus_context, query):
 totals = [0 for x in query]
 for word in corpus_context:
 for i, q in enumerate(query):
 if q in getattr(word, corpus_context.sequence_type):
 totals[i] += word.frequency
 return {k: totals[i] / len(corpus_context) for i, k in enumerate(query)}

def get_in_word_bigram_frequency(corpus_context, query):
 total = 0
 for word in corpus_context:
 tier = getattr(word, corpus_context.sequence_type)
 if all(x in tier for x in query):
 total += word.frequency
 return {query: total / len(corpus_context)}

def all_mis(corpus_context,
 halve_edges = False, in_word = False,
 stop_check = None, call_back = None):
 mis = {}
 total_calculations = ((len(corpus_context.inventory)**2)-len(corpus_context.inventory)/2)+1
 ct = 1
 t = time.time()
 for s1 in corpus_context.inventory:
 for s2 in corpus_context.inventory:
 #print('Performing MI calculation {} out of {} possible'.format(str(ct), str(total_calculations)))
 ct += 1
 #print('Duration of last calculation: {}'.format(str(time.time() - t)))
 t = time.time()
 if type(s1) != str:
 s1 = s1.symbol
 if type(s2) != str:
 s2 = s2.symbol
 #print(s1,s2)
 mi = pointwise_mi(corpus_context, (s1, s2), halve_edges = halve_edges, in_word = in_word)
 mis[(s1,s2)] = mi

 ordered_mis = sorted([(pair, str(mis[pair])) for pair in mis], key=lambda p: p[1])

 return ordered_mis

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/freqalt/freq_of_alt.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.freqalt.freq_of_alt

#fun times with morphological relatedness
import time
import os
from codecs import open

import corpustools.symbolsim.phono_align as pam
from corpustools.symbolsim.string_similarity import (string_similarity,
)

from .io import print_freqalt_results

from corpustools.exceptions import FreqAltError

[docs]def calc_freq_of_alt(corpus_context, seg1, seg2, algorithm, output_filename = None,
 min_rel = None, max_rel = None, phono_align = False,
 min_pairs_okay = False, from_gui=False, stop_check = None,
 call_back = None):
 """Returns a double that is a measure of the frequency of
 alternation of two sounds in a given corpus

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 seg1: char
 A sound segment, e.g. 's', 't'
 seg2: char
 A sound segment
 algorithm: string
 The string similarity algorithm
 max_rel: double
 Filters out all words that are higher than max_rel from a relatedness measure
 min_rel: double
 Filters out all words that are lower than min_rel from a relatedness measure
 phono_align: boolean (1 or 0), optional
 1 means 'only count alternations that are likely phonologically aligned,'
 defaults to not force phonological alignment
 min_pairs_okay: bool, optional
 True means allow minimal pairs (e.g. in English, 's' and 't' do not
 alternate in minimal pairs,
 so allowing minimal pairs may skew results)
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function

 Returns

 double
 The frequency of alternation of two sounds in a given corpus
 """

 list_seg1 = []
 list_seg2 = []
 all_words = set()
 if call_back is not None:
 call_back('Finding instances of segments...')
 call_back(0, len(corpus_context))
 cur = 0
 for w in corpus_context:
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 1000 == 0:
 call_back(cur)
 tier = getattr(w, corpus_context.sequence_type)
 if seg1 in tier:
 list_seg1.append(w)
 all_words.add(w.spelling)
 if seg2 in tier:
 list_seg2.append(w)
 all_words.add(w.spelling)

 if call_back is not None:
 call_back('Calculating string similarities...')
 call_back(0, len(list_seg1) * len(list_seg2))
 cur = 0
 related_list = []
 if phono_align:
 al = pam.Aligner(features = corpus_context.specifier)
 for w1 in list_seg1:
 for w2 in list_seg2:
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 1000 == 0:
 #print(len(related_list))
 call_back(cur)
 if w1 == w2:
 continue
 ss = string_similarity(corpus_context, (w1,w2), algorithm)
 if min_rel is not None and ss[0][-1] < min_rel:
 continue
 if max_rel is not None and ss[0][-1] > max_rel:
 continue
 if not min_pairs_okay:
 if len(w1.transcription) == len(w2.transcription):
 count_diff = 0
 for i in range(len(w1.transcription)):
 if w1.transcription[i] != w2.transcription[i]:
 count_diff += 1
 if count_diff > 1:
 break
 if count_diff == 1:
 continue
 if phono_align:
 alignment = al.align(w1.transcription, w2.transcription)
 if not al.morpho_related(alignment, seg1, seg2):
 continue

 related_list.append(ss[0])

 words_with_alt = set()
 if call_back is not None:
 call_back('Calculating frequency of alternation...')
 call_back(0, len(related_list))
 cur = 0
 for w1, w2, score in related_list:
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 100 == 0:
 call_back(cur)
 words_with_alt.add(w1.spelling) #Hacks
 words_with_alt.add(w2.spelling)

 #Calculate frequency of alternation using sets to ensure no duplicates (i.e. words with both seg1 and seg2

 freq_of_alt = len(words_with_alt)/len(all_words)

 if output_filename:
 print_freqalt_results(output_filename, related_list)

 return len(all_words), len(words_with_alt), freq_of_alt

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_images/phonosearchenvironment2.png
8006 Phonological search

[E > R fanoesenioete
+) E =) (_ Remove environment)
New environment
Calculate phonological search ‘ ‘ Calculate phonological search Cancel

(start new results table) (add to current results table)

J (

Transcription &

About phonological search...

_modules/corpustools/symbolsim/string_similarity.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.symbolsim.string_similarity

from functools import partial
from corpustools.corpus.classes import Word
from corpustools.symbolsim.khorsi import khorsi
from corpustools.symbolsim.edit_distance import edit_distance
from corpustools.symbolsim.phono_edit_distance import phono_edit_distance

from corpustools.multiprocessing import score_mp, PCTMultiprocessingError

from corpustools.exceptions import StringSimilarityError

def khorsi_wrapper(w1, w2, freq_base,sequence_type, max_distance):
 score = khorsi(w1, w2, freq_base = freq_base, sequence_type = sequence_type)
 if score >= max_distance:
 return score
 else:
 return None

def edit_distance_wrapper(w1, w2, sequence_type, max_distance):
 score = edit_distance(w1, w2, sequence_type)
 if score <= max_distance:
 return score
 else:
 return None

def phono_edit_distance_wrapper(w1, w2, sequence_type, features, max_distance):
 score = phono_edit_distance(w1, w2, sequence_type = sequence_type,features = features)
 if score <= max_distance:
 return score
 else:
 return None

[docs]def string_similarity(corpus_context, query, algorithm, **kwargs):
 """
 This function computes similarity of pairs of words across a corpus.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 query: string, tuple, or list of tuples
 If this is a string, every word in the corpus will be compared to it,
 if this is a tuple with two strings, those words will be compared to
 each other,
 if this is a list of tuples, each tuple's strings will be compared to
 each other.
 algorithm: string
 The algorithm of string similarity to be used, currently supports
 'khorsi', 'edit_distance', and 'phono_edit_distance'
 max_rel: double
 Filters out all words that are higher than max_rel from a relatedness measure
 min_rel: double
 Filters out all words that are lower than min_rel from a relatedness measure
 stop_check : callable or None
 Optional function to check whether to gracefully terminate early
 call_back : callable or None
 Optional function to supply progress information during the function

 Returns

 list of tuples:
 The first two elements of the tuple are the words that were compared
 and the final element is their relatedness score
 """
 stop_check = kwargs.get('stop_check', None)
 call_back = kwargs.get('call_back', None)
 min_rel = kwargs.get('min_rel', None)
 max_rel = kwargs.get('max_rel', None)

 if algorithm == 'khorsi':
 freq_base = corpus_context.get_frequency_base()
 try:
 bound_count = freq_base['#']
 freq_base = {k:v for k,v in freq_base.items() if k != '#'}
 freq_base['total'] -= bound_count
 except KeyError:
 pass
 relate_func = partial(khorsi, freq_base=freq_base,
 sequence_type = corpus_context.sequence_type)
 elif algorithm == 'edit_distance':
 relate_func = partial(edit_distance,
 sequence_type = corpus_context.sequence_type)
 elif algorithm == 'phono_edit_distance':
 relate_func = partial(phono_edit_distance,
 sequence_type = corpus_context.sequence_type,
 features = corpus_context.specifier)
 else:
 raise(StringSimilarityError('{} is not a possible string similarity algorithm.'.format(algorithm)))

 related_data = []
 if isinstance(query,Word):
 if call_back is not None:
 total = len(corpus_context)
 if min_rel is not None or max_rel is not None:
 total *= 2
 cur = 0
 call_back('Calculating string similarity...')
 call_back(cur,total)
 targ_word = query
 relate = list()
 for word in corpus_context:
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 50 == 0:
 call_back(cur)
 relatedness = relate_func(targ_word, word)

 if min_rel is not None and relatedness < min_rel:
 continue
 if max_rel is not None and relatedness > max_rel:
 continue
 related_data.append((targ_word,word,relatedness))
 #Sort the list by most morphologically related
 related_data.sort(key=lambda t:t[-1])
 if related_data[0][1] != targ_word:
 related_data.reverse()
 elif isinstance(query, tuple):
 w1 = query[0]
 w2 = query[1]
 relatedness = relate_func(w1,w2)
 related_data.append((w1,w2,relatedness))
 elif hasattr(query,'__iter__'):
 if call_back is not None:
 total = len(query)
 cur = 0
 call_back('Calculating string similarity...')
 if total:
 call_back(cur,total)
 for q1,q2 in query:
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 50 == 0:
 call_back(cur)
 w1 = q1
 w2 = q2
 relatedness = relate_func(w1,w2)
 if min_rel is not None and relatedness < min_rel:
 continue
 if max_rel is not None and relatedness > max_rel:
 continue
 related_data.append((w1,w2,relatedness))

 return related_data

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_images/klresults.png
B - | e | e [o T T T T -
. n Transcrption oe Right-hand side only 0,055 0166 03 e ves
. n Transcrpton woe Right-hand side only 0,056 0004 029 e s
B B Transcrpton e Right-hand side only 0,056 L0091 o e ves
. . Transcripton e Right-hand sde only | 0.056 0347 062 e e
. N Transcrpton e Right-hand side only 0,056 0004 oms e ves
. I Tanscrption woe Right-hand side only 0,056 0203 a9 e s
m n Transcription type Right-hand sde only | 0.166 3 0122 n No
n B Tanscrption woe Right-hand side only 0,166 = os s s
n . Transcrpton woe Right-hand side only 0,166 lo3wr o075 m s
n o Transcrption pe Right-hand side only 0,165 0094 [s

Save o fle) (Close window,)

_images/miresults.png
. . . .1 S ———
e T T T e T
ampie ¢ . Unigram/tigam ves Tramarton oe Canonical form o
ampie |+ f Unigram sigam ves Tramcrton Tree Canoniclform 176

[Reopenfunciondiop] | save o fle) (

Close window.

_images/stringsimilaritydialog.png
606 String Similarity

String similarity algorithm Comparison type Options

Edit distance () Compare one word to ent
ical edit distance

corpus.

(O Calculate for a word/nonword not in the corpus

None created [Create word/nonword | | pronunciation vriants
(#) Compare a single pair of words to each other (#) Use canonical forms only
Word 1 spelling (if in corpus): [mata | Use most frequent forms only
None created | Create word/nonword | e
Word 2 spelling (if in corpus): (3) Count types
mitoo (m.i.tu) | Create word/nonword | @EmEETD

() Compare a list of pairs of words
| | Choose fi

(Clear all created words/nonwords]

Return only results between...

) Minimum:

Calculate string similarity | Calculate string similarity —
(start new results table) (add to current results table) Cancel | [About string similari

_images/downloadfeature.png
8 00 Download feature system

Select a transcription system Select a feature system

(o) IPA (+) Sound Pattern of English (SPE)
() ARPABET (CMU) () Hayes

() XSAMPA

cea

() CELEX

() pisC

() Klatt

() Buckeye

Lok [cancel | Help

_images/midialog.png
Options.

Tier

(Add bigram

(Remove selected bigrams

i

#t

[Transcription

Pronunciation variants

(®) Use canonical forms only
() Use most frequent forms only
() Count each word token as a separate entry

~ Weight each word type
' by the relative frequency of its variants

Type or token frequency
(%) Count types
() Count tokens.

([Set domain to word
(¥ Halve word boundary count

Calculate mutual information Calculate mutual information
(start new results table) (add to current results table)

[Cancel | [About mutual information... |

_images/phonosearchenvironment.png
Phonological search

Remove environment |

New environment

Calculate phonological search
(start new results table)

Calculate phonological search
(add to current results table)

(Cancel

| [About phonological search...

_images/lemurian_sorted.png
V- O & ORI o . -]1 111111111 1, AT

Corpus: lemurian

Feature system: ipa2hayes
Number of words types: 30

Labial | Dental = Velar
Stop b |t |d]|k
Nasal m n
Trill | r
Fricative f s X
Approximant w J
Lateral approximant I

_images/segmentpair.png
N KON - R .2 X1 .- |1 || SO —

Select by feature | | [Select highlighted | [Clear selections |
Labial | Dental | Alveopalatal
Stop
Nasal
!
Fricative
!

Front | Nearback = Back

Close i

Close mid o

ﬁ [Add and create another] [Czncel]

_images/proderror2.png
The environments specified were not unique.

Please refer to file ‘pred_of_dist_s_f_error.txt'in the errors directory for
details or click on Show Details.

.| [Close | [_Open errors directory |

| Hide Detai

Segments you selected: s, |
Environments you selected: #_, #,, [+voc]

Word
shisata

n

Word environment Overlapping environments
#i #,_l+voc]
#i #, [+voc]

shushoma #_u #,_[+voc]

_images/pronunciationvariant.png
Speakers
v
:;m Spelling v | Transcription | Frequency Spelling | Transcription | Begin | End.]
A11M0846 ‘deNso'HkeN 1 (FeHQto) | eH.<cl>.Qto | 0317 0.63
kono<H> | <cl>.ko.n.o |0.63 1.077
dekji' iopyarl (Fano) |ano 1688 1917
dekji'ru _T iraido s.arai<d.. 1917 2329
" | dekiagaq <>de<d>hii |4 wa 2329 2.603
dekjiru <cl>.d.e.<cl>.kj.| 1 ano) ano 2.866 3.078
deko'HdaH <fv>.<cl>.d.e<cl>... |1 eH) eH 3515 3657
dekoHdiNgu NmoN | s.eN.moN.n 3657 3.975
dekoHdiNgu N.no 3.975 4.05
deru 9 <cl>.ka.<c... | 4.05 4.264

_modules/corpustools/corpus/io/csv.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.corpus.io.csv

from csv import DictReader, DictWriter
import collections
import re
import os

from corpustools.corpus.classes import Corpus, FeatureMatrix, Word, Attribute
from corpustools.corpus.io.binary import save_binary, load_binary

from .helper import parse_transcription, AnnotationType

from corpustools.exceptions import DelimiterError, PCTError, CorpusIntegrityError

import time

def inspect_csv(path, num_lines = 10, coldelim = None, transdelim = None):
 """
 Generate a list of AnnotationTypes for a specified text file for parsing
 it as a column-delimited file

 Parameters

 path : str
 Full path to text file
 num_lines: int, optional
 The number of lines to parse from the file
 coldelim: str, optional
 A prespecified column delimiter to use, will autodetect if not
 supplied
 transdelim : list, optional
 A prespecfied set of transcription delimiters to look for, will
 autodetect if not supplied

 Returns

 list of AnnotationTypes
 Autodetected AnnotationTypes for the text file
 """
 if coldelim is not None:
 common_delimiters = [coldelim]
 else:
 common_delimiters = [',','\t',':','|']
 if transdelim is not None:
 trans_delimiters = [transdelim]
 else:
 trans_delimiters = ['.',' ', ';', ',']

 with open(path,'r', encoding='utf-8') as f:
 lines = []
 head = f.readline().strip()
 for line in f.readlines():
 lines.append(line.strip())
 #for i in range(num_lines):
 # line = f.readline()
 # if not line:
 # break
 # lines.append(line)

 best = ''
 num = 1
 for d in common_delimiters:
 trial = len(head.split(d))
 if trial > num:
 num = trial
 best = d
 if best == '':
 raise(DelimiterError('The column delimiter specified did not create multiple columns.'))

 head = head.split(best)
 vals = {h: list() for h in head}

 for line in lines:
 l = line.strip().split(best)
 if len(l) != len(head):
 raise(PCTError('{}, {}'.format(l,head)))
 for i in range(len(head)):
 vals[head[i]].append(l[i])
 atts = list()
 for h in head:
 cat = Attribute.guess_type(vals[h][:num_lines], trans_delimiters)
 att = Attribute(Attribute.sanitize_name(h), cat, h)
 a = AnnotationType(h, None, None, token = False, attribute = att)
 if cat == 'tier':
 for t in trans_delimiters:
 if t in vals[h][0]:
 a.trans_delimiter = t
 break
 a.add(vals[h], save = False)
 atts.append(a)

 return atts, best

[docs]def load_corpus_csv(corpus_name, path, delimiter,
 annotation_types = None,
 feature_system_path = None,
 stop_check = None, call_back = None):
 """
 Load a corpus from a column-delimited text file

 Parameters

 corpus_name : str
 Informative identifier to refer to corpus
 path : str
 Full path to text file
 delimiter : str
 Character to use for spliting lines into columns
 annotation_types : list of AnnotationType, optional
 List of AnnotationType specifying how to parse text files
 feature_system_path : str
 Full path to pickled FeatureMatrix to use with the Corpus
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function

 Returns

 Corpus
 Corpus object generated from the text file

 """
 #begin = time.time()
 corpus = Corpus(corpus_name)
 if feature_system_path is not None and os.path.exists(feature_system_path):
 feature_matrix = load_binary(feature_system_path)
 corpus.set_feature_matrix(feature_matrix)

 if annotation_types is None:
 annotation_types, _ = inspect_csv(path, coldelim = delimiter)
 else:
 for a in annotation_types:
 if a.attribute.name == 'transcription' and a.attribute.att_type != 'tier':
 raise(CorpusIntegrityError(('The column \'{}\' is currently '
 'not being parsed as transcriptions '
 'despite its name. Please ensure correct '
 'parsing for this column by changing its '
 '\'Annotation type\' in the parsing '
 'preview to the right.').format(a.name)))
 for a in annotation_types:
 a.reset()

 with open(path, encoding='utf-8') as f:
 headers = f.readline()
 headers = headers.split(delimiter)
 if len(headers)==1:
 e = DelimiterError(('Could not parse the corpus.\n\Check '
 'that the delimiter you typed in matches '
 'the one used in the file.'))
 raise(e)
 headers = annotation_types
 for a in headers:
 corpus.add_attribute(a.attribute)
 trans_check = False

 for line in f.readlines():
 line = line.strip()
 if not line: #blank or just a newline
 continue
 d = {}
 for k,v in zip(headers,line.split(delimiter)):
 v = v.strip()
 if k.attribute.att_type == 'tier':
 trans = parse_transcription(v, k)
 if not trans_check and len(trans) > 1:
 trans_check = True
 d[k.attribute.name] = (k.attribute, trans)
 else:
 d[k.attribute.name] = (k.attribute, v)
 word = Word(**d)
 if word.transcription:
 #transcriptions can have phonetic symbol delimiters which is a period
 if not word.spelling:
 word.spelling = ''.join(map(str,word.transcription))

 corpus.add_word(word)
 if corpus.has_transcription and not trans_check:
 e = DelimiterError(('Could not parse transcriptions with that delimiter. '
 '\n\Check that the transcription delimiter you typed '
 'in matches the one used in the file.'))
 raise(e)

 transcription_errors = corpus.check_coverage()
 return corpus

[docs]def load_feature_matrix_csv(name, path, delimiter, stop_check = None, call_back = None):
 """
 Load a FeatureMatrix from a column-delimited text file

 Parameters

 name : str
 Informative identifier to refer to feature system
 path : str
 Full path to text file
 delimiter : str
 Character to use for spliting lines into columns
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function

 Returns

 FeatureMatrix
 FeatureMatrix generated from the text file

 """
 text_input = []
 with open(path, encoding='utf-8-sig', mode='r') as f:
 reader = DictReader(f, delimiter = delimiter)
 lines = list(reader)

 if call_back is not None:
 call_back('Reading file...')
 call_back(0, len(lines))

 for i, line in enumerate(lines):
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 call_back(i)

 if line:
 if len(line.keys()) == 1:
 raise(DelimiterError)
 if 'symbol' not in line:
 raise(KeyError)
 #Compat
 newline = {}
 for k,v in line.items():
 if k == 'symbol':
 newline[k] = v
 elif v is not None:
 newline[k] = v[0]
 text_input.append(newline)

 feature_matrix = FeatureMatrix(name,text_input)
 feature_matrix.validate()
 return feature_matrix

def make_safe(value, delimiter):
 """
 Recursively parse transcription lists into strings for saving

 Parameters

 value : object
 Object to make into string

 delimiter : str
 Character to mark boundaries between list elements

 Returns

 str
 Safe string
 """
 if isinstance(value,list):
 return delimiter.join(map(lambda x: make_safe(x, delimiter),value))
 return str(value)

[docs]def export_corpus_csv(corpus, path,
 delimiter = ',', trans_delimiter = '.',
 variant_behavior = None):
 """
 Save a corpus as a column-delimited text file

 Parameters

 corpus : Corpus
 Corpus to save to text file
 path : str
 Full path to write text file
 delimiter : str
 Character to mark boundaries between columns. Defaults to ','
 trans_delimiter : str
 Character to mark boundaries in transcriptions. Defaults to '.'
 variant_behavior : str, optional
 How to treat variants, 'token' will have a line for each variant,
 'column' will have a single column for all variants for a word,
 and the default will not include variants in the output
 """
 header = []
 for a in corpus.attributes:
 header.append(str(a))

 if variant_behavior == 'token':
 for a in corpus.attributes:
 if a.att_type == 'tier':
 header.append('Token_' + str(a))
 header.append('Token_Frequency')
 elif variant_behavior == 'column':
 header += ['Variants']

 with open(path, encoding='utf-8', mode='w') as f:
 print(delimiter.join(header), file=f)

 for word in corpus.iter_sort():
 word_outline = []
 for a in corpus.attributes:
 word_outline.append(make_safe(getattr(word, a.name),trans_delimiter))
 if variant_behavior == 'token':
 var = word.variants()
 for v, freq in var.items():
 token_line = []
 for a in corpus.attributes:
 if a.att_type == 'tier':
 if a.name == 'transcription':
 token_line.append(make_safe(v, trans_delimiter))
 else:
 segs = a.range
 t = v.match_segments(segs)
 token_line.append(make_safe(v, trans_delimiter))
 token_line.append(make_safe(freq, trans_delimiter))
 print(delimiter.join(word_outline + token_line), file=f)
 continue
 elif variant_behavior == 'column':
 var = word.variants()
 d = ', '
 if delimiter == ',':
 d = '; '
 var = d.join(make_safe(x,trans_delimiter) for x in sorted(var.keys(), key = lambda y: var[y]))
 word_outline.append(var)
 print(delimiter.join(word_outline), file=f)

[docs]def export_feature_matrix_csv(feature_matrix, path, delimiter = ','):
 """
 Save a FeatureMatrix as a column-delimited text file

 Parameters

 feature_matrix : FeatureMatrix
 FeatureMatrix to save to text file
 path : str
 Full path to write text file
 delimiter : str
 Character to mark boundaries between columns. Defaults to ','
 """
 with open(path, encoding='utf-8', mode='w') as f:
 header = ['symbol'] + feature_matrix.features
 writer = DictWriter(f, header,delimiter=delimiter)
 writer.writerow({h: h for h in header})
 for seg in feature_matrix.segments:
 #If FeatureMatrix uses dictionaries
 #outdict = feature_matrix[seg]
 #outdict['symbol'] = seg
 #writer.writerow(outdict)
 if seg in ['#','']: #wtf
 continue
 featline = feature_matrix.seg_to_feat_line(seg)
 outdict = {header[i]: featline[i] for i in range(len(header))}
 writer.writerow(outdict)

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/neighdens/neighborhood_density.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.neighdens.neighborhood_density

from corpustools.corpus.classes import Word
from corpustools.symbolsim.edit_distance import edit_distance
from corpustools.symbolsim.khorsi import khorsi
from corpustools.symbolsim.phono_edit_distance import phono_edit_distance
from corpustools.symbolsim.phono_align import Aligner

from corpustools.multiprocessing import filter_mp, score_mp

from functools import partial

from corpustools.exceptions import NeighDenError

def is_edit_distance_neighbor(w, query, sequence_type, max_distance):
 if len(getattr(w, sequence_type)) > len(getattr(query, sequence_type))+max_distance:
 return False
 if len(getattr(w, sequence_type)) < len(getattr(query, sequence_type))-max_distance:
 return False
 return edit_distance(w, query, sequence_type, max_distance) <= max_distance

def is_phono_edit_distance_neighbor(w, query, sequence_type, specifier, max_distance):
 return phono_edit_distance(w, query, sequence_type, specifier) <= max_distance

def is_khorsi_neighbor(w, query, freq_base, sequence_type, max_distance):
 return khorsi(w, query, freq_base, sequence_type, max_distance) >= max_distance

def neighborhood_density_all_words(corpus_context,
 algorithm = 'edit_distance', max_distance = 1,
 num_cores = -1,
 stop_check = None, call_back = None):
 """Calculate the neighborhood density of all words in the corpus and
 adds them as attributes of the words.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 algorithm : str
 The algorithm used to determine distance
 max_distance : float, optional
 Maximum edit distance from the queried word to consider a word a neighbor.
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function
 """
 function = partial(neighborhood_density, corpus_context,
 algorithm = algorithm,
 max_distance = max_distance)
 if call_back is not None:
 call_back('Calculating neighborhood densities...')
 call_back(0,len(corpus_context))
 cur = 0
 if num_cores == -1:

 for w in corpus_context:
 if stop_check is not None and stop_check():
 return
 cur += 1
 call_back(cur)
 res = function(w)

 setattr(w.original, corpus_context.attribute.name, res[0])
 else:
 iterable = ((w,) for w in corpus_context)

 neighbors = score_mp(iterable, function, num_cores, call_back, stop_check, chunk_size = 1)
 for n in neighbors:
 #Have to look up the key, then look up the object due to how
 #multiprocessing pickles objects
 setattr(corpus_context.corpus.find(corpus_context.corpus.key(n[0])),
 corpus_context.attribute.name, n[1][0])

[docs]def neighborhood_density(corpus_context, query,
 algorithm = 'edit_distance', max_distance = 1,
 stop_check = None, call_back = None):
 """Calculate the neighborhood density of a particular word in the corpus.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 query : Word
 The word whose neighborhood density to calculate.
 algorithm : str
 The algorithm used to determine distance
 max_distance : float, optional
 Maximum edit distance from the queried word to consider a word a neighbor.
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function

 Returns

 tuple(int, set)
 Tuple of the number of neighbors and the set of neighbor Words.
 """
 matches = []
 if call_back is not None:
 call_back('Finding neighbors...')
 call_back(0,len(corpus_context))
 cur = 0
 if algorithm == 'edit_distance':
 is_neighbor = partial(is_edit_distance_neighbor,
 sequence_type = corpus_context.sequence_type,
 max_distance = max_distance)
 elif algorithm == 'phono_edit_distance':
 is_neighbor = partial(is_phono_edit_distance_neighbor,
 specifier = corpus_context.specifier,
 sequence_type = corpus_context.sequence_type,
 max_distance = max_distance)
 elif algorithm == 'khorsi':
 freq_base = freq_base = corpus_context.get_frequency_base()
 is_neighbor = partial(is_khorsi_neighbor,
 freq_base = freq_base,
 sequence_type = corpus_context.sequence_type,
 max_distance = max_distance)
 for w in corpus_context:
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 10 == 0:
 call_back(cur)
 if not is_neighbor(w, query):
 continue
 matches.append(w)
 neighbors = set(matches)-set([query])

 return (len(neighbors), neighbors)

def find_mutation_minpairs_all_words(corpus_context, num_cores = -1,
 stop_check = None, call_back = None):
 function = partial(find_mutation_minpairs, corpus_context)
 if call_back is not None:
 call_back('Calculating neighborhood densities...')
 call_back(0,len(corpus_context))
 cur = 0
 if num_cores == -1:

 for w in corpus_context:
 if stop_check is not None and stop_check():
 return
 cur += 1
 call_back(cur)
 res = function(w)

 setattr(w.original, corpus_context.attribute.name, res[0])
 else:
 iterable = ((w,) for w in corpus_context)

 neighbors = score_mp(iterable, function, num_cores, call_back, stop_check, chunk_size= 1)
 for n in neighbors:
 #Have to look up the key, then look up the object due to how
 #multiprocessing pickles objects
 setattr(corpus_context.corpus.find(corpus_context.corpus.key(n[0])), corpus_context.attribute.name, n[1][0])

[docs]def find_mutation_minpairs(corpus_context, query,
 stop_check = None, call_back = None):
 """Find all minimal pairs of the query word based only on segment
 mutations (not deletions/insertions)

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 query : Word
 The word whose minimal pairs to find
 stop_check : callable or None
 Optional function to check whether to gracefully terminate early
 call_back : callable or None
 Optional function to supply progress information during the function

 Returns

 list
 The found minimal pairs for the queried word
 """
 matches = []
 sequence_type = corpus_context.sequence_type
 if call_back is not None:
 call_back('Finding neighbors...')
 call_back(0,len(corpus_context))
 cur = 0
 al = Aligner(features_tf=False, ins_penalty=float('inf'), del_penalty=float('inf'), sub_penalty=1)
 for w in corpus_context:
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 10 == 0:
 call_back(cur)
 if (len(getattr(w, sequence_type)) > len(getattr(query, sequence_type))+1 or
 len(getattr(w, sequence_type)) < len(getattr(query, sequence_type))-1):
 continue
 m = al.make_similarity_matrix(getattr(query, sequence_type), getattr(w, sequence_type))
 if m[-1][-1]['f'] != 1:
 continue
 matches.append(str(getattr(w, sequence_type)))

 neighbors = list(set(matches)-set([str(getattr(query, sequence_type))]))
 return (len(neighbors), neighbors)

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/corpus/io/text_spelling.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.corpus.io.text_spelling

import os

from corpustools.corpus.classes import SpontaneousSpeechCorpus, Corpus, Word, Discourse, WordToken

from corpustools.exceptions import DelimiterError, PCTOSError
from .binary import load_binary

from .helper import (DiscourseData, Annotation, BaseAnnotation,
 data_to_discourse, AnnotationType, text_to_lines)

[docs]def inspect_discourse_spelling(path, support_corpus_path = None):
 """
 Generate a list of AnnotationTypes for a specified text file for parsing
 it as an orthographic text

 Parameters

 path : str
 Full path to text file
 support_corpus_path : str, optional
 Full path to a corpus to look up transcriptions from spellings
 in the text

 Returns

 list of AnnotationTypes
 Autodetected AnnotationTypes for the text file
 """
 a = AnnotationType('spelling', None, None, anchor = True, token = False)
 if os.path.isdir(path):
 for root, subdirs, files in os.walk(path):
 for filename in files:
 if not filename.lower().endswith('.txt'):
 continue
 with open(os.path.join(root,filename),
 encoding='utf-8-sig', mode='r') as f:
 for line in f.readlines():
 trial = line.strip().split()

 a.add(trial, save = False)
 else:
 with open(path, encoding='utf-8-sig', mode='r') as f:
 for line in f.readlines():
 trial = line.strip().split()

 a.add(trial, save = False)
 annotation_types = [a]
 if support_corpus_path is not None:
 annotation_types += [AnnotationType('transcription', None, None, base = True)]
 return annotation_types

def spelling_text_to_data(path, annotation_types = None,
 support_corpus_path = None, ignore_case = True,
 stop_check = None, call_back = None):

 name = os.path.splitext(os.path.split(path)[1])[0]
 if support_corpus_path is not None:
 if not os.path.exists(support_corpus_path):
 raise(PCTOSError("The corpus path specified ({}) does not exist".format(support_corpus_path)))
 support = load_binary(support_corpus_path)
 if annotation_types is None:
 annotation_types = inspect_discourse_spelling(path, support_corpus_path)

 for a in annotation_types:
 a.reset()
 data = DiscourseData(name, annotation_types)

 lines = text_to_lines(path)
 if call_back is not None:
 call_back('Processing file...')
 call_back(0, len(lines))
 cur = 0

 for line in lines:
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 20 == 0:
 call_back(cur)
 if not line or line == '\n':
 continue
 annotations = {}
 for word in line:
 spell = word.strip()
 spell = ''.join(x for x in spell if not x in data['spelling'].ignored_characters)
 if spell == '':
 continue
 word = Annotation(spell)
 if support_corpus_path is not None:
 trans = None
 try:
 trans = support.find(spell, ignore_case = ignore_case).transcription
 except KeyError:
 trans = []
 n = data.base_levels[0]
 tier_elements = [BaseAnnotation(x) for x in trans]
 level_count = data.level_length(n)
 word.references.append(n)
 word.begins.append(level_count)
 word.ends.append(level_count + len(tier_elements))
 annotations[n] = tier_elements
 annotations['spelling'] = [word]
 data.add_annotations(**annotations)

 return data

[docs]def load_directory_spelling(corpus_name, path, annotation_types = None,
 support_corpus_path = None, ignore_case = False,
 stop_check = None, call_back = None):
 """
 Loads a directory of orthographic texts

 Parameters

 corpus_name : str
 Name of corpus
 path : str
 Path to directory of text files
 annotation_types : list of AnnotationType, optional
 List of AnnotationType specifying how to parse text files
 support_corpus_path : str, optional
 File path of corpus binary to load transcriptions from
 ignore_case : bool, optional
 Specifies whether lookups in the support corpus should ignore case
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the function

 Returns

 SpontaneousSpeechCorpus
 Corpus containing Discourses corresponding to the text files
 """
 if call_back is not None:
 call_back('Finding files...')
 call_back(0, 0)
 file_tuples = []
 for root, subdirs, files in os.walk(path):
 for filename in files:
 if not filename.lower().endswith('.txt'):
 continue
 file_tuples.append((root, filename))

 if call_back is not None:
 call_back('Parsing files...')
 call_back(0,len(file_tuples))
 cur = 0
 corpus = SpontaneousSpeechCorpus(corpus_name, path)
 for i, t in enumerate(file_tuples):
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 call_back('Parsing file {} of {}...'.format(i+1, len(file_tuples)))
 call_back(i)
 root, filename = t
 name = os.path.splitext(filename)[0]
 d = load_discourse_spelling(name, os.path.join(root,filename),
 annotation_types, corpus.lexicon,
 support_corpus_path, ignore_case,
 stop_check, call_back)
 corpus.add_discourse(d)
 return corpus

[docs]def load_discourse_spelling(corpus_name, path, annotation_types = None,
 lexicon = None,
 support_corpus_path = None, ignore_case = False,
 stop_check = None, call_back = None):
 """
 Load a discourse from a text file containing running text of
 orthography

 Parameters

 corpus_name : str
 Informative identifier to refer to corpus

 path : str
 Full path to text file
 annotation_types : list of AnnotationType, optional
 List of AnnotationType specifying how to parse text files
 lexicon : Corpus, optional
 Corpus to store Discourse word information
 support_corpus_path : str, optional
 Full path to a corpus to look up transcriptions from spellings
 in the text
 ignore_case : bool, optional
 Specify whether to ignore case when using spellings in the text
 to look up transcriptions
 stop_check : callable, optional
 Callable that returns a boolean for whether to exit before
 finishing full calculation
 call_back : callable, optional
 Function that can handle strings (text updates of progress),
 tuples of two integers (0, total number of steps) and an integer
 for updating progress out of the total set by a tuple

 Returns

 Discourse
 Discourse object generated from the text file
 """

 data = spelling_text_to_data(path, annotation_types,
 support_corpus_path, ignore_case,
 stop_check, call_back)
 discourse = data_to_discourse(data, lexicon)
 discourse.name = corpus_name
 return discourse

[docs]def export_discourse_spelling(discourse, path, single_line = False):
 """
 Export an orthography discourse to a text file

 Parameters

 discourse : Discourse
 Discourse object to export
 path : str
 Path to export to
 single_line : bool, optional
 Flag to enforce all text to be on a single line, defaults to False.
 If False, lines are 10 words long.
 """
 with open(path, encoding='utf-8', mode='w') as f:
 count = 0
 for i, wt in enumerate(discourse):
 count += 1
 f.write(wt.spelling)
 if i != len(discourse) -1:
 if not single_line and count <= 10:
 f.write(' ')
 else:
 count = 0
 f.write('\n')

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/corpus/io/text_transcription.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.corpus.io.text_transcription

import os
import re

from corpustools.corpus.classes import SpontaneousSpeechCorpus, Corpus, Word, Discourse, WordToken, Attribute

from corpustools.exceptions import DelimiterError, PCTOSError

from .helper import (compile_digraphs, parse_transcription, DiscourseData,
 data_to_discourse, AnnotationType, text_to_lines,
 Annotation, BaseAnnotation)

from .binary import load_binary

[docs]def inspect_discourse_transcription(path):
 """
 Generate a list of AnnotationTypes for a specified text file for parsing
 it as a transcribed text

 Parameters

 path : str
 Full path to text file

 Returns

 list of AnnotationTypes
 Autodetected AnnotationTypes for the text file
 """
 trans_delimiters = ['.', ';', ',']

 att = Attribute('transcription','tier','Transcription')
 a = AnnotationType('transcription', None, None, attribute = att,
 base = True)

 if os.path.isdir(path):
 for root, subdirs, files in os.walk(path):
 for filename in files:
 if not filename.lower().endswith('.txt'):
 continue
 with open(os.path.join(root,filename),
 encoding='utf-8-sig', mode='r') as f:
 for line in f.readlines():
 trial = line.strip().split()
 if a.trans_delimiter is None:
 for t in trial:
 for delim in trans_delimiters:
 if delim in t:
 a.trans_delimiter = delim
 break

 a.add(trial, save = False)
 else:
 with open(path, encoding='utf-8-sig', mode='r') as f:
 for line in f.readlines():
 trial = line.strip().split()
 if a.trans_delimiter is None:
 for t in trial:
 for delim in trans_delimiters:
 if delim in t:
 a.trans_delimiter = delim
 break

 a.add(trial, save = False)
 annotation_types = [a]
 return annotation_types

def transcription_text_to_data(path, annotation_types = None,
 stop_check = None, call_back = None):

 name = os.path.splitext(os.path.split(path)[1])[0]

 if annotation_types is None:
 annotation_types = inspect_discourse_transcription(path)

 for a in annotation_types:
 a.reset()
 a = AnnotationType('spelling', None, None,
 attribute = Attribute('spelling','spelling','Spelling'),
 anchor = True)
 annotation_types.append(a)

 data = DiscourseData(name, annotation_types)

 lines = text_to_lines(path)
 if call_back is not None:
 call_back('Processing file...')
 call_back(0, len(lines))
 cur = 0
 trans_check = False
 n = 'transcription'

 for line in lines:
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 20 == 0:
 call_back(cur)
 if not line or line == '\n':
 continue
 for word in line:
 annotations = dict()
 trans = parse_transcription(word, data[n])
 #if not trans_check and data[n].delimiter is not None and len(trans) > 1:
 # trans_check = True
 spell = ''.join(x.label for x in trans)
 if spell == '':
 continue

 word = Annotation(spell)

 tier_elements = trans
 level_count = data.level_length(n)
 word.references.append(n)
 word.begins.append(level_count)
 word.ends.append(level_count + len(tier_elements))
 annotations[n] = tier_elements
 annotations['spelling'] = [word]
 data.add_annotations(**annotations)
 #if data[n].delimiter and not trans_check:
 # raise(DelimiterError('The transcription delimiter specified does not create multiple segments. Please specify another delimiter.'))

 return data

[docs]def load_directory_transcription(corpus_name, path, annotation_types = None,
 feature_system_path = None,
 stop_check = None, call_back = None):
 """
 Loads a directory of transcribed texts.

 Parameters

 corpus_name : str
 Name of corpus
 path : str
 Path to directory of text files
 annotation_types : list of AnnotationType, optional
 List of AnnotationType specifying how to parse text files
 feature_system_path : str, optional
 File path of FeatureMatrix binary to specify segments
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the loading

 Returns

 SpontaneousSpeechCorpus
 Corpus containing Discourses corresponding to the text files
 """
 if call_back is not None:
 call_back('Finding files...')
 call_back(0, 0)
 file_tuples = []
 for root, subdirs, files in os.walk(path):
 for filename in files:
 if not filename.lower().endswith('.txt'):
 continue
 file_tuples.append((root, filename))

 if call_back is not None:
 call_back('Parsing files...')
 call_back(0,len(file_tuples))
 cur = 0
 corpus = SpontaneousSpeechCorpus(corpus_name, path)
 for i, t in enumerate(file_tuples):
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 call_back('Parsing file {} of {}...'.format(i+1,len(file_tuples)))
 call_back(i)
 root, filename = t
 name = os.path.splitext(filename)[0]
 d = load_discourse_transcription(name, os.path.join(root,filename),
 annotation_types,
 corpus.lexicon, None,
 stop_check, call_back)
 corpus.add_discourse(d)
 return corpus

[docs]def load_discourse_transcription(corpus_name, path, annotation_types = None,
 lexicon = None, feature_system_path = None,
 stop_check = None, call_back = None):
 """
 Load a discourse from a text file containing running transcribed text

 Parameters

 corpus_name : str
 Informative identifier to refer to corpus
 path : str
 Full path to text file
 annotation_types : list of AnnotationType, optional
 List of AnnotationType specifying how to parse text files
 lexicon : Corpus, optional
 Corpus to store Discourse word information
 feature_system_path : str, optional
 Full path to pickled FeatureMatrix to use with the Corpus
 stop_check : callable, optional
 Optional function to check whether to gracefully terminate early
 call_back : callable, optional
 Optional function to supply progress information during the loading

 Returns

 Discourse
 Discourse object generated from the text file
 """
 if feature_system_path is not None:
 if not os.path.exists(feature_system_path):
 raise(PCTOSError("The feature path specified ({}) does not exist".format(feature_system_path)))

 data = transcription_text_to_data(path, annotation_types,
 stop_check, call_back)

 discourse = data_to_discourse(data, lexicon)
 discourse.name = corpus_name

 if feature_system_path is not None:
 feature_matrix = load_binary(feature_system_path)
 discourse.lexicon.set_feature_matrix(feature_matrix)

 return discourse

[docs]def export_discourse_transcription(discourse, path, trans_delim = '.', single_line = False):
 """
 Export an transcribed discourse to a text file

 Parameters

 discourse : Discourse
 Discourse object to export
 path : str
 Path to export to
 trans_delim : str, optional
 Delimiter for segments, defaults to ``.``
 single_line : bool, optional
 Flag to enforce all text to be on a single line, defaults to False.
 If False, lines are 10 words long.
 """
 with open(path, encoding='utf-8', mode='w') as f:
 count = 0
 for i, wt in enumerate(discourse):
 count += 1
 f.write(trans_delim.join(wt.transcription))
 if i != len(discourse) -1:
 if not single_line and count <= 10:
 f.write(' ')
 else:
 count = 0
 f.write('\n')

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_images/prodfreq.png
[soundi w| sownz | Ter Environment Freq. of Sound1. Freq. of Sound2 Freq. of env. Entropy Type or token
s I Transcription | FREQ-ONLY 5 9 14 0.94 type
m n Transcription | FREQ-ONLY 6 4 10 0.971 type
e i Transcription | FREQ-ONLY 3 10 13 0.779 type
i u Transcription | FREQ-ONLY 10 4 14 0.863 type

Save to file

_images/bigram.png
Lefhand side Right hand side

soecmione [sieanonanes |

bl | Denal | Aveopasal

(|

_images/neighdenoutput.png
© O O [4iphod_cat_neighbours.rtf
(] (pebetea %) (reguier (12 [+) (M)

2 S S S S S S S
Ty Iy Tz Ty T
kat

Kut

Kt

bt

Y

mat

nat

koot

et

a2t
gt
kam
pat
Kt
kb
Kkat
Ky
f1
It
hat
skat
kan
ks
kant
Py

_images/asresults.png
__Acoustic similarity r

File 2 Representation Match function Minimum frequency. Maximum frequency Number of filters Number of coefficients Resu
501_s_02.wav | 501_s_03.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 30.092
501_s_01.wav | 501_s_05.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 29.822
501_s_01.wav | 501_s_03.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 28.17¢
501_s_02.wav | 501_s_01.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 30.906
501_s_05.wav | 501_s_01.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 29.822
501_s_05.wav | 501_s_04.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 30.401
501_s_05.wav | 501_s_03.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 31.042
501_s_05.wav | 501_s_02.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 29.328
501_s_03.wav | 501_s_05.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 31.042
501_s_03.wav | 501_s_02.wav | MFCC Dynami 80.0 7800.0 26 12 30.092

[Reopenfunctiondialg] |

Save to file

Close window

_images/funtionalloaddialog.png
8086

Functional Load

Segments

[Add pair of sounds

[Remove selected sound pai

Functional load algorithm

m n

(@ Minimal pairs

() Change in entropy

Calculate functional load
(start new results table)

Options
Tier

[Transcription s

Multiple segment pair behaviour

() Al segment pairs together
(@) Each segment pair individually

Minimum frequency.

——

Minimal pair options

(M Use counts relative to number of possible pairs
(] Include homophones

Change in entropy options.

Type or token frequencies

<) Type
Token

Calculate functional load (
(add to current results table)

Cancel | [About functional load...

_images/environment3.png
{m, n, n}

{k, p, t}

(+]

| Remove environment

New environment

_images/editcategories.png
800 Edit categories

{ Major distinctions [NZELSITETEETENLTE Manners of articulation | Vowel height = Vowel backness |

Labial - f . +ant, -back ! Mouseover for included segments |

Eblosenal —cor, +ant, -back Mouseover for included segments

il +cor, +ant, -back Mouseover for included segments

Alveolar (o ack, -ant, +cor| [Mouseover for included segments

Alveopalatal

|gh, ~back, -ant, +cor| [Mouseover for included segments

o', —ant, —back Mouseover for included segments

Rl igh, +back, -ant, —cor| | Mouseover for included segments

el Igh, +back, -ant, -cor| | Mouseover for included segments

Pharyngeal

+low, +back Mouseover for included segments
Glottal 1w ~back Mouseover for included segments

ok | Cancel

_images/proddialog.png
800, uBredicrabiity of distibution,

sepran. Entcomments s optons
Add pair of sounds B
[T — n |
|| Rer
C ceimmine) | [=
[omens [sommz ||
s i = . Pommciton s
| —] (®) Use canoniical forms only
[+] +] [Ref O Use most frequent forms only
(3 Coust each wod ke s separae ety
- Weight eachword type
byt et reauency of s variats
n Tipeortohan taquney
+) = (o | | [@coueorpes
0] © Count tokens
H (R ey s
o
@Erforce envanment
Cxhastoiy and uniueness

New environment

T S e A (Gancel) [Aboutprecicabity of dsebuion...

_images/editfeatures.png
O] o | v | | b | o | e | de | dw | sed | hebes | e | | e | moel]

a - - - + + - n - - n + n

B - . B + I - n - - n . n

0 - + - + - - n - - n . n

a - . - . . - n - - n . n

- . - + . - n - - n . n

 Change festure systems Modity the festure system Corpus inventory coverage . _otspayoptions)
[Hide all segments not used by the corpus | Display mode: | Matrix 3|
(Show al segments)| | (Edhinventory categories
[Check corpus inventory coverage |

e

Save changes to this corpus's feature system

) (

_images/gitksandelimited.png
ke,

eactimt

heougm b

n_delimited.txt

ry_transcriptiol

Gitksan_love_stor

(&

e

wiilia,

il

Lteiyea

R A

_images/phonoprobresults.png
K Ko SRV .- '= 1. S —

Wod | Agoithm | pobabliyyee | T ver | y e probabilty

iphod | pidger | Vitevtch & Luce | Single-phone | Transcripton [vpe Canonical Form io.osz |

[Reopenfunctiondialog) | Savetofle) (Close window)

_images/gitksanloaded.png
[Search..

Tuk"uixsx"s

AUt m

hanaq

hanag'.t

he.c.a.mh.o:

hox.

_images/phonoprobdialog.png
800

Phonotactic Probability

Phonotactic probability algorithm

(®) Vitevitch & Luce

= Options
(O Calculate for one word Tier
[) [Transcription :

(@) Calculate for a word/nonword not in the corpus

pidger (P.IHJH.ER) | Create word/nonword |

) Calculate for st of words

|| Choose fi

Pronunciation variants

(@) Use canonical forms only
Use most frequent forms only

Type or token

() Calculate for all words in the corpus.

Column name: honotactic probability

Calculate phonotactic probat
(start new results table)

(@ Count types
() Count tokens

Probability type

() Biphone
(s) Single-phone

Calculate phonotactic probability | (
(add to current results table)

Cancel | [About phonotactic probability...

_images/acousticsimdialog.png
8086

Acoustic Similarity

Comparison type

(® Analyze single directory
Directory:

Represenation

(@ MFcC
() Amplitude envelopes

ilarity /Hungarian_s | [_Choose

directory... | Distance algorithm

() Compare two directories
First directory:

(®) Dynamic time warping
) Cross-correlation

Frequency limits

| Choose directory... |
Minimur frequency (H2): (80
Sl ey Maximum frequency (Hz): (7800
| Choose directory... | Frequency resolution
() Use list of full path comparisons Number of filters: |26
——— Number of coefficients (MFCC only): 12
Choose fil

(] Output as similarity (0 to 1)

The acoustic similarity module loaded
does not support multiprocessing.

Install python-acousti
to access multiprocessing and ad

Calculate acoustic similarity.
(start new results table)

Calculate acoustic similarity | | Cancel | [About acoustic

milarity...

(add to current results table)

_images/proderror.png
The environments specified were not exhaust

Please refer to file ‘pred_of_dist_s_f_error.txt'in the errors directory for
details or click on Show Details.

| [Close | [~Openerrors directory |

| Hide Detai

Segments you selected: s, |
Environments you selected: #_, #

Word
mashomi
shisata

Relevant environments (segmental level only)

_images/freqaltresults.png
Segment2 | Transcription tier Total words in corpus Total words with alternations | Frequency of alternation | Typeortoken | Distance metr|
Transcription 0.25 e nological edit
pti type Phonological edi
[Reopentuncionsios | S o e) (oz indon)

_images/loadcorpus.png
Available corpora

example
iphod

[Download example corpora]

[Import corpus]

[Remove selected corpus |

Cancel

_images/importspontaneous.png
O T O

—
o =
TS (e v
Corpus source Corpus name [C5TEST Name [Spelling
EEEemee— e
Annotation type | Orthography D
==
(&) Associate this with the lexical item
(et e, |
‘Transeription system
L — &

Name (Transcription

Annotation type | Transcription =

Supgent corpus

L T S— s

Lo d==0® (©) Associate this withthe lexical em

© Allow this property o vary within lexicl i

_images/pctguilog.png
8 06 | pct_gui.log

INFO:root :Importing ilg corpus named Gitksan_3lines
INFO:root :Path:
INFO:root :Annotation type info
INFO:root
INFO:root
INFO:root:Line 1:
Ignored characters: .
Digraphs:
Transcription delimiter: Mone
Morpheme delimiters:
Number behavior: None

INFO:root:Line 2:
Ignored characters:

Digraphs: hl, ku, ku', gu, xw, 'w, 'y, 'n, 'm, ts, ts', t

a'a, i'i, u'u, e's, 0'o, aa'a, ii'i, uu'u, ee's, 00'0
Transcription delimiter: Mone
Morpheme delimiters -
Hunber behavior: None

INFO:root:Line 3:
Ignored characters:
Digraphs:
Tronscription delimiter: Mone
Morpheme delimiters:
Number behavior: None

k', p', @, i1, w, oo, ee,

Lt

_images/createtier.png
[-NeX:] Create tier

You can create Tiers in this window. A Tier is subpart of a word that consists only of the segments you want,
maintaining their original ordering. You can define the properties of the Tier below. Tiers are commonly
created on the basis of a feature class, e.g. all the vowels or of all the obstruents in a word. PCT will allow
you to create Tiers con: ng of any arbitrary set of sounds.
Once created, the Tier be added as a column in your corpus, and it will be visible in the main window.
You can then select this Tier inside of certain analysis functions.

Name of tier

[vowels

Select by feature [+voc,-high,-low] | [Select highlighted | | Clear selections |

Nasal m n
Fricative s 7 ‘

Front | Near back Back
Close u
Close mid
Open a

Create tier] Cancel

_images/neighdendialog.png
8006

Neighborhood Density

String similarity algorithm

(@ Edit distance

() Phonological edit distance
O Khorsi

() Substitution neighbors only

Calculate neighborhood density |

(start new results table)

Query Optons
.) Tier

() Calculate for one word in the corpus

i | [Spelling]

() Caleulate for a word/nonword not in the corpus
None created | Create word/nonword |

(O Calculate for st of words

[Choose file.

(® Calculate for all words in the corpus
Column name: Neighborhood density

Pronunciation variants

(@) Use canonical forms only
Use most frequent forms only.

Type or token

+) Count types
Count tokens.

Max distance/min similarity

—_
Threshold: '1
Output fist of neighbors to a file

Choose file...

Calculate neighborhood density | |

(add to current results table) Cancal,

| [About neighborhood density...

_images/neighdeninput.png
© 0O [7word.list for ND_calcs.txt

bell
tree
love
star
angel

_images/gitksanoriginal.png
Gitksan_love_story_transcription.txt
Tukvuixsox"=s ¢'iic’ gan=t akvi tkvu:ix"-m hanag'-t

Kat ?4: wai—tx"-s c'iic’ wai-tx"-t
o Wil wil-t xsa pagatil-ta

Ztxnos crite
Lx"-m hanaq’
fi-tizt
K=t ket
ikeu titxem hanag’ ki tom naks—x-t

4 go-hakr-ot 7i: ta: hukwo
hot wai—tx"-s c’'iic’ wai—tx"—t
K'iy=t sa 71: palki xsi to7-txv=t i

ka?=t keu t’itx"-n hanaq’ ki ?i:
a—¥iii?u—t-tiit ?i: na-ni:nisxw-tiit

c'in gangan
keu £ itxom hanag’ Ait

4 wilhastasit

ALt wila so-t'a:h
is-xe-y

_images/importcsv1.png
ols/tests/data/csv/basic.ixt| | Choase file.

e

B o seimiea e [ETTCY

Corpus name bas

Interinear text | TexiGrid

Parsing preview
speling

Name Spelling

T
s

Other standards }-— (@ Associae tis with the lexical tem "
) () Allow this property to vary within lexical items.)
Column delimiter (auto-detected) | C
(Reinspect) GrETn
Trancrpton nd festres
Name Transcrption | T
Tanseripton system [pa s
e Annotation type Transcription
Featre system [hayes : Wordssociion
(@ Associae this with the lexical tem
) Allow this property o vary withn lexica tems
heaveney
RS Cancel) (

Help

_images/freqaltdialog.png
e . Frequency Of Alternation — e
seaments tingsimiary sigorim. Options
Add pair of sounds O Edit distance T
@ Ph jical edit distance .
() Khorsi
pronunction vrints

[Remove selected sound pair |
seqmenc1 | segment 2 Threshold vales

o simiarty (Khorsi @ Use canonica forms anly
M il Use most frequent forms only

[[¥]
Maximum distance (edit distance): |6 o

+) Count types.
Count tokens

() Include minimal pairs.
@ Phonologically align words.
Corpus size

Subset corpus

Output fle (f desired)

Iternation_sample.txt| [Choose fie...

(Cancel

Calculate frequency of alternation Calculate frequency of alternation
(add to current results table)

(start new results table)

_images/phonosearchsummary.png
#_i 1.0 96.0
#o0 1.0 33.0
#_u 1.0 32.0
#a 2.0 74.0
a_a 3.0 7.0

(- Reopenfuncion diniog) | Save o e | [Close window |

_images/ilg_loading1.png
n_analysis/Gitksan 3iines.ixt| [Choose file.. |

E——

{ Column-deimitedfie | Running text TeiGia

Other standards |

Number of fines per gloss (auto-detected) [3

Reinspect
Tanscription and feaures

Transcrpion system [iksan
L —

Cancel

Parsing preview
tne
Name Spelling
Annotation type | Orthography. 5
Word ssociton

@ Associat this with thefexcal item
) llow this property tovary within exical tems

une2
Name Transcription

Annotation type Transeription ¢

Word associton

@ Associte this with the lexical item
) Allow this property to vary within lexical tems

) Help.

_images/environment1.png
Environments

L New environment

_images/logo.png
Phonological CorpusTools

Take the stress out of corpus analys

_images/kldialog.png
Kullback-Leibler

—— U — L U NU—
Segments Tier
(Add pair of sounds)| [Transcription D
[Add pair of features)| Pronunciation variants
(Remove selected sound pair)| (®) Use canonical forms only
() Use most frequent forms only
Segment 1 | Segment 2 () Count each word token as a separate entry
e ™ o ~ Weight each word type
' by the relative frequency of its variants
e n -
Type or token frequency
e s -
(#) Count types
e t - () Count tokens
e u had Contexts to examine
e I had () Left-hand side only
™ N ~ (®) Right-hand side only
() Both sides
Calculate Kullback-Leibler Calculate Kullback-Leibler T
(start new results table) (add to current results table) | |_Cancel | [About Kullback-Leibler... |

_images/cvtier.png
() CV skeleton

The following abstract symbols
correspond to the following segments:
cmns,)
Vie/i,0,u,a

o)

_images/featurepairselection.png
800 Select feature pair

Feature to make pairs back,round.fmnt,lahi;
Filter pairs |+syllabic

+syllabi
First segments (+back, +round, ~front, +labial) Second segments (~back, ~round, +front, -labial)
o e
u i

[(Add | [Add and create another | | Cancel |

_static/up-pressed.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/up.png

_static/comment-close.png

_static/minus.png

about.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 [image: _images/logo.png]

About

Phonological CorpusTools allows for easy computation of phonological metrics
used in the literature for any corpus of language that you provide.

PCT website [http://phonologicalcorpustools.github.io/CorpusTools/]

GitHub repository [https://github.com/PhonologicalCorpusTools/CorpusTools/]

Contributors

Kathleen Currie Hall (kathleen.hall@ubc.ca)

Blake Allen

Michael Fry

Scott Mackie

Michael McAuliffe

Department of Linguistics

The University of British Columbia

Acknowledgments

We give special thanks to Kevin McMullin for help throughout
this project; to Andy Wedel for help with the implementation of functional load;
to Barbara Sennott, originally from Kispiox / Anspayax, for the use of her Gitksan
love story as an example; to Paul Tupper, John Goldsmith, and Jason Riggle for
discussion of mutual information; to Alfred Ko for help in compiling various
transcription / feature files; and to Kenny Vaden, Marc Brysbaert, Bruce Hayes,
and Jeff Mielke for the use of the IPHOD corpus, SUBTLEX frequencies,
Hayes features, and P-base features (respectively) within PCT. Financial
support for this project comes from a SSHRC Insight Development Grant to
Kathleen Currie Hall.

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_images/lemurian_unsorted.png
0.0 su

Corpus: lemurian
Feature system: None
Number of words types: 30

#abdef]jklmn

[Done)

search.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/symbolsim/phono_edit_distance.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.symbolsim.phono_edit_distance

from corpustools.symbolsim.phono_align import Aligner

def phono_edit_distance(word1, word2, sequence_type, features):
 """Returns an analogue to Levenshtein edit distance but uses
[docs] phonological features instead of characters

 Parameters

 word1: Word
 Word object containing transcription tiers which will be compared
 to another word containing transcription tiers

 word2: Word
 The other word containing transcription tiers to which word1 will
 be compared

 sequence_type: string
 Name of the sequence type (transcription or a tier) to use for comparisons

 features: FeatureMatrix
 FeatureMatrix that contains all the segments in both transcriptions
 to be compared

 Returns

 float
 the phonological edit distance between two words
 """

 w1 = getattr(word1,sequence_type)
 w2 = getattr(word2,sequence_type)

 a = Aligner(features_tf=True, features=features)

 m = a.make_similarity_matrix(w1, w2)

 return m[-1][-1]['f']

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/symbolsim/edit_distance.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.symbolsim.edit_distance

from corpustools.corpus.classes import Word
#from corpustools.symbolsim.phono_align import Aligner

#al = Aligner(features_tf=False)

#def edit_distance(word1, word2, sequence_type):
 #"""Returns the Levenshtein edit distance between a string from
 #two words word1 and word2.

 #The edit distance is the number of operations needed to transform word1 into word2,
 #three operations are possible: insert, delete, substitute

 #Parameters
 #----------
 #word1: Word
 #the first word object to be compared

 #word2: Word
 #the second word object to be compared

 #sequence_type : string
 #String specifying what attribute of the Word objects to compare,
 #can be "spelling", "transcription" or a tier name

 #Returns
 #-------
 #int:
 #the edit distance between two words
 #"""
 #m = al.make_similarity_matrix(getattr(word1, sequence_type), getattr(word2, sequence_type))
 #return m[-1][-1]['f']

#def edit_distance(word1, word2, sequence_type):
 #"""Returns the Levenshtein edit distance between a string from
 #two words word1 and word2.

 #The edit distance is the number of operations needed to transform word1 into word2,
 #three operations are possible: insert, delete, substitute

 #Parameters
 #----------
 #word1: Word
 #the first word object to be compared

 #word2: Word
 #the second word object to be compared

 #sequence_type : string
 #String specifying what attribute of the Word objects to compare,
 #can be "spelling", "transcription" or a tier name

 #Returns
 #-------
 #int:
 #the edit distance between two words
 #"""
 #m = al.make_similarity_matrix(getattr(word1, sequence_type), getattr(word2, sequence_type))
 #return m[-1][-1]['f']

[docs]def edit_distance(word1, word2, sequence_type, max_distance = None):
 """Returns the Levenshtein edit distance between a string from
 two words word1 and word2, code drawn from
 http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python.
 The number is the number of operations needed to transform word1 into word2,
 three operations are possible: insert, delete, substitute

 Parameters

 word1: Word
 the first word object to be compared
 word2: Word
 the second word object to be compared
 string_type : string
 String specifying what attribute of the Word objects to compare,
 can be "spelling", "transcription" or a tier

 Returns

 int:
 the edit distance between two words
 """
 if isinstance(word1, Word):
 s1 = getattr(word1, sequence_type)
 else:
 s1 = word1

 if isinstance(word2, Word):
 s2 = getattr(word2, sequence_type)
 else:
 s2 = word2

 if len(s1) >= len(s2):
 longer = s1
 shorter = s2
 else:
 longer = s2
 shorter = s1

 previous_row = range(len(shorter) + 1)
 for i, c1 in enumerate(longer):
 current_row = [i + 1]
 for j, c2 in enumerate(shorter):
 insertions = previous_row[j + 1] + 1 # j+1 instead of j since previous_row and current_row are one character longer
 deletions = current_row[j] + 1 # than s2
 substitutions = previous_row[j] + (c1 != c2)
 current_row.append(min(insertions, deletions, substitutions))
 previous_row = current_row
 #if max_distance is not None and previous_row[-1] > max_distance:
 # break
 return previous_row[-1]

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/symbolsim/khorsi.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.symbolsim.khorsi

from collections import defaultdict
from math import log

def lcs(x1, x2):
 """Returns the longest common sequence of two lists of characters
 and the remainder elements not in the longest common sequence

 Parameters

 x1: list
 List of characters

 x2: list
 List of characters

 Returns

 list
 the list of the longest common sequence of two lists

 list
 the list of remaining elements of both x1 and x2 that are not in
 the longest common sequence
 """
 if len(x1) >= len(x2):
 longer = x1
 shorter = x2
 else:
 longer = x2
 shorter = x1
 stringMatches = []
 largestMatch = None
 for i in range(len(shorter),0,-1):
 #Get all possible substrings of word x1
 shorter_strings = substring_set(shorter, i)
 longer_strings = substring_set(longer, i)

 s = shorter_strings & longer_strings

 if len(s):
 break
 else:
 return [], longer+shorter

 leftover = []
 for i in range(len(shorter)):

 begin = i
 for lcs in s:
 lcs = lcs.split('.') #back to list
 end = i+len(lcs)
 if shorter[begin:end] == lcs:
 break
 else:
 lcs = None
 if lcs is not None:
 break
 if lcs is None:
 lcs = []
 leftover.extend(shorter[:begin])
 leftover.extend(shorter[end:])
 for i in range(len(longer)):
 begin = i
 end = i+len(lcs)
 if longer[begin:end] == lcs:
 break
 leftover.extend(longer[:begin])
 leftover.extend(longer[end:])
 return lcs,leftover

def substring_set(w, l):
 """Returns all substrings of a word w of length l

 Parameters

 w: list
 List of characters representing a word

 l: int
 Length of substrings to generate

 Returns

 set
 A set of substrings of the specified length
 """
 #return all unique substrings of a word w of length l from 1 letter to the entire word
 substrings = set([])
 for i in range(len(w)):
 sub = w[i:(i+l)]
 if len(sub) < l:
 continue
 substrings.update(['.'.join(sub)])
 return substrings

def khorsi(word1, word2, freq_base, sequence_type, max_distance = None):
[docs] """Calculate the string similarity of two words given a set of
 characters and their frequencies in a corpus based on Khorsi (2012)

 Parameters

 word1: Word
 First Word object to compare

 word2: Word
 Second Word object to compare

 freq_base: dictionary
 a dictionary where each segment is mapped to its frequency of
 occurrence in a corpus

 sequence_type: string
 The type of segments to be used ('spelling' = Roman letters,
 'transcription' = IPA symbols)

 Returns

 float
 A number representing the relatedness of two words based on Khorsi (2012)
 """
 w1 = getattr(word1, sequence_type)
 w2 = getattr(word2, sequence_type)
 if sequence_type == 'spelling':
 w1 = list(w1)
 w2 = list(w2)
 longest, left_over = lcs(w1, w2)
 #print(w1,w2)
 #print(longest,left_over)

 #Khorsi's algorithm
 #print([(freq_base[x]/freq_base['total']) for x in longest])
 khorsi_sum = 0
 for x in longest:
 khorsi_sum += log(1/(freq_base[x]/freq_base['total']))
 for x in left_over:
 khorsi_sum -= log(1/(freq_base[x]/freq_base['total']))
 if max_distance is not None and khorsi_sum < max_distance:
 break
 return khorsi_sum

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_images/neighdendialogoutput.png
800

Neighborhood Density

Sting simiarity agoritm.

©Edit distance
O Phonological edit distance

Query

@ Calculae forone word in th corpus

[t

O Calculate for a word/nonword not n the corpus
None created [_Create word/nonword |

) Calculate for st of words.

[Choose file.

) Calculate for all words in the corpus
Column name: Neighborhood density

Calculate neighborhood density
(start new results table)

Calculate neighborhood density (
(add to current results table)

Options
Tier

[Transcrption ;]

Pronunciavon variants

© Use canonical forms only
Use most frequent forms only

Type or token

+) Count types
Count tokens

Max disance/min simlriy
Threshold: (1

Output st of eighbers to & e

1/Desktopiphod_cat_neighbours.txt | |_Choose fie

Cancel] (About neighborhood density.

_images/loadexample.png
usTe

[Search...
[spelling v | Transcripion Frequency |
atema | atem.a 110 o
enuta |enuta 110 0
masho... | m.a.f.o.m. 5.0 0
mata | mata 20 1
nata nata 20 1
sasi s, 130.0 0
shashi | f.a. 43.0 0
shisata | fis.ata 3.0 0
shusho... | f.u. 126.0 0

_images/loadfeature.png
8086 Create feature system from csv

Path to feature system (i o et [Choose file...|

Transcription and features.

ion system [Custom ¢

Transcription system name (if custom) [gitksan
Feature system | hayes s

Feature system name (if custom)

Column delimiter (enter "\t' for tab) [\t

e Cancel

_images/parsingsettings.png
8 00 Parsing transcription

Example: t.u.s.itu.n.if.a.f.i

Transcription delimiter |,

Morpheme delimiter

None detected (other than any transcription delimiters)

Number parsing No numbers
Punctuation to ignore

None detected (other than any transcription delimiters)

Multicharacter segments

[Construct a segment |

[ok | Cancel

_images/neighdenresults.png
Wod | Agorthm | Tmesnod | Swingtpe | Frequency type Pronunciaton variants | Neighborhood densiy

iphod cat |Editdistance |10 | Transcription | /A Canonical Form]

[y — Snetofie) (s indon

_images/stringsimilarityresults.png
U KN - OO ... 1. L S —

| Secondword | Algorithm | String type Frequencytype Pronunciation variants | Result

example | mata ‘mimo ‘Khorsi ‘Transcription Type ‘ani(ﬂanrm ‘-9.145 ‘

[eopntonciongiog] | Snatafie] (o vindow]

_images/gitksanorthcorpus1.png
8086 Jmport corpus_

fysis/Gitksan_corpus_orth-ot| [Choose fi)

Corpus source Corpus name [Gitksan_corpus_orth
Mouseover for included files| [Choose directory.

—{ Cotumn-deimited e |NEREPROSTR intrinear text | TexiCrid | Othr standards }—
Texttype (Transeribed

e e
T —
e E—

e

Corpus to look up transcriptions | None :

gnore case forlook up)

Parsing preview
wansarpion
Name Transcrption | Tai
Annotaton type [Transcription & 1
Wordssocscen
@ Associate tis with th lxical tem sl

O llow this property tovary within lexcal tems

_images/prodresults.png
[Comai] ressemen | secmdsegren | Govenmen | T famcyope | ponnsonarans | eyt |l
oamse [+ s I ctton e e B s
e [s osm [ramenon e T s .
example |5 i _ms.tfn} Transcription Type Canonical Form o o
example |5 I L] Transcription Type Canonical Form o o
example |5 I AVG Transcription Type Canonical Form s 9
[T E— swaotie) (Gora indon)

_images/phonosearchindividual.png
C e e s o

mata m.a.t.a t a_a
nata n.a.ta t aa
shisata Jisata t a_a
ta ta t #.a
tatomi t.a.t.o.m.i t #.a
tishenishu tif.enifu t #0
toni t.o.n.i t #o0
tusa t.u.s.a t #_u

Show summary results _ [savetofile | [Closewindow |

_images/environment2.png
Environments

[o] o] B b = rrem——

[New environment

_images/funtionalloadresults.png
o Functional load results

[sgment v | segment2 Transcripton tier Type of funcational load Result lgnored homophones? Relatve count2 Minimum word frequency Type or toke
m

n ‘ Transcription ‘ Minimal pairs ‘ 0.111 ‘ No ‘ Yes 10 ‘ type

[Reopenfunctiondialog || Save to file] (Close window

_modules/corpustools/corpus/classes/lexicon.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.corpus.classes.lexicon

import re
import random
import collections
import operator
import math
import locale

from corpustools.exceptions import CorpusIntegrityError

class Segment(object):
[docs] """
 Class for segment symbols

 Parameters

 symbol : str
 Segment symbol

 Attributes

 features : dict
 Feature specification for the segment
 """

 def __init__(self, symbol):
 #None defaults are for word-boundary symbols
 self.symbol = symbol
 self.features = {}

 def specify(self, feature_dict):
[docs] """
 Specify a segment with a new feature specification

 Parameters

 feature_dict : dict
 Feature specification
 """
 self.features = {k.lower(): v for k,v in feature_dict.items()}

 def minimal_difference(self, other, features):

[docs] """
 Check if this segment is a minimal feature difference with another
 segment (ignoring some features)

 Parameters

 other : Segment
 Segment to compare with
 features : list
 Features that are allowed to vary between the two segments

 Returns

 bool
 True if all features other than the specified ones match,
 False otherwise
 """
 for k, v in self.features.items():
 if k in features:
 continue
 if v != other[k]:
 return False
 return True

 def feature_match(self, specification):

[docs] """
 Return true if segment matches specification, false otherwise.

 Parameters

 specification : object
 Specification can be a single feature value '+feature', a list of
 feature values ['+feature1','-feature2'], or a dictionary of
 features and values {'feature1': '+', 'feature2': '-'}

 Returns

 bool
 True if this segment contains the feature values in the specification
 """
 if isinstance(specification,str):
 try:
 if self[specification[1:]]!=specification[0]:
 return False
 except KeyError:
 return False
 elif isinstance(specification,list):
 for f in specification:
 try:
 if self[f[1:]]!=f[0]:
 return False
 except KeyError:
 return False
 elif isinstance(specification, dict):
 for f,v in specification.items():
 try:
 if self[f] != v:
 return False
 except KeyError:
 return False
 return True

 def __contains__(self, item):

 return item.lower() in self.features

 def __getitem__(self, key):
 return self.features[key.lower()]

 def __setitem__(self, key, value):
 self.features[key.lower()] = value

 def __repr__(self):
 return self.__str__()

 def __str__(self):
 return self.symbol

 def __eq__(self, other):
 """Two segments are considered equal if their symbol attributes match

 """
 if isinstance(other, Segment):
 return self.symbol == other.symbol
 else:
 return self.symbol == other

 def __ne__(self, other):
 return not self.__eq__(other)

 def __lt__(self,other):
 if isinstance(other, Segment):
 return self.symbol < other.symbol
 else:
 return self.symbol < other

 def __le__(self,other):
 return (self.symbol == other.symbol or self.symbol < other.symbol)

 def __ge__(self,other):
 return (self.symbol == other.symbol or self.symbol > other.symbol)

 def __gt__(self,other):
 if isinstance(other, Segment):
 return self.symbol > other.symbol
 else:
 return self.symbol > other

 def __len__(self):
 return len(self.symbol)

class Transcription(object):

[docs] """
 Transcription object, sequence of symbols

 Parameters

 seg_list : list
 List of segments that form the transcription.
 Elements in the list, can be Segments, strings, or BaseAnnotations

 Attributes

 _list : list
 List of strings representing segment symbols
 stress_pattern: dict
 Dictionary with keys of segment indices and values of the stress
 for that segment
 boundaries : dict
 Possible keys of 'morpheme' or 'tone' that keeps track of where
 morpheme or tone boundaries are inserted
 """
 def __init__(self,seg_list):
 self._list = []
 #self._times = []
 self.stress_pattern = {}
 self.boundaries = {}
 cur_group = 0
 cur_tone = None
 if seg_list is not None:
 for i,s in enumerate(seg_list):
 try:
 self._list.append(s.label)
 #if s.begin is not None and s.end is not None:
 # self._times.append((s.begin,s.end))
 if s.stress is not None:
 self.stress_pattern[i] = s.stress
 if s.tone is not None:
 if 'tone' not in self.boundaries:
 self.boundaries['tone'] = {}
 if s.tone != cur_tone:
 self.boundaries['tone'][i] = s.tone
 cur_tone = s.tone
 if s.group is not None:
 if 'morpheme' not in self.boundaries:
 self.boundaries['morpheme'] = []
 if s.group != cur_group:
 self.boundaries['morpheme'].append(i)
 cur_group = s.group
 except AttributeError:
 if isinstance(s,str):
 self._list.append(s)
 elif isinstance(s,dict):
 try:
 symbol = s['label']
 except KeyError:
 symbol = s['symbol']
 self._list.append(symbol)
 #if 'begin' in s and 'end' in s:
 # self._times.append((s['begin'],s['end']))
 elif isinstance(s,list):
 if len(s) == 3:
 self._list.append(s[0])
 #self._times.append((s[1],s[2]))
 else:
 raise(NotImplementedError('That format for seg_list is not supported.'))
 else:
 raise(NotImplementedError('That format for seg_list is not supported.'))

 def with_word_boundaries(self):
[docs] """
 Return the string of segments with word boundaries surrounding them

 Returns

 list
 Transcription with word boundaries
 """
 return ['#'] + self._list + ['#']

 def find(self, environment):

[docs] """
 Find instances of an EnvironmentFilter in the Transcription

 Parameters

 environment : EnvironmentFilter
 EnvironmentFilter to search for

 Returns

 list
 List of Environments that fit the EnvironmentFilter
 """
 if not isinstance(environment, EnvironmentFilter):
 return None
 if all(m not in self for m in environment._middle):
 return None
 num_segs = len(environment)

 possibles = zip(*[self.with_word_boundaries()[i:]
 for i in range(num_segs)])
 lhs_num = environment.lhs_count()
 middle_num = lhs_num
 rhs_num = middle_num + 1
 envs = []
 for i, p in enumerate(possibles):
 if p in environment:
 lhs = p[:lhs_num]
 middle = p[middle_num]
 rhs = p[rhs_num:]
 envs.append(Environment(middle, i + middle_num, lhs, rhs))
 if not envs:
 return None
 return envs

 def find_nonmatch(self, environment):

[docs] """
 Find all instances of an EnvironmentFilter in the Transcription
 that match in the middle segments, but don't match on the sides

 Parameters

 environment : EnvironmentFilter
 EnvironmentFilter to search for

 Returns

 list
 List of Environments that fit the EnvironmentFilter's middle
 but not the sides
 """
 if not isinstance(environment, EnvironmentFilter):
 return None
 if all(m not in self for m in environment.middle):
 return None
 num_segs = len(environment)

 possibles = zip(*[self.with_word_boundaries()[i:]
 for i in range(num_segs)])
 envs = []
 lhs_num = environment.lhs_count()
 middle_num = lhs_num
 rhs_num = middle_num + 1
 for i, p in enumerate(possibles):
 if p not in environment and p[middle_num] in environment.middle:
 lhs = p[:lhs_num]
 middle = p[middle_num]
 rhs = p[rhs_num:]
 envs.append(Environment(middle, i + middle_num, lhs, rhs))
 if not envs:
 return None
 return envs

 def __contains__(self, other):

 if isinstance(other, Segment):
 if other.symbol in self._list:
 return True
 elif isinstance(other, str):
 if other in self._list:
 return True
 return False

 def __setstate__(self, state):
 if 'stress_pattern' not in state:
 state['stress_pattern'] = {}
 if 'boundaries' not in state:
 state['boundaries'] = {}
 self.__dict__.update(state)

 def __hash__(self):
 return hash(str(self))

 def __getitem__(self, key):
 if isinstance(key,int) or isinstance(key,slice):
 return self._list[key]
 raise(KeyError)

 def __repr__(self):
 return self.__str__()

 def __str__(self):
 temp_list = []
 for i,s in enumerate(self._list):
 if self.stress_pattern and i in self.stress_pattern:
 s += self.stress_pattern[i]
 if 'tone' in self.boundaries and i in self.boundaries['tone']:
 s += self.boundaries['tone'][i]
 temp_list.append(s)
 if 'morpheme' in self.boundaries:
 beg = 0
 bound_list = []
 for i in self.boundaries['morpheme']:
 bound_list.append('.'.join(temp_list[beg:i]))
 bound_list.append('.'.join(temp_list[i:]))
 return '-'.join(bound_list)
 else:
 return '.'.join(temp_list)

 def __iter__(self):
 for s in self._list:
 yield s

 def __add__(self, other):
 """
 Allow for Transcriptions to be added to get all the segments in each
 """
 if not isinstance(other,Transcription):
 raise(TypeError)
 return self._list + other._list

 def __eq__(self, other):
 if isinstance(other,list):
 if len(other) != len(self):
 return False
 for i,s in enumerate(self):
 if s != other[i]:
 return False
 return True
 if not isinstance(other, Transcription):
 return False
 if self._list != other._list:
 return False
 if self.stress_pattern != other.stress_pattern:
 return False
 if self.boundaries != other.boundaries:
 return False
 return True

 def __lt__(self,other):
 if isinstance(other, Transcription):
 return self._list < other._list
 else:
 return self._list < other

 def __le__(self,other):
 if isinstance(other, Transcription):
 return (self._list == other._list or self._list < other._list)
 else:
 return self._list <= other

 def __ge__(self,other):
 if isinstance(other, Transcription):
 return (self._list == other._list or self._list > other._list)
 else:
 return self._list >= other

 def __gt__(self,other):
 if isinstance(other, Transcription):
 return self._list > other._list
 else:
 return self._list > other

 def match_segments(self, segments):
[docs] """
 Returns a matching segments from a list of segments

 Parameters

 segments : list
 List of Segments or strings to filter the Transcription

 Returns

 list
 List of segments (in their original order) that match the
 segment parameter
 """
 match = []
 for s in self:
 if s in segments:
 match.append(s)
 return match

 def __ne__(self, other):

 return not self.__eq__(other)

 def __len__(self):
 return len(self._list)

class FeatureMatrix(object):

[docs] """
 An object that stores feature values for segments

 Parameters

 name : str
 Name to give the FeatureMatrix
 feature_entries : list
 List of dict with one dictionary per segment, requires the key
 of symbol which identifies the segment

 Attributes

 name : str
 An informative identifier for the feature matrix
 features : list
 Sorted list of feature names
 possible_values : set
 Set of values used in the FeatureMatrix
 default_value : str
 Default feature value, usually corresponding to unspecified features
 stresses : dict
 Mapping of stress values to segments that bear that stress
 places : dict
 Mapping from place of articulation labels to a feature specification
 manners : dict
 Mapping from manner of articulation labels to a feature specification
 height : dict
 Mapping from vowel height labels to a feature specification
 backness : dict
 Mapping from vowel backness labels to a feature specification
 vowel_feature : str
 Feature value (i.e., '+voc') that separates vowels from consonants
 voice_feature : str
 Feature value (i.e., '+voice') that codes voiced obstruents
 diph_feature : str
 Feature value (i.e., '+diphthong' or '.high') that separates
 diphthongs from monophthongs
 rounded_feature : str
 Feature value (i.e., '+round') that codes rounded vowels

 """

 def __init__(self, name,feature_entries):
 self.name = name
 self._features = None
 self.possible_values = set()
 self.matrix = {}
 self._default_value = 'n'
 for s in feature_entries:
 if self._features is None:
 self._features = {k for k in s.keys() if k != 'symbol'}
 self.matrix[s['symbol']] = Segment(s['symbol'])
 self.matrix[s['symbol']].specify({k:v for k,v in s.items() if k != 'symbol'})
 self.possible_values.update({v for k,v in s.items() if k != 'symbol'})

 #What are these?
 self.matrix['#'] = Segment('#')
 self.places = collections.OrderedDict()
 self.manners = collections.OrderedDict()
 self.backness = collections.OrderedDict()
 self.height = collections.OrderedDict()
 self.generate_generic_names()

 def generate_generic_names(self):
 if 'consonantal' in self.features:
 self.generate_generic_hayes()
 self.vowel_feature = '+syllabic'
 self.voice_feature = '+voice'
 self.diph_feature = '+diphthong'
 self.rounded_feature = '+round'
 elif 'voc' in self.features:
 self.generate_generic_spe()
 self.vowel_feature = '+voc'
 self.voice_feature = '+voice'
 self.diph_feature = '.high'
 self.rounded_feature = '+round'
 else:
 self.generate_generic()
 self.vowel_feature = []
 self.voice_feature = []
 self.diph_feature = []
 self.rounded_feature = []

 def generate_generic(self):
 self.places['Labial'] = {}
 self.places['Labiodental'] = {}
 self.places['Dental'] = {}
 self.places['Alveolar'] = {}
 self.places['Alveopalatal'] = {}
 self.places['Palatal'] = {}
 self.places['Velar'] = {}
 self.places['Uvular'] = {}
 self.places['Pharyngeal'] = {}
 self.places['Glottal'] = {}

 self.manners['Stop'] = {}
 self.manners['Nasal'] = {}
 self.manners['Trill'] = {}
 self.manners['Tap'] = {}
 self.manners['Fricative'] = {}
 self.manners['Affricate'] = {}
 self.manners['Approximant'] = {}
 self.manners['Lateral approximant'] = {}

 self.backness['Front'] = {}
 self.backness['Near front'] = {}
 self.backness['Central'] = {}
 self.backness['Near back'] = {}
 self.backness['Back'] = {}

 self.height['Close'] = {}
 self.height['Near close'] = {}
 self.height['Close mid'] = {}
 self.height['Open mid'] = {}
 self.height['Open'] = {}

 def generate_generic_spe(self):
 self.places['Labial'] = {'ant':'+', 'back': '-', 'cor':'-'}
 self.places['Labiodental'] = {'ant':'+', 'back': '-', 'cor':'-'}
 self.places['Dental'] = {'ant':'+', 'back': '-', 'cor':'+'}
 self.places['Alveolar'] = {'ant':'-', 'back': '-', 'cor':'+', 'high': '-'}
 self.places['Alveopalatal'] = {'ant':'-', 'back': '-', 'cor':'+', 'high': '+'}
 self.places['Palatal'] = {'ant':'-', 'back': '-', 'cor':'-'}
 self.places['Velar'] = {'ant':'-', 'back': '+', 'cor':'-', 'high': '+'}
 self.places['Uvular'] = {'ant':'-', 'back': '+', 'cor':'-', 'high': '-'}
 self.places['Pharyngeal'] = {'low':'+', 'back': '+'}
 self.places['Glottal'] = {'low':'+', 'back': '-'}

 self.manners['Stop'] = {'son': '-','cont':'-','nasal':'-'}
 self.manners['Nasal'] = {'nasal': '+'}
 self.manners['Trill'] = {}
 self.manners['Tap'] = {}
 self.manners['Fricative'] = {'son': '-','cont':'+','nasal':'-'}
 self.manners['Affricate'] = {'del_rel':'+'}
 self.manners['Approximant'] = {'son':'+', 'nasal': '-', 'lat':'-'}
 self.manners['Lateral approximant'] = {'son':'+', 'nasal': '-', 'lat':'+'}

 self.backness['Front'] = {'back':'-', 'tense':'+'}
 self.backness['Near front'] = {'back': '-', 'tense': '-'}
 self.backness['Central'] = {'back': 'n'}
 self.backness['Near back'] = {'back': '+', 'tense':'-'}
 self.backness['Back'] = {'back':'+', 'tense':'+'}

 self.height['Close'] = {'high':'+', 'low':'-', 'tense':'+'}
 self.height['Near close'] = {'high':'+', 'low':'-', 'tense':'-'}
 self.height['Close mid'] = {'high':'-', 'low':'-', 'tense':'+'}
 self.height['Open mid'] = {'high':'-', 'low':'-', 'tense':'-'}
 self.height['Open'] = {'high':'-', 'low':'+'}

 def generate_generic_hayes(self):
 self.places['Labial'] = {'labial': '+', 'coronal':'-'}
 self.places['Labiodental'] = {'labiodental': '+',}
 self.places['Dental'] = {'anterior': '+', 'coronal':'+', 'labial':'-'}
 self.places['Alveolar'] = {}
 self.places['Alveopalatal'] = {'anterior': '-', 'coronal':'+', 'labial':'-'}
 self.places['Palatal'] = {'dorsal': '+', 'coronal':'+', 'labial':'-'}
 self.places['Velar'] = {'dorsal': '+', 'labial':'-'}
 self.places['Uvular'] = {'dorsal': '+', 'back':'+', 'labial':'-'}
 self.places['Pharyngeal'] = {}
 self.places['Glottal'] = {'dorsal': '-', 'coronal':'-', 'labial':'-', 'nasal': '-'}

 self.manners['Stop'] = {'sonorant': '-','continuant':'-','nasal':'-','delayed_release':'-'}
 self.manners['Nasal'] = {'nasal': '+'}
 self.manners['Trill'] = {'trill': '+'}
 self.manners['Tap'] = {'tap': '+'}
 self.manners['Fricative'] = {'sonorant': '-','continuant':'+'}
 self.manners['Affricate'] = {'sonorant': '-', 'continuant':'-','delayed_release':'+'}
 self.manners['Approximant'] = {'sonorant': '+', 'lateral':'-'}
 self.manners['Lateral approximant'] = {'sonorant': '+', 'lateral':'+'}

 self.backness['Front'] = {'front': '+', 'back':'-', 'tense':'+'}
 self.backness['Near front'] = {'front': '+', 'back': '-', 'tense': '-'}
 self.backness['Central'] = {'front': '-', 'back': '-'}
 self.backness['Near back'] = {'front': '-', 'back': '-', 'tense':'-'}
 self.backness['Back'] = {'front':'-', 'back':'+', 'tense':'+'}

 self.height['Close'] = {'high':'+', 'low':'-', 'tense':'+'}
 self.height['Near close'] = {'high':'+', 'low':'-', 'tense':'-'}
 self.height['Close mid'] = {'high':'-', 'low':'-', 'tense':'+'}
 self.height['Open mid'] = {'high':'-', 'low':'-', 'tense':'-'}
 self.height['Open'] = {'high':'-', 'low':'+'}

 def __eq__(self, other):
 if not isinstance(other,FeatureMatrix):
 return False
 if self.matrix == other.matrix:
 return True
 return False

 def features_to_segments(self, feature_description):
[docs] """
 Given a feature description, return the segments in the inventory
 that match that feature description

 Feature descriptions should be either lists, such as
 ['+feature1', '-feature2'] or strings that can be separated into
 lists by ',', such as '+feature1,-feature2'.

 Parameters

 feature_description : str, list, or dict
 Feature values that specify the segments, see above for format

 Returns

 list of Segments
 Segments that match the feature description

 """
 segments = []
 if isinstance(feature_description, str):
 feature_description = feature_description.split(',')
 for k,v in self.matrix.items():
 if v.feature_match(feature_description):
 segments.append(k)
 return segments

 def __setstate__(self,state):

 if '_features' not in state:
 state['_features'] = state['features']
 for k,v in state['matrix'].items():
 if not isinstance(v,Segment):
 s = Segment(k)
 s.specify(v)
 state['matrix'][k] = s
 else:
 v.specify(v.features)
 self.__dict__.update(state)

 #Backwards compatability
 if '_default_value' not in state:
 self._default_value = 'n'
 if 'places' not in state:
 self.places = collections.OrderedDict()
 self.manners = collections.OrderedDict()
 self.backness = collections.OrderedDict()
 self.height = collections.OrderedDict()
 self.generate_generic_names()

 def __iter__(self):
 for k in sorted(self.matrix.keys()):
 yield self.matrix[k]

 def validate(self):
[docs] """
 Make sure that all segments in the matrix have all the features.
 If not, add an unspecified value for that feature to them.
 """
 for k,v in self.matrix.items():
 for f in self._features:
 if f not in v:
 self.matrix[k][f] = self._default_value

 @property

 def default_value(self):
 return self._default_value

 @property
 def features(self):
 """
 Get a list of features that are used in this feature system

 Returns

 list
 Sorted list of the names of all features in the matrix
 """
 return sorted(list(self._features))

 def add_segment(self,seg,feat_spec):
[docs] """
 Add a segment with a feature specification to the feature system

 Attributes

 seg : str
 Segment symbol to add to the feature system
 feat_spec : dictionary
 Dictionary with features as keys and feature values as values
 """

 #Validation
 for f in feat_spec.keys():
 if f not in self._features:
 raise(AttributeError('The segment \'%s\' has a feature \'%s\' that is not defined for this feature matrix' %(seg,f)))
 s = Segment(seg)
 s.specify(feat_spec)
 self.matrix[seg] = s

 def add_feature(self,feature, default = None):

[docs] """
 Add a feature to the feature system

 Attributes

 feature : str
 Name of the feature to add to the feature system
 default : str, optional
 If specified, set the value for all segments to this value,
 otherwise use the FeatureMatrix's ``default_value``
 """

 self._features.update({feature})
 if default is None:
 self.validate()
 else:
 for k,v in self.matrix.items():
 for f in self._features:
 if f not in v:
 self.matrix[k][f] = default

 def valid_feature_strings(self):

[docs] """
 Get all combinations of ``possible_values`` and ``features``

 Returns

 list
 List of valid feature strings
 """
 strings = []
 for v in self.possible_values:
 for f in self.features:
 strings.append(v+f)
 return strings

 def categorize(self, seg):

[docs] """
 Categorize a segment into consonant/vowel, place of articulation,
 manner of articulation, voicing, vowel height, vowel backness, and vowel
 rounding.

 For consonants, the category is of the format:

 ('Consonant', PLACE, MANNER, VOICING)

 For vowels, the category is of the format:

 ('Vowel', HEIGHT, BACKNESS, ROUNDED)

 Diphthongs are categorized differently:

 ('Diphthong', 'Vowel')

 Parameters

 seg : Segment
 Segment to categorize

 Returns

 tuple or None
 Returns categories according to the formats above, if any are
 unable to be calculated, returns None in those places.
 Returns None if a category cannot be found.
 """
 if seg == '#':
 return None
 seg_features = seg.features
 if seg.feature_match(self.vowel_feature):
 category = ['Vowel']

 if seg.feature_match(self.diph_feature):
 category.insert(0,'Diphthong')
 return category

 for k,v in self.height.items():
 if seg.feature_match(v):
 category.append(k)
 break
 else:
 category.append(None)
 for k,v in self.backness.items():
 if seg.feature_match(v):
 category.append(k)
 break
 else:
 category.append(None)

 if seg.feature_match(self.rounded_feature):
 category.append('Rounded')
 else:
 category.append('Unrounded')
 else:
 category = ['Consonant']

 for k,v in self.places.items():
 if seg.feature_match(v):
 category.append(k)
 break
 else:
 category.append(None)

 for k,v in self.manners.items():
 if seg.feature_match(v):
 category.append(k)
 break
 else:
 category.append(None)

 if seg.feature_match(self.voice_feature):
 category.append('Voiced')
 else:
 category.append('Voiceless')
 return category

 @property

 def segments(self):
 """
 Return a list of segment symbols that are specified in the feature
 system

 Returns

 list
 List of all the segments with feature specifications
 """
 return list(self.matrix.keys())

 def seg_to_feat_line(self,symbol):
[docs] """
 Get a list of feature values for a given segment in the order
 that features are return in get_feature_list

 Use for display purposes

 Attributes

 symbol : str
 Segment symbol to look up

 Returns

 list
 List of feature values for the symbol, as well as the symbol itself
 """
 featline = [symbol] + [self.matrix[symbol][feat]
 for feat in self.features]
 return featline

 def __getitem__(self,item):

 if isinstance(item,str):
 return self.matrix[item]
 elif isinstance(item,tuple):
 return self.matrix[item[0]][item[1]]

 def __delitem__(self,item):
 del self.matrix[item]

 def __contains__(self,item):
 return item in list(self.matrix.keys())

 def __setitem__(self,key,value):
 self.matrix[key] = value

 def __len__(self):
 return len(self.matrix)

class Word(object):

[docs] """An object representing a word in a corpus

 Information about the attributes are contained in the Corpus' ``attributes``.

 Attributes

 spelling : str
 A representation of a word that lacks phonological information.

 transcription : Transcription
 A representation of a word that includes phonological information.

 frequency : float
 Token frequency in a corpus
 """

 _freq_names = ['abs_freq', 'freq_per_mil','sfreq',
 'lowercase_freq', 'log10_freq']

 def __init__(self, **kwargs):

 _corpus = None

 self.transcription = None
 self.spelling = None
 self.frequency = 0
 self.wordtokens = []
 self.descriptors = ['spelling','transcription', 'frequency']
 for key, value in kwargs.items():
 if isinstance(value, tuple):
 att, value = value
 if att.att_type == 'numeric':
 try:
 value = locale.atof(value)
 except (ValueError, TypeError):
 value = float('nan')
 elif att.att_type == 'tier':
 value = Transcription(value)
 else:
 key = key.lower()
 if key in self._freq_names:
 key = 'frequency'
 if isinstance(value,list):
 #assume transcription type stuff
 value = Transcription(value)
 elif key != 'spelling':
 try:
 f = float(value)
 if not math.isnan(f) and not math.isinf(f):
 value = f
 except (ValueError, TypeError):
 pass
 if key not in self.descriptors:
 self.descriptors.append(key)
 setattr(self, key, value)
 if self.spelling is None and self.transcription is None:
 raise(ValueError('Words must be specified with at least a spelling or a transcription.'))
 if self.spelling is None:
 self.spelling = ''.join(map(str,self.transcription))

 def __hash__(self):
 return hash((self.spelling,str(self.transcription)))

 def __getstate__(self):
 state = self.__dict__.copy()
 state['wordtokens'] = []
 state['_corpus'] = None
 #for k,v in state.items():
 # if (k == 'transcription' or k in self.tiers) and v is not None:
 # state[k] = [x.symbol for x in v] #Only store string symbols
 return state

 def __setstate__(self, state):
 self.transcription = []
 self.spelling = ''
 self.frequency = 0
 if 'wordtokens' not in state:
 state['wordtokens'] = []
 if 'descriptors' not in state:
 state['descriptors'] = ['spelling','transcription', 'frequency']
 if 'frequency' not in state['descriptors']:
 state['descriptors'].append('frequency')
 try:
 tiers = state.pop('tiers')
 for t in tiers:
 state['descriptors'].append(t)
 except KeyError:
 pass
 self.__dict__.update(state)

 def add_abstract_tier(self, tier_name, tier_segments):
[docs] """
 Add an abstract tier to the Word

 Parameters

 tier_name : str
 Attribute name
 tier_segments: dict
 Dictionary with keys of the abstract segments (i.e., 'C' or 'V')
 and values that are sets of segments
 """
 tier = []
 for s in self.transcription:
 for k,v in tier_segments.items():
 if s in v:
 tier.append(k)
 break
 setattr(self,tier_name,''.join(tier))

 def add_attribute(self, tier_name, value):

[docs] """
 Add an arbitrary attribute to the Word

 Parameters

 tier_name : str
 Attribute name
 value: object
 Attribute value
 """
 setattr(self, tier_name, value)

 def add_tier(self, tier_name, tier_segments):

[docs] """Adds a new tier attribute to the Word

 Parameters

 tier_name : str
 Name for the new tier

 tier_segments: list of segments
 Segments that count for inclusion in the tier
 """
 matching_segs = self.transcription.match_segments(tier_segments)
 new_tier = Transcription(matching_segs)
 setattr(self,tier_name,new_tier)
 for wt in self.wordtokens:
 matching_segs = wt.transcription.match_segments(tier_segments)
 new_tier = Transcription(matching_segs)
 setattr(wt,tier_name,new_tier)

 def remove_attribute(self, attribute_name):

[docs] """Deletes a tier attribute from a Word

 Parameters

 attribute_name : str
 Name of tier attribute to be deleted.

 Notes

 If attribute_name is not a valid attribute, this function does nothing. It
 does not raise an error.

 """
 if attribute_name.startswith('_'):
 return
 try:
 delattr(self, attribute_name)
 except ValueError:
 pass #attribute_name does not exist

 def variants(self, sequence_type = 'transcription'):

[docs] """
 Get variants and frequencies for a Word

 Parameters

 sequence_type : str, optional
 Tier name to get variants

 Returns

 dict
 Dictionary with keys of Transcriptions and values of their frequencies
 """
 return collections.Counter(getattr(x,sequence_type) for x in self.wordtokens)

 def __repr__(self):

 return '<Word: \'%s\'>' % self.spelling

 def __str__(self):
 return self.spelling

 def __eq__(self, other):
 if not isinstance(other,Word):
 return False
 if self.spelling != other.spelling:
 return False
 if self.transcription != other.transcription:
 return False
 return True

 def __ne__(self, other):
 return not self.__eq__(other)

 def __lt__(self, other):
 return self.spelling < other.spelling

 def __gt__(self, other):
 return self.spelling > other.spelling

 def __le__(self, other):
 return self.spelling <= other.spelling

 def __ge__(self, other):
 return self.spelling >= other.spelling

class Environment(object):

[docs] """
 Specific sequence of segments that was a match for an EnvironmentFilter

 Parameters

 middle : str
 Middle segment
 position : int
 Position of the middle segment in the word (to differentiate between
 repetitions of an environment in the same word
 lhs : list, optional
 Segments to the left of the middle segment
 rhs : list, optional
 Segments to the right of the middle segment
 """
 def __init__(self, middle, position, lhs = None, rhs = None):
 self.middle = middle
 self.position = position
 self.lhs = lhs
 self.rhs = rhs
 self.lhs_string = None
 self.rhs_string = None
 self.middle_string = None

 def __getitem__(self, key):
 if self.lhs is not None:
 if key < len(self.lhs):
 return self.lhs[key]
 elif key == len(self.lhs):
 return self.middle
 elif self.rhs is not None:
 return self.rhs[key - len(self.lhs) - 1]
 else:
 raise(KeyError('Index out of bounds'))
 else:
 if key == 0:
 return self.middle
 elif self.rhs is not None:
 return self.rhs[key - 1]
 else:
 raise(KeyError('Index out of bounds'))

 def __str__(self):
 elements = []
 if self.lhs_string is not None:
 elements.append(self.lhs_string)
 elif self.lhs is not None:
 elements.append(''.join(self.lhs))
 else:
 elements.append('')
 if self.rhs_string is not None:
 elements.append(self.rhs_string)
 elif self.rhs is not None:
 elements.append(''.join(self.rhs))
 else:
 elements.append('')
 return '_'.join(elements)

 def __repr__(self):
 return self.__str__()

 def __hash__(self):
 return hash((self.lhs, self.position, self.middle, self.rhs))

 def __eq__(self,other):
 """
 Two Environments are equal if they share a left AND right hand side
 An empty lhs or rhs is an automatic match
 """
 if not isinstance(other,Environment):
 return False

 if other.lhs and other.lhs != self.lhs:
 return False
 if other.rhs and other.rhs != self.rhs:
 return False
 if other.position != self.position:
 return False
 return True

 def __ne__(self,other):
 return not self.__eq__(other)

class EnvironmentFilter(object):

[docs] """
 Filter to use for searching words to generate Environments that match

 Parameters

 middle_segments : set
 Set of segments to center environments
 lhs : list, optional
 List of set of segments on the left of the middle
 rhs : list, optional
 List of set of segments on the right of the middle

 """
 def __init__(self, middle_segments, lhs = None, rhs = None):
 self.original_middle = middle_segments
 if lhs is not None:
 lhs = tuple(lhs)
 self.lhs = lhs
 if rhs is not None:
 rhs = tuple(rhs)
 self.rhs = rhs

 self.lhs_string = None
 self.rhs_string = None
 self._sanitize()

 @property
 def middle(self):
 return self.original_middle

 @middle.setter
 def middle(self, middle_segments):
 self.original_middle = middle_segments
 self._sanitize()

 def _sanitize(self):
 if self.lhs is not None:
 new_lhs = []
 for seg_set in self.lhs:
 if not isinstance(seg_set,frozenset):
 new_lhs.append(frozenset(seg_set))
 else:
 new_lhs.append(seg_set)
 self.lhs = tuple(new_lhs)
 if self.rhs is not None:
 new_rhs = []
 for seg_set in self.rhs:
 if not isinstance(seg_set,frozenset):
 new_rhs.append(frozenset(seg_set))
 else:
 new_rhs.append(seg_set)
 self.rhs = tuple(new_rhs)
 if not isinstance(self.middle, frozenset):
 self.middle = frozenset(self.middle)
 self._middle = set()
 for m in self.middle:
 if isinstance(m, str):
 self._middle.add(m)
 elif isinstance(m, (list, tuple, set)):
 self._middle.update(m)

 def is_applicable(self, sequence):
[docs] """
 Check whether the Environment filter is applicable to the sequence
 (i.e., the sequence must be greater or equal in length to the
 EnvironmentFilter)

 Parameters

 sequence : list
 Sequence to check applicability

 Returns

 bool
 True if the sequence is equal length or longer than the
 EnvironmentFilter
 """
 if len(sequence) < len(self):
 return False
 return True

 def compile_re_pattern(self):

 pass

 def lhs_count(self):
[docs] """
 Get the number of elements on the left hand side

 Returns

 int
 Length of the left hand side
 """
 if self.lhs is None:
 return 0
 return len(self.lhs)

 def rhs_count(self):

[docs] """
 Get the number of elements on the right hand side

 Returns

 int
 Length of the right hand side
 """
 if self.rhs is None:
 return 0
 return len(self.rhs)

 def set_lhs(self, lhs):

 self.lhs = lhs
 self.compile_re_pattern()

 def set_rhs(self, rhs):
 self.rhs = rhs
 self.compile_re_pattern()

 def __iter__(self):
 if self.lhs is not None:
 for s in self.lhs:
 yield s
 yield self._middle
 if self.rhs is not None:
 for s in self.rhs:
 yield s

 def __len__(self):
 length = 1
 if self.lhs is not None:
 length += len(self.lhs)
 if self.rhs is not None:
 length += len(self.rhs)
 return length

 def __str__(self):
 elements = []
 if self.lhs_string is not None:
 elements.append(self.lhs_string)
 elif self.lhs is not None:
 elements.append(''.join('{' + ','.join(x) + '}' for x in self.lhs))
 else:
 elements.append('')
 if self.rhs_string is not None:
 elements.append(self.rhs_string)
 elif self.rhs is not None:
 elements.append(''.join('{' + ','.join(x) + '}' for x in self.rhs))
 else:
 elements.append('')
 return '_'.join(elements)

 def __eq__(self, other):
 if not hasattr(other,'lhs'):
 return False
 if not hasattr(other,'rhs'):
 return False
 if self.lhs != other.lhs:
 return False
 if self.rhs != other.rhs:
 return False
 return True

 def __hash__(self):
 return hash((self.rhs, self.lhs))

 def __contains__(self, sequence):
 for i, s in enumerate(self):
 if sequence[i] not in s:
 return False
 return True

class Attribute(object):

[docs] """
 Attributes are for collecting summary information about attributes of
 Words or WordTokens, with different types of attributes allowing for
 different behaviour

 Parameters

 name : str
 Python-safe name for using `getattr` and `setattr` on Words and
 WordTokens

 att_type : str
 Either 'spelling', 'tier', 'numeric' or 'factor'

 display_name : str
 Human-readable name of the Attribute, defaults to None

 default_value : object
 Default value for initializing the attribute

 Attributes

 name : string
 Python-readable name for the Attribute on Word and WordToken objects

 display_name : string
 Human-readable name for the Attribute

 default_value : object
 Default value for the Attribute. The type of `default_value` is
 dependent on the attribute type. Numeric Attributes have a float
 default value. Factor and Spelling Attributes have a string
 default value. Tier Attributes have a Transcription default value.

 range : object
 Range of the Attribute, type depends on the attribute type. Numeric
 Attributes have a tuple of floats for the range for the minimum
 and maximum. The range for Factor Attributes is a set of all
 factor levels. The range for Tier Attributes is the set of segments
 in that tier across the corpus. The range for Spelling Attributes
 is None.
 """
 ATT_TYPES = ['spelling', 'tier', 'numeric', 'factor']
 def __init__(self, name, att_type, display_name = None, default_value = None):
 self.name = name
 self.att_type = att_type
 self._display_name = display_name

 if self.att_type == 'numeric':
 self._range = [0,0]
 if default_value is not None and isinstance(default_value,(int,float)):
 self._default_value = default_value
 else:
 self._default_value = 0
 elif self.att_type == 'factor':
 if default_value is not None and isinstance(default_value,str):
 self._default_value = default_value
 else:
 self._default_value = ''
 if default_value:
 self._range = set([default_value])
 else:
 self._range = set()
 elif self.att_type == 'spelling':
 self._range = None
 if default_value is not None and isinstance(default_value,str):
 self._default_value = default_value
 else:
 self._default_value = ''
 elif self.att_type == 'tier':
 self._range = set()
 self._delim = None
 if default_value is not None and isinstance(default_value,Transcription):
 self._default_value = default_value
 else:
 self._default_value = Transcription(None)

 @property
 def delimiter(self):
 if self.att_type != 'tier':
 return None
 else:
 return self._delim

 @delimiter.setter
 def delimiter(self, value):
 self._delim = value

 @staticmethod
 def guess_type(values, trans_delimiters = None):
[docs] """
 Guess the attribute type for a sequence of values

 Parameters

 values : list
 List of strings to evaluate for the attribute type
 trans_delimiters : list, optional
 List of delimiters to look for in transcriptions, defaults
 to ``.``, ``;``, and ``,``

 Returns

 str
 Attribute type that had the most success in parsing the
 values specified
 """
 if trans_delimiters is None:
 trans_delimiters = ['.',' ', ';', ',']
 probable_values = {x: 0 for x in Attribute.ATT_TYPES}
 for i,v in enumerate(values):
 try:
 t = float(v)
 probable_values['numeric'] += 1
 continue
 except ValueError:
 for d in trans_delimiters:
 if d in v:
 probable_values['tier'] += 1
 break
 else:
 if v in [v2 for j,v2 in enumerate(values) if i != j]:
 probable_values['factor'] += 1
 else:
 probable_values['spelling'] += 1
 return max(probable_values.items(), key=operator.itemgetter(1))[0]

 @staticmethod

 def sanitize_name(name):
[docs] """
 Sanitize a display name into a Python-readable attribute name

 Parameters

 name : string
 Display name to sanitize

 Returns

 str
 Sanitized name
 """
 return re.sub('\W','',name.lower())

 def __hash__(self):

 return hash(self.name)

 def __repr__(self):
 return '<Attribute of type {} with name \'{}\'>'.format(self.att_type,self.name)

 def __str__(self):
 return self.display_name

 def __eq__(self,other):
 if isinstance(other,Attribute):
 if self.name == other.name:
 return True
 if isinstance(other,str):
 if self.name == other:
 return True
 return False

 @property
 def display_name(self):
 if self._display_name is not None:
 return self._display_name
 return self.name.title()

 @property
 def default_value(self):
 return self._default_value

 @default_value.setter
 def default_value(self, value):
 self._default_value = value
 self._range = set([value])

 @property
 def range(self):
 return self._range

 def update_range(self,value):
[docs] """
 Update the range of the Attribute with the value specified.
 If the attribute is a Factor, the value is added to the set of levels.
 If the attribute is Numeric, the value expands the minimum and
 maximum values, if applicable. If the attribute is a Tier, the
 value (a segment) is added to the set of segments allowed. If
 the attribute is Spelling, nothing is done.

 Parameters

 value : object
 Value to update range with, the type depends on the attribute
 type
 """
 if value is None:
 return
 if self.att_type == 'numeric':
 if isinstance(value, str):
 try:
 value = float(value)
 except ValueError:
 self.att_type = 'spelling'
 self._range = None
 return
 if value < self._range[0]:
 self._range[0] = value
 elif value > self._range[1]:
 self._range[1] = value
 elif self.att_type == 'factor':
 self._range.add(value)
 #if len(self._range) > 1000:
 # self.att_type = 'spelling'
 # self._range = None
 elif self.att_type == 'tier':
 if isinstance(self._range, list):
 self._range = set(self._range)
 self._range.update([x for x in value])

class Inventory(object):

[docs] """
 Inventories contain information about a Corpus' segmental inventory.
 In many cases, they are similar to FeatureMatrices, but more tailored
 to a specific corpus. Where a FeatureMatrix would deal in feature
 specifications, inventories will deal primarily in sets of segments.

 Parameters

 data : dict, optional
 Mapping from segment symbol to Segment objects

 Attributes

 features : list
 List of all features used as specifications for segments
 possible_values : set
 Set of values that segments use for features
 stresses : dict
 Mapping of stress values to segments that bear that stress
 places : dict
 Mapping from place of articulation labels to sets of segments
 manners : dict
 Mapping from manner of articulation labels to sets of segments
 height : dict
 Mapping from vowel height labels to sets of segments
 backness : dict
 Mapping from vowel backness labels to sets of segments
 vowel_feature : str
 Feature value (i.e., '+voc') that separates vowels from consonants
 voice_feature : str
 Feature value (i.e., '+voice') that codes voiced obstruents
 diph_feature : str
 Feature value (i.e., '+diphthong' or '.high') that separates
 diphthongs from monophthongs
 rounded_feature : str
 Feature value (i.e., '+round') that codes rounded vowels
 """
 def __init__(self, data = None):
 if data is None:
 self._data = {'#' : Segment('#')}
 else:
 self._data = data
 self.features = []
 self.possible_values = set()
 self.stresses = collections.defaultdict(set)
 self.places = collections.OrderedDict()
 self.manners = collections.OrderedDict()
 self.height = collections.OrderedDict()
 self.backness = collections.OrderedDict()
 self.vowel_feature = None
 self.voice_feature = None
 self.diph_feature = None
 self.rounded_feature = None

 def __setstate__(self, state):
 if 'stresses' not in state:
 state['stresses'] = collections.OrderedDict()
 if 'places' not in state:
 state['places'] = collections.OrderedDict()
 if 'manners' not in state:
 state['manners'] = collections.OrderedDict()
 if 'height' not in state:
 state['height'] = collections.OrderedDict()
 if 'backness' not in state:
 state['backness'] = collections.OrderedDict()
 if 'vowel_feature' not in state:
 state['vowel_feature'] = None
 if 'voice_feature' not in state:
 state['voice_feature'] = None
 if 'diph_feature' not in state:
 state['diph_feature'] = None
 if 'rounded_feature' not in state:
 state['rounded_feature'] = None
 self.__dict__.update(state)

 def __len__(self):
 return len(self._data.keys())

 def keys(self):
 return self._data.keys()

 def values(self):
 return self._data.values()

 def items(self):
 return self._data.items()

 def __getitem__(self, key):
 if isinstance(key, slice):
 return sorted(self._data.keys())[key]
 return self._data[key]

 def __setitem__(self, key, value):
 self._data[key] = value

 def __iter__(self):
 for k in sorted(self._data.keys()):
 yield self._data[k]

 def __contains__(self, item):
 if isinstance(item, str):
 return item in self._data.keys()
 elif isinstance(item, Segment):
 return item.symbol in self._data.keys()
 return False

 def valid_feature_strings(self):
[docs] """
 Get all combinations of ``possible_values`` and ``features``

 Returns

 list
 List of valid feature strings
 """
 strings = []
 for v in self.possible_values:
 for f in self.features:
 strings.append(v+f)
 return strings

 def find_min_feature_pairs(self, features, others = None):

[docs] """
 Find sets of segments that differ only in certain features,
 optionally limited by a feature specification

 Parameters

 features : list
 List of features (i.e. 'back' or 'round')
 others : list, optional
 Feature specification to limit sets

 Returns

 dict
 Dictionary with keys that correspond to the values of ``features``
 and values that are the set of segments with those feature values
 """
 plus_segs = []
 minus_segs = []
 output = collections.defaultdict(list)
 redundant = self.get_redundant_features(features, others)
 for seg in self:
 try:
 if any(seg[f] not in set('+-') for f in features):
 continue
 except KeyError:
 continue
 if not seg.feature_match(others):
 continue
 for seg2 in self:
 if seg == seg2:
 continue
 try:
 if seg.minimal_difference(seg2, features + redundant):
 break
 except KeyError:
 continue
 else:
 continue
 if seg not in output[tuple(seg[f] for f in features)]:
 output[tuple(seg[f] for f in features)].append(seg)
 if seg2 not in output[tuple(seg2[f] for f in features)]:
 output[tuple(seg2[f] for f in features)].append(seg2)
 return output

 def get_redundant_features(self, features, others = None):

[docs] """
 Autodetects redundent features, with the ability to subset
 the segments

 Parameters

 features : list
 List of features to find other features that consistently
 covary with them
 others : list, optional
 Feature specification that specifies a subset to look at

 Returns

 list
 List of redundant features
 """
 redundant_features = []
 if isinstance(features, str):
 features = [features]
 if others is None:
 others = []
 other_feature_names = [x[1:] for x in others]
 for f in self.features:
 if f in features:
 continue
 if f in other_feature_names:
 continue
 feature_values = collections.defaultdict(set)
 for seg in self:
 if others is not None:
 if not seg.feature_match(others):
 continue
 if seg == '#':
 continue
 try:
 value = tuple(seg[x] for x in features)
 except KeyError:
 continue
 other_value = seg[f]
 feature_values[value].add(other_value)
 if any(len(x) > 1 for x in feature_values.values()):
 break
 if any(len(x) > 1 for x in feature_values.values()):
 continue
 redundant_features.append(f)
 return redundant_features

 def features_to_segments(self, feature_description):

[docs] """
 Given a feature description, return the segments in the inventory
 that match that feature description

 Feature descriptions should be either lists, such as
 ['+feature1', '-feature2'] or strings that can be separated into
 lists by ',', such as '+feature1,-feature2'.

 Parameters

 feature_description : string or list
 Feature values that specify the segments, see above for format

 Returns

 list of Segments
 Segments that match the feature description

 """
 segments = []
 if isinstance(feature_description, str):
 feature_description = feature_description.split(',')
 for k,v in self._data.items():
 if v.feature_match(feature_description):
 segments.append(k)
 return segments

 def specify(self, specifier):

[docs] """
 Specify segments in the inventory using a FeatureMatrix

 Parameters

 specifier : FeatureMatrix
 Specifier to use for updating feature specifications
 """
 if specifier is None:
 for k in self._data.keys():
 self._data[k].specify({})
 self.features = list()
 self.possible_values = set()
 self.cons_columns = collections.OrderedDict()
 self.cons_rows = collections.OrderedDict()
 self.vow_columns = collections.OrderedDict()
 self.vow_rows = collections.OrderedDict()
 self.voice_feature = None
 self.vowel_feature = None
 self.diph_feature = None
 self.rounded_feature = None
 else:
 for k in self._data.keys():
 try:
 self._data[k].specify(specifier[k].features)
 except KeyError:
 self._data[k].specify({})
 self.features = specifier.features
 self.possible_values = specifier.possible_values

 self.voice_feature = specifier.voice_feature
 self.vowel_feature = specifier.vowel_feature
 self.diph_feature = specifier.diph_feature
 self.rounded_feature = specifier.rounded_feature

 # Calculate which segments are in which dict
 # (pre calculate feature matches)

 self.places = collections.OrderedDict()
 for k,v in specifier.places.items():
 if len(v) == 0:
 self.places[k] = set()
 else:
 self.places[k] = set(self.features_to_segments(v))

 self.manners = collections.OrderedDict()
 for k,v in specifier.manners.items():
 if len(v) == 0:
 self.manners[k] = set()
 else:
 self.manners[k] = set(self.features_to_segments(v))

 self.height = collections.OrderedDict()
 for k,v in specifier.height.items():
 if len(v) == 0:
 self.height[k] = set()
 else:
 self.height[k] = set(self.features_to_segments(v))

 self.backness = collections.OrderedDict()
 for k,v in specifier.backness.items():
 if len(v) == 0:
 self.backness[k] = set()
 else:
 self.backness[k] = set(self.features_to_segments(v))

 def categorize(self, seg):

[docs] """
 Categorize a segment into consonant/vowel, place of articulation,
 manner of articulation, voicing, vowel height, vowel backness, and vowel
 rounding.

 For consonants, the category is of the format:

 ('Consonant', PLACE, MANNER, VOICING)

 For vowels, the category is of the format:

 ('Vowel', HEIGHT, BACKNESS, ROUNDED)

 Diphthongs are categorized differently:

 ('Diphthong', 'Vowel')

 Parameters

 seg : Segment
 Segment to categorize

 Returns

 tuple or None
 Returns categories according to the formats above, if any are
 unable to be calculated, returns None in those places.
 Returns None if a category cannot be found.
 """
 if seg == '#':
 return None
 seg_features = seg.features
 if seg.feature_match(self.vowel_feature):
 category = ['Vowel']

 if self.diph_feature != [] and seg.feature_match(self.diph_feature):
 category.insert(0,'Diphthong')
 return category

 for k,v in self.height.items():
 if seg.symbol in v:
 category.append(k)
 break
 else:
 category.append(None)
 for k,v in self.backness.items():
 if seg.symbol in v:
 category.append(k)
 break
 else:
 category.append(None)

 if seg.feature_match(self.rounded_feature):
 category.append('Rounded')
 else:
 category.append('Unrounded')
 else:
 category = ['Consonant']

 for k,v in self.places.items():
 if seg.symbol in v:
 category.append(k)
 break
 else:
 category.append(None)

 for k,v in self.manners.items():
 if seg.symbol in v:
 category.append(k)
 break
 else:
 category.append(None)

 if seg.feature_match(self.voice_feature):
 category.append('Voiced')
 else:
 category.append('Voiceless')
 return category

class Corpus(object):

[docs] """
 Lexicon to store information about Words, such as transcriptions,
 spellings and frequencies

 Parameters

 name : string
 Name to identify Corpus

 Attributes

 name : str
 Name of the corpus, used only for easy of reference

 attributes : list of Attributes
 List of Attributes that Words in the Corpus have

 wordlist : dict
 Dictionary where every key is a unique string representing a word in a
 corpus, and each entry is a Word object

 words : list of strings
 All the keys for the wordlist of the Corpus

 specifier : FeatureSpecifier
 See the FeatureSpecifier object

 inventory : Inventory
 Inventory that contains information about segments in the Corpus
 """

 #__slots__ = ['name', 'wordlist', 'specifier',
 # 'inventory', 'orthography', 'custom', 'feature_system',
 # 'has_frequency_value','has_spelling_value','has_transcription_value']
 basic_attributes = ['spelling','transcription','frequency']
 def __init__(self, name):
 self.name = name
 self.wordlist = dict()
 self.specifier = None
 self.inventory = Inventory()
 self.has_frequency = True
 self.has_spelling = False
 self.has_wordtokens = False
 self._attributes = [Attribute('spelling','spelling'),
 Attribute('transcription','tier'),
 Attribute('frequency','numeric')]

 @property
 def has_transcription(self):
 for a in self.attributes:
 if a.att_type == 'tier' and len(a.range) > 0:
 return True
 return False

 def __eq__(self, other):
 if not isinstance(other,Corpus):
 return False
 if self.wordlist != other.wordlist:
 return False
 return True

 def __iadd__(self, other):
 for a in other.attributes:
 if a not in self.attributes:
 self.add_attribute(a)
 for w in other:
 try:
 sw = self.find(w.spelling)
 sw.frequency += w.frequency
 for a in self.attributes:
 if getattr(sw, a.name) == a.default_value and getattr(w, a.name) != a.default_value:
 setattr(sw, a.name, getattr(w, a.name))
 sw.wordtokens += w.wordtokens
 except KeyError:
 self.add_word(w)
 if self.specifier is None and other.specifier is not None:
 self.set_feature_matrix(other.specifier)
 return self

 def key(self, word):
 key = word.spelling
 if self[key] == word:
 return key
 count = 0
 while True:
 count += 1
 key = '{} ({})'.format(word.spelling,count)
 try:
 if self[key] == word:
 return key
 except KeyError:
 break

 def keys(self):
 for k in sorted(self.wordlist.keys()):
 yield k

 def subset(self, filters):
[docs] """
 Generate a subset of the corpus based on filters.

 Filters for Numeric Attributes should be tuples of an Attribute
 (of the Corpus), a comparison callable (``__eq__``, ``__neq__``,
 ``__gt__``, ``__gte__``, ``__lt__``, or ``__lte__``) and a value
 to compare all such attributes in the Corpus to.

 Filters for Factor Attributes should be tuples of an Attribute,
 and a set of levels for inclusion in the subset.

 Other attribute types cannot currently be the basis for filters.

 Parameters

 filters : list of tuples
 See above for format

 Returns

 Corpus
 Subset of the corpus that matches the filter conditions
 """

 new_corpus = Corpus('')
 new_corpus._attributes = [Attribute(x.name, x.att_type, x.display_name)
 for x in self.attributes]
 for word in self:
 for f in filters:
 if f[0].att_type == 'numeric':
 op = f[1]
 if not op(getattr(word,f[0].name), f[2]):
 break
 elif f[0].att_type == 'factor':
 if getattr(word,f[0].name) not in f[1]:
 break
 else:
 new_corpus.add_word(word)
 return new_corpus

 @property

 def attributes(self):
 return self._attributes

 @property
 def words(self):
 return sorted(list(self.wordlist.keys()))

 def features_to_segments(self, feature_description):
[docs] """
 Given a feature description, return the segments in the inventory
 that match that feature description

 Feature descriptions should be either lists, such as
 ['+feature1', '-feature2'] or strings that can be separated into
 lists by ',', such as '+feature1,-feature2'.

 Parameters

 feature_description : string or list
 Feature values that specify the segments, see above for format

 Returns

 list of Segments
 Segments that match the feature description

 """
 segments = list()
 if isinstance(feature_description,str):
 feature_description = feature_description.split(',')
 for k,v in self.inventory.items():
 if v.feature_match(feature_description):
 segments.append(k)
 return segments

 def segment_to_features(self, seg):

[docs] """
 Given a segment, return the features for that segment.

 Parameters

 seg : string or Segment
 Segment or Segment symbol to look up

 Returns

 dict
 Dictionary with keys as features and values as featue values
 """
 try:
 features = self.specifier.matrix[seg]
 except TypeError:
 features = self.specifier.matrix[seg.symbol]
 return features

 def add_abstract_tier(self, attribute, spec):

[docs] """
 Add a abstract tier (currently primarily for generating CV skeletons
 from tiers).

 Specifiers for abstract tiers should be dictionaries with keys that
 are the abstract symbol (such as 'C' or 'V') and the values are
 iterables of segments that should count as that abstract symbols
 (such as all consonants or all vowels).

 Currently only operates on the ``transcription`` of words.

 Parameters

 attribute : Attribute
 Attribute to add/replace

 spec : dict
 Mapping for creating abstract tier
 """
 for i,a in enumerate(self._attributes):
 if attribute.name == a.name:
 self._attributes[i] = attribute
 break
 else:
 self._attributes.append(attribute)
 for word in self:
 word.add_abstract_tier(attribute.name,spec)
 attribute.update_range(getattr(word,attribute.name))

 def add_attribute(self, attribute, initialize_defaults = False):

[docs] """
 Add an Attribute of any type to the Corpus or replace an existing Attribute.

 Parameters

 attribute : Attribute
 Attribute to add or replace

 initialize_defaults : boolean
 If True, words will have this attribute set to the ``default_value``
 of the attribute, defaults to False
 """
 for i,a in enumerate(self._attributes):
 if attribute.name == a.name:
 self._attributes[i] = attribute
 break
 else:
 self._attributes.append(attribute)
 if initialize_defaults:
 for word in self:
 word.add_attribute(attribute.name,attribute.default_value)

 def add_count_attribute(self, attribute, sequence_type, spec):

[docs] """
 Add an Numeric Attribute that is a count of a segments in a tier that
 match a given specification.

 The specification should be either a list of segments or a string of
 the format '+feature1,-feature2' that specifies the set of segments.

 Parameters

 attribute : Attribute
 Attribute to add or replace

 sequence_type : string
 Specifies whether to use 'spelling', 'transcription' or the name of a
 transcription tier to use for comparisons

 spec : list or str
 Specification of what segments should be counted
 """
 if isinstance(attribute,str):
 attribute = Attribute(attribute,'numeric')
 for i,a in enumerate(self._attributes):
 if attribute.name == a.name:
 self._attributes[i] = attribute
 break
 else:
 self._attributes.append(attribute)
 if isinstance(spec, str):
 tier_segs = self.features_to_segments(spec)
 else:
 tier_segs = spec
 for word in self:
 v = sum([1 for x in getattr(word, sequence_type) if x in tier_segs])
 setattr(word, attribute.name, v)
 attribute.update_range(v)

 def add_tier(self, attribute, spec):

[docs] """
 Add a Tier Attribute based on the transcription of words as a new Attribute
 that includes all segments that match the specification.

 The specification should be either a list of segments or a string of
 the format '+feature1,-feature2' that specifies the set of segments.

 Parameters

 attribute : Attribute
 Attribute to add or replace

 spec : list or str
 Specification of what segments should be counted
 """
 if isinstance(attribute,str):
 attribute = Attribute(attribute, 'tier')
 for i,a in enumerate(self._attributes):
 if attribute.name == a.name:
 self._attributes[i] = attribute
 break
 else:
 self._attributes.append(attribute)
 if isinstance(spec, str):
 tier_segs = self.features_to_segments(spec)
 else:
 tier_segs = spec
 attribute._range = tier_segs
 for word in self:
 word.add_tier(attribute.name,tier_segs)

 def remove_word(self, word_key):

[docs] """
 Remove a Word from the Corpus using its identifier in the Corpus.

 If the identifier is not found, nothing happens.

 Parameters

 word_key : string
 Identifier to use to remove the Word
 """
 try:
 del self.wordlist[word_key]
 except KeyError:
 pass

 def remove_attribute(self, attribute):

[docs] """
 Remove an Attribute from the Corpus and from all its Word objects.

 Parameters

 attribute : Attribute
 Attribute to remove
 """
 if isinstance(attribute,str):
 name = attribute
 else:
 name = attribute.name
 if name in self.basic_attributes:
 return
 for i in range(len(self._attributes)):
 if self._attributes[i].name == name:
 del self._attributes[i]
 break
 else:
 return
 for word in self:
 word.remove_attribute(name)

 def __getstate__(self):

 state = self.__dict__.copy()
 return state

 def __setstate__(self,state):
 try:
 if 'inventory' not in state:
 state['inventory'] = state['_inventory']
 if not isinstance(state['inventory'], Inventory):
 state['inventory'] = Inventory(state['inventory'])
 if 'has_spelling' not in state:
 state['has_spelling'] = state['has_spelling_value']
 if 'has_transcription' in state:
 del state['has_transcription']
 if 'has_wordtokens' not in state:
 state['has_wordtokens'] = False
 if '_freq_base' in state:
 del state['_freq_base']
 if '_attributes' not in state:
 state['_attributes'] = [Attribute('spelling','spelling'),
 Attribute('transcription','tier'),
 Attribute('frequency','numeric')]
 try:
 tiers = state.pop('_tiers')
 for t in tiers:
 state['_attributes'].append(Attribute(t,'tier'))
 except KeyError:
 pass
 self.__dict__.update(state)
 self._specify_features()
 #Backwards compatability
 for k,w in self.wordlist.items():
 w._corpus = self
 for a in self.attributes:
 if a.att_type == 'tier':
 if not isinstance(getattr(w,a.name), Transcription):
 setattr(w,a.name,Transcription(getattr(w,a.name)))
 else:
 try:
 a.update_range(getattr(w,a.name))
 except AttributeError as e:
 print(k)
 print(w.__dict__)
 raise(e)
 except Exception as e:
 raise(e)
 raise(CorpusIntegrityError("An error occurred while loading the corpus: {}.\nPlease redownload or recreate the corpus.".format(str(e))))

 def _specify_features(self):
 self.inventory.specify(self.specifier)

 def check_coverage(self):
[docs] """
 Checks the coverage of the specifier (FeatureMatrix) of the Corpus over the
 inventory of the Corpus

 Returns

 list
 List of segments in the inventory that are not in the specifier
 """
 if not self.specifier is not None:
 return []
 return [x for x in self.inventory.keys() if x not in self.specifier]

 def iter_words(self):

[docs] """
 Sorts the keys in the corpus dictionary,
 then yields the values in that order

 Returns

 generator
 Sorted Words in the corpus
 """
 sorted_list = sorted(self.wordlist.keys())
 for word in sorted_list:
 yield self.wordlist[word]

 def iter_sort(self):

[docs] """
 Sorts the keys in the corpus dictionary, then yields the
 values in that order

 Returns

 generator
 Sorted Words in the corpus

 """
 sorted_list = sorted(self.wordlist.keys())
 for word in sorted_list:
 yield self.wordlist[word]

 def set_feature_matrix(self,matrix):

[docs] """
 Set the feature system to be used by the corpus and make sure
 every word is using it too.

 Parameters

 matrix : FeatureMatrix
 New feature system to use in the corpus
 """
 self.specifier = matrix
 self._specify_features()

 def get_random_subset(self, size, new_corpus_name='randomly_generated'):

[docs] """Get a new corpus consisting a random selection from the current corpus

 Parameters

 size : int
 Size of new corpus

 new_corpus_name : str

 Returns

 new_corpus : Corpus
 New corpus object with len(new_corpus) == size
 """
 new_corpus = Corpus(new_corpus_name)
 while len(new_corpus) < size:
 word = self.random_word()
 new_corpus.add_word(word, allow_duplicates=False)
 new_corpus.specifier = self.specifier
 return new_corpus

 def add_word(self, word, allow_duplicates=True):

[docs] """Add a word to the Corpus.
 If allow_duplicates is True, then words with identical spelling can
 be added. They are kept sepearate by adding a "silent" number to them
 which is never displayed to the user. If allow_duplicates is False,
 then duplicates are simply ignored.

 Parameters

 word : Word
 Word object to be added

 allow_duplicates : bool
 If False, duplicate Words with the same spelling as an existing
 word in the corpus will not be added

 """
 word._corpus = self
 #If the word doesn't exist, add it
 try:
 check = self.find(word.spelling, keyerror=True)
 if allow_duplicates:
 #Some words have more than one entry in a corpus, e.g. "live" and "live"
 #so they need to be assigned unique keys

 n = 0
 while True:
 n += 1
 #key = '{} ({})'.format(word.spelling.lower(),n)
 key = '{} ({})'.format(word.spelling,n)
 try:
 check = self.find(key, keyerror=True)
 except KeyError:
 #if isinstance(check, EmptyWord):
 self.wordlist[key] = word
 break
 else:
 return
 except KeyError:
 self.wordlist[word.spelling] = word
 if word.spelling is not None:
 #self.orthography.update(word.spelling)
 if not self.has_spelling:
 self.has_spelling = True

 if word.transcription is not None:
 self.update_inventory(word.transcription)
 word.transcription._list = [self.inventory[x].symbol for x in word.transcription._list]
 for d in word.descriptors:
 if d not in self.attributes:
 if isinstance(getattr(word,d),str):
 self._attributes.append(Attribute(d,'factor'))
 elif isinstance(getattr(word,d),Transcription):
 self._attributes.append(Attribute(d,'tier'))
 elif isinstance(getattr(word,d),(int, float)):
 self._attributes.append(Attribute(d,'numeric'))
 for a in self.attributes:
 if not hasattr(word,a.name):
 word.add_attribute(a.name, a.default_value)
 a.update_range(getattr(word,a.name))

 def update_inventory(self, transcription):

[docs] """
 Update the inventory of the Corpus to ensure it contains all
 the segments in the given transcription

 Parameters

 transcription : list
 Segment symbols to add to the inventory if needed
 """
 for s in transcription:
 if isinstance(s, str):
 if s not in self.inventory:
 self.inventory[s] = Segment(s)
 if transcription.stress_pattern:
 for k,v in transcription.stress_pattern.items():
 self.inventory.stresses[v].add(transcription[k])

 def get_or_create_word(self, **kwargs):

[docs] """
 Get a Word object that has the spelling and transcription
 specified or create that Word, add it to the Corpus and return it.

 Parameters

 spelling : string
 Spelling to search for

 transcription : list
 Transcription to search for

 Returns

 Word
 Existing or newly created Word with the spelling and transcription
 specified
 """
 try:
 spelling = kwargs['spelling']
 if isinstance(spelling,tuple):
 spelling = spelling[1]
 except KeyError:
 return None

 words = self.find_all(spelling)
 for w in words:
 for k,v in kwargs.items():
 if isinstance(v,tuple):
 v = v[1]
 if isinstance(v,list):
 v = Transcription(v)
 if getattr(w,k) != v:
 break
 else:
 return w
 else:
 word = Word(**kwargs)
 self.add_word(word)
 return word

 def random_word(self):

[docs] """Return a randomly selected Word

 Returns

 Word
 Random Word
 """
 word = random.choice(list(self.wordlist.keys()))
 return self.wordlist[word]

 def get_features(self):

[docs] """
 Get a list of the features used to describe Segments

 Returns

 list of str

 """
 return self.specifier.features

 def find(self, word, keyerror=True, ignore_case = False):

[docs] """Search for a Word in the corpus
 If keyerror == True, then raise a KeyError if the word is not found
 If keyerror == False, then return an EmptyWord if the word is not found

 Parameters

 word : str
 String representing the spelling of the word (not transcription)
 keyerror : bool
 Set whether a KeyError should be raised if a word is not found

 Returns

 Word
 Word that matches the spelling specified

 Raises

 KeyError
 If keyerror == True and word is not found
 """
 patterns = [word]
 if ignore_case:
 patterns.append(word.lower())
 patterns.append(word.title())
 for w in patterns:
 key = w
 try:
 result = self.wordlist[w]
 return result
 except KeyError:
 try:
 key = '{} (1)'.format(w)
 result = [self.wordlist[key]]
 return result
 except KeyError:
 pass

 raise KeyError('The word \"{}\" is not in the corpus'.format(word))

 def find_all(self, spelling):

[docs] """
 Find all Word objects with the specified spelling

 Parameters

 spelling : string
 Spelling to look up

 Returns

 list of Words
 Words that have the specified spelling
 """
 words = list()
 try:
 words.append(self.wordlist[spelling])
 count = 0
 while True:
 count += 1
 try:
 words.append(self.wordlist['{} ({})'.format(spelling,count)])
 except KeyError:
 break
 except KeyError:
 pass
 return words

 def __contains__(self,item):

 return self.wordlist.__contains__(item)

 def __len__(self):
 return len(self.wordlist)

 def __setitem__(self,item,value):
 self.wordlist[item] = value

 def __getitem__(self,item):
 return self.wordlist[item]

 def __iter__(self):
 return iter(self.wordlist.values())

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/corpus/classes/spontaneous.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.corpus.classes.spontaneous

from collections import OrderedDict

from .lexicon import Transcription, Corpus, Attribute

import os
import wave
import math

class Speaker(object):
[docs] """
 Speaker objects contain information about the producers of WordTokens
 or Discourses

 Parameters

 name : string
 Name to identify the Speaker

 Attributes

 name : string
 Name of Speaker

 gender : string
 Gender of Speaker

 age : int or string
 Age of Speaker
 """
 def __init__(self,name, **kwargs):

 self.name = name

 self.gender = None
 self.age = None

 for k,v in kwargs.items():
 setattr(self,k,v)

 def __repr__(self):
 return '<Speaker object with name \'{}\>'.format(self.name)

 def __str__(self):
 return str(self.name)

 def __hash__(self):
 return hash(self.name)

 def __eq__(self, other):
 if isinstance(other,Speaker):
 return self.name == other.name
 else:
 return self.name == other

 def __ne__(self, other):
 return not self.__eq__(other)

 def __lt__(self, other):
 return self.name < other.name

 def __gt__(self, other):
 return self.name > other.name

 def __le__(self, other):
 return self.name <= other.name

 def __ge__(self, other):
 return self.name >= other.name

class SpontaneousSpeechCorpus(object):

[docs] """
 SpontaneousSpeechCorpus objects a collection of Discourse objects and
 Corpus objects for frequency information.

 Parameters

 name : str
 Name to identify the SpontaneousSpeechCorpus

 directory : str
 Directory associated with the SpontaneousSpeechCorpus

 Attributes

 lexicon : Corpus
 Corpus object with token frequencies from its Discourses

 discourses : dict
 Discourses of the SpontaneousSpeechCorpus indexed by the names of
 the Discourses
 """
 def __init__(self,name,directory):
 self.name = name
 self.directory = directory

 self.lexicon = Corpus(name+' lexicon')
 self.lexicon.has_wordtokens = True

 self.discourses = OrderedDict()

 def __iter__(self):
 for d in self.discourses.values():
 yield d

 def __setstate__(self,state):
 self.__dict__.update(state)
 self.lexicon.has_wordtokens = True

 def add_discourse(self, discourse):
[docs] """
 Add a discourse to the SpontaneousSpeechCorpus

 Parameters

 discourse : Discourse
 Discourse to be added
 """
 self.discourses[str(discourse)] = discourse
 #self.lexicon += discourse.lexicon

class Discourse(object):

[docs] """
 Discourse objects are collections of linear text with word tokens

 Parameters

 name : str
 Identifier for the Discourse

 speaker : Speaker
 Speaker producing the tokens/text (defaults to an empty Speaker)

 Attributes

 attributes : list of Attributes
 The Discourse object tracks all of the attributes used by its
 WordToken objects

 words : dict of WordTokens
 The keys are the beginning times of the WordTokens (or their
 place in a text if it's not a speech discourse) and the values
 are the WordTokens
 """
 def __init__(self, **kwargs):
 self.name = ''
 self.speaker = Speaker(None)
 self.wav_path = None

 for k,v in kwargs.items():
 setattr(self,k,v)

 self._attributes = [Attribute('spelling','spelling','Spelling'),
 Attribute('transcription','tier','Transcription'),
 Attribute('begin','numeric','Begin'),
 Attribute('end','numeric', 'End')]

 self.words = dict()

 self.lexicon = Corpus(self.name + ' lexicon')
 self.lexicon.has_wordtokens = True

 @property
 def attributes(self):
 return self._attributes

 def keys(self):
[docs] """
 Returns a sorted list of keys for looking up WordTokens

 Returns

 list
 List of begin times or indices of WordTokens in the Discourse
 """
 return sorted(self.words.keys())

 def __len__(self):

 return len(self.words.keys())

 def __eq__(self, other):
 if not isinstance(other,Discourse):
 return False
 if self.name != other.name:
 return False
 if self.speaker != other.speaker:
 return False
 return True

 def __ne__(self, other):
 return not self.__eq__(other)

 def __lt__(self, other):
 return self.name < other.name

 def __gt__(self, other):
 return self.name > other.name

 def __le__(self, other):
 return self.name <= other.name

 def __ge__(self, other):
 return self.name >= other.name

 def __str__(self):
 return self.name

 def add_word(self, wordtoken):
[docs] """
 Adds a WordToken to the Discourse

 Parameters

 wordtoken : WordToken
 WordToken to be added
 """
 wordtoken.discourse = self
 self.words[wordtoken.begin] = wordtoken
 for a in self.attributes:
 if not hasattr(wordtoken,a.name):
 wordtoken.add_attribute(a.name, a.default_value)
 a.update_range(getattr(wordtoken,a.name))

 def add_attribute(self, attribute, initialize_defaults = False):

[docs] """
 Add an Attribute of any type to the Discourse or replace an existing Attribute.

 Parameters

 attribute : Attribute
 Attribute to add or replace

 initialize_defaults : bool
 If True, word tokens will have this attribute set to the ``default_value``
 of the attribute, defaults to False
 """
 for i,a in enumerate(self._attributes):
 if attribute.name == a.name:
 self._attributes[i] = attribute
 break
 else:
 self._attributes.append(attribute)
 if initialize_defaults:
 for word in self:
 word.add_attribute(attribute.name,attribute.default_value)

 def __getitem__(self, key):

 if isinstance(key, float) or isinstance(key, int):
 #Find the word token at a given time
 keys = filter(lambda x: x >= key,self.words.keys())
 t = min(keys,key = lambda x: x - key)
 return self.words[t]
 raise(TypeError)

 @property
 def has_audio(self):
 """
 Checks whether the Discourse is associated with a .wav file

 Returns

 bool
 True if a .wav file is associated and if that file exists,
 False otherwise
 """
 if self.wav_path is not None and os.path.exists(self.wav_path):
 return True
 return False

 def __setstate__(self,state):
 if 'wav_path' not in state:
 state['wav_path'] = None
 self.__dict__.update(state)
 if hasattr(self,'lexicon'):
 self.lexicon.has_wordtokens = True
 for wt in self:
 wt.wordtype.wordtokens.append(wt)

 def __iter__(self):
 for k in sorted(self.words.keys()):
 yield self.words[k]

 def _extract_tokens(self, tokens, output_dir):
 if not self.has_audio():
 return
 filenames = []
 with wave.open(self.wav_path,'r') as w_in:
 sr = w_in.getframerate()
 bitdepth = w_in.getsampwidth()
 for t in tokens:
 wt = self[t]
 name = '{}_{}.wav'.format(self.name,wt.begin)
 wt.wav_path = os.path.join(output_dir,name)
 filenames.append(wt.wav_path)
 if os.path.exists(wt.wav_path):
 continue

 begpos = int(wt.begin * sr)
 endpos = int(wt.end * sr)
 duration = endpos - begpos
 w_in.setpos(begpos)
 data = w_in.readframes(duration)
 with wave.open(wt.wav_path,'w') as w_out:
 w_out.setnchannels(1)
 w_out.setframerate(sr)
 w_out.setsampwidth(bitdepth)
 w_out.writeframes(data)
 return filenames

 def create_lexicon(self):
[docs] """
 Create a Corpus object from the Discourse

 Returns

 Corpus
 Corpus with spelling and transcription from previous Corpus
 and token frequency from the Discourse

 """
 corpus = Corpus(self.name + ' lexicon')
 corpus.has_wordtokens = True
 for token in self:
 word = corpus.get_or_create_word(token.wordtype.spelling,token.wordtype.transcription)
 word.frequency += 1
 token.wordtype = word
 word.wordtokens.append(token)
 return corpus

 def find_wordtype(self, wordtype):

[docs] """
 Look up all WordTokens that are instances of a Word

 Parameters

 wordtype : Word
 Word to look up

 Returns

 list of WordTokens
 List of the given Word's WordTokens in this Discourse
 """
 return list(x for x in self if x.wordtype == wordtype)

 def _calc_frequency(self,query):

 if isinstance(query, tuple):
 count = 0
 base = query[0]
 for x in self.find_wordtype(base):
 cur = query[0]
 for i in range(1,len(query)):
 if cur.following_token != query[i]:
 break
 cur = cur.following_token
 else:
 count += 1
 return count
 elif isinstance(query, Word):
 return len(self.find_wordtype(query))

class WordToken(object):

[docs] """
 WordToken objects are individual productions of Words

 Parameters

 word : Word
 Word that the WordToken is associated with

 transcription : iterable of str
 Transcription for the WordToken (can be different than the
 transcription of the Word type). Defaults to None if not
 specified

 spelling : str
 Spelling for the WordToken (can be different than the
 spelling of the Word type). Defaults to None if not
 specified

 begin : float or int
 Beginning of the WordToken (can be specified as either in seconds
 of time or in position from the beginning of the Discourse)

 end : float or int
 End of the WordToken (can be specified as either in seconds
 of time or in position from the beginning of the Discourse)

 previous_token : WordToken
 The preceding WordToken in the Discourse, defaults to None if
 not specified

 following_token : WordToken
 The following WordToken in the Discourse, defaults to None if
 not specified

 discourse : Discourse
 Parent Discourse object that the WordToken belongs to

 speaker : Speaker
 The Speaker that produced the token

 Attributes

 transcription : Transcription
 The WordToken's transcription, or the word type's
 transcription if the WordToken's transcription is None

 spelling : str
 The WordToken's spelling, or the word type's
 spelling if the WordToken's spelling is None

 previous_token : WordToken
 The previous WordToken in the Discourse

 following_token : WordToken
 The following WordToken in the Discourse

 duration : float
 The duration of the WordToken

 """
 def __init__(self,**kwargs):
 self.wordtype = kwargs.pop('word',None)
 self.discourse = None
 self.speaker = None
 self.wavpath = None
 self._spelling = None
 self._transcription = None

 for key, value in kwargs.items():
 if key == 'transcription':
 key = '_transcription'
 elif key == 'spelling':
 key = '_spelling'
 if isinstance(value, tuple):
 att, value = value
 if att.att_type == 'numeric':
 try:
 value = float(value)
 except (ValueError, TypeError):
 value = float('nan')
 elif att.att_type == 'tier':
 value = Transcription(value)
 else:
 key = key.lower()
 if isinstance(value,list):
 #assume transcription type stuff
 value = Transcription(value)
 elif key != '_spelling':
 try:
 f = float(value)
 if not math.isnan(f) and not math.isinf(f):
 value = f
 except (ValueError, TypeError):
 pass
 setattr(self, key, value)

 def __getstate__(self):
 state = self.__dict__.copy()
 state['wavpath'] = None
 return state

 def __eq__(self, other):
 if not isinstance(other,WordToken):
 return False
 if self.wordtype != other.wordtype:
 return False
 if self.begin != other.begin:
 return False
 if self.end != other.end:
 return False
 if self.discourse != other.discourse:
 return False
 if self.speaker != other.speaker:
 return False
 return True

 def __str__(self):
 return str(self.wordtype)

 def __repr__(self):
 return '<WordToken: {}, {}, {}-{}>'.format(str(self.wordtype),
 str(self.transcription),self.begin,self.end)

 def add_attribute(self, tier_name, default_value):
 setattr(self, tier_name, default_value)

 #@property
 #def previous_token(self):
 # if self.discourse is not None and self.previous_token_time is not None:
 # return self.discourse[self.previous_token_time]
 # return None

 #@property
 #def following_token(self):
 # if self.discourse is not None and self.following_token_time is not None:
 # return self.discourse[self.following_token_time]
 # return None

 @property
 def duration(self):
 return self.end - self.begin

 @property
 def spelling(self):
 if self._spelling is not None:
 return self._spelling
 if self.wordtype is not None:
 return self.wordtype.spelling
 return None

 @property
 def transcription(self):
 if self._transcription is not None:
 return self._transcription
 if self.wordtype is not None:
 return self.wordtype.transcription
 return None

 #@property
 #def previous_conditional_probability(self):
 # if self.previous_token is not None:
 # return self.discourse.calc_frequency(
 # (self.previous_token.wordtype,self.wordtype)
 #) / self.discourse.calc_frequency(self.previous_token.wordtype)
 # return None

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/contextmanagers.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.contextmanagers

from corpustools.exceptions import PCTError, PCTPythonError
import math
import collections
import copy
import operator

from corpustools.corpus.classes.lexicon import Word

from corpustools.exceptions import PCTContextError

def ensure_context(context):
 if not isinstance(context, BaseCorpusContext):
 raise(PCTContextError('Context manager required for here, please see API documentation for more details.'))

[docs]class BaseCorpusContext(object):
 """
 Abstract Corpus context class that all other contexts inherit from.

 Parameters

 corpus : Corpus
 Corpus to form context from
 sequence_type : str
 Sequence type to evaluate algorithms on (i.e., 'transcription')
 type_or_token : str
 The type of frequency to use for calculations
 attribute : Attribute, optional
 Attribute to save results to for calculations involving all words
 in the Corpus
 frequency_threshold: float, optional
 If specified, ignore words below this token frequency
 """
 def __init__(self, corpus, sequence_type, type_or_token,
 attribute = None, frequency_threshold = 0):
 self.sequence_type = sequence_type
 self.type_or_token = type_or_token
 self.corpus = corpus
 self.attribute = attribute
 self._freq_base = {}
 self.length = None
 self.frequency_threshold = frequency_threshold

 @property
 def inventory(self):
 return self.corpus.inventory

 @property
 def specifier(self):
 return self.corpus.specifier

 def __enter__(self):
 if self.attribute is not None:
 self.corpus.add_attribute(self.attribute,initialize_defaults = False)
 return self

 def __len__(self):
 if self.length is not None:
 return self.length
 else:
 counter = 0
 for w in self:
 counter += 1
 self.length = counter
 return self.length

[docs] def get_frequency_base(self, gramsize = 1, halve_edges = False, probability = False):
 """
 Generate (and cache) frequencies for each segment in the Corpus.

 Parameters

 halve_edges : boolean
 If True, word boundary symbols ('#') will only be counted once
 per word, rather than twice. Defaults to False.

 gramsize : integer
 Size of n-gram to use for getting frequency, defaults to 1 (unigram)

 probability : boolean
 If True, frequency counts will be normalized by total frequency,
 defaults to False

 Returns

 dict
 Keys are segments (or sequences of segments) and values are
 their frequency in the Corpus
 """
 if (gramsize) not in self._freq_base:
 freq_base = collections.defaultdict(float)
 for word in self:
 tier = getattr(word, self.sequence_type)
 if self.sequence_type == 'spelling':
 seq = ['#'] + [x for x in tier] + ['#']
 else:
 seq = tier.with_word_boundaries()
 grams = zip(*[seq[i:] for i in range(gramsize)])
 for x in grams:
 if len(x) == 1:
 x = x[0]
 freq_base[x] += word.frequency
 freq_base['total'] = sum(value for value in freq_base.values())
 self._freq_base[(gramsize)] = freq_base
 freq_base = self._freq_base[(gramsize)]
 return_dict = { k:v for k,v in freq_base.items()}
 if halve_edges and '#' in return_dict:
 return_dict['#'] = (return_dict['#'] / 2) + 1
 if not probability:
 return_dict['total'] -= return_dict['#'] - 2
 if probability:
 return_dict = { k:v/freq_base['total'] for k,v in return_dict.items()}
 return return_dict

[docs] def get_phone_probs(self, gramsize = 1, probability = True, preserve_position = True, log_count = True):
 """
 Generate (and cache) phonotactic probabilities for segments in
 the Corpus.

 Parameters

 gramsize : integer
 Size of n-gram to use for getting frequency, defaults to 1 (unigram)

 probability : boolean
 If True, frequency counts will be normalized by total frequency,
 defaults to False

 preserve_position : boolean
 If True, segments will in different positions in the transcription
 will not be collapsed, defaults to True

 log_count : boolean
 If True, token frequencies will be logrithmically-transformed
 prior to being summed

 Returns

 dict
 Keys are segments (or sequences of segments) and values are
 their phonotactic probability in the Corpus
 """
 if (gramsize, preserve_position, log_count) not in self._freq_base:
 freq_base = collections.defaultdict(float)
 totals = collections.defaultdict(float)
 for word in self:
 freq = word.frequency
 if self.type_or_token != 'type' and log_count:
 freq = math.log(freq)
 grams = zip(*[getattr(word, self.sequence_type)[i:] for i in range(gramsize)])

 for i, x in enumerate(grams):
 #if len(x) == 1:
 # x = x[0]
 if preserve_position:
 x = (x,i)
 totals[i] += freq
 freq_base[x] += freq

 if not preserve_position:
 freq_base['total'] = sum(value for value in freq_base.values())
 else:
 freq_base['total'] = totals
 self._freq_base[(gramsize, preserve_position, log_count)] = freq_base

 freq_base = self._freq_base[(gramsize,preserve_position, log_count)]
 return_dict = { k:v for k,v in freq_base.items()}
 if probability and not preserve_position:
 return_dict = { k:v/freq_base['total'] for k,v in return_dict.items()}
 elif probability:
 return_dict = { k:v/freq_base['total'][k[1]] for k,v in return_dict.items() if k != 'total'}
 return return_dict

 def __exit__(self, exc_type, exc, exc_tb):
 if exc_type is None:
 return True
 else:
 if self.attribute is not None:
 self.corpus.remove_attribute(self.attribute)

[docs]class CanonicalVariantContext(BaseCorpusContext):
 """
 Corpus context that uses canonical forms for transcriptions and tiers

 See the documentation of `BaseCorpusContext` for additional information
 """
 def __exit__(self, exc_type, exc, exc_tb):
 BaseCorpusContext.__exit__(self, exc_type, exc, exc_tb)

 def __iter__(self):
 for word in self.corpus:
 if math.isnan(word.frequency):
 continue
 if self.type_or_token == 'token' and word.frequency == 0:
 continue
 if self.frequency_threshold > 0 and word.frequency < self.frequency_threshold:
 continue
 w = copy.copy(word)
 if self.type_or_token == 'type':
 w.frequency = 1
 w.original = word
 yield w

[docs]class MostFrequentVariantContext(BaseCorpusContext):
 """
 Corpus context that uses the most frequent pronunciation variants
 for transcriptions and tiers

 See the documentation of `BaseCorpusContext` for additional information
 """
 def __enter__(self):
 self = BaseCorpusContext.__enter__(self)
 if not self.corpus.has_wordtokens:
 raise(PCTError('The corpus specified does not have variants.'))
 return self

 def __exit__(self, exc_type, exc, exc_tb):
 BaseCorpusContext.__exit__(self, exc_type, exc, exc_tb)

 def __iter__(self):
 for word in self.corpus:
 if math.isnan(word.frequency):
 continue
 if self.type_or_token == 'token' and word.frequency == 0:
 continue
 if self.frequency_threshold > 0 and word.frequency < self.frequency_threshold:
 continue
 v = word.variants(self.sequence_type)
 w = copy.copy(word)
 if len(v.keys()) > 0: # Sort variants by most frequent
 v_sorted = sorted(v.items(), key=operator.itemgetter(1), reverse=True)
 if len(v_sorted) == 1: # There's only 1 variant
 setattr(w, self.sequence_type, v_sorted[0][0])
 elif v_sorted[0][1] != v_sorted[1][1]: # There's only one most frequent variant
 setattr(w, self.sequence_type, v_sorted[0][0])
 else: # There're variants tied for frequency
 highest_freq = v_sorted[0][1]
 v_candidates = list()
 for vv in v_sorted:
 if vv[1] != highest_freq:
 break
 else:
 v_candidates.append(vv[0])
 if getattr(w, self.sequence_type) in v_candidates: # Use cannonical variant if it is one of most frequent
 pass
 else:
 v_longest1 = max(v_candidates, key=len)
 v_candidates.reverse()
 v_longest2 = max(v_candidates, key=len)
 if v_longest1 == v_longest2:
 setattr(w, self.sequence_type, v_longest1) # Use longest variant if one exists
 else:
 v_candidates = [vv for vv in v_candidates if len(vv) == len(v_longest1)]
 v_candidates = sorted(v_candidates)
 setattr(w, self.sequence_type, v_candidates[0]) # Use longest variant that is first alphabetically

 if self.type_or_token == 'type':
 w.frequency = 1
 w.original = word
 yield w

[docs]class SeparatedTokensVariantContext(BaseCorpusContext):
 """
 Corpus context that treats pronunciation variants as separate types
 for transcriptions and tiers

 See the documentation of `BaseCorpusContext` for additional information
 """
 def __enter__(self):
 self = BaseCorpusContext.__enter__(self)
 if not self.corpus.has_wordtokens:
 raise(PCTError('The corpus specified does not have variants.'))
 return self

 def __exit__(self, exc_type, exc, exc_tb):
 BaseCorpusContext.__exit__(self, exc_type, exc, exc_tb)

 def __iter__(self):
 for word in self.corpus:
 if math.isnan(word.frequency):
 continue
 if self.type_or_token == 'token' and word.frequency == 0:
 continue
 if self.frequency_threshold > 0 and word.frequency < self.frequency_threshold:
 continue
 variants = word.variants(self.sequence_type)
 for v in variants: # Create a new word from each variant
 kwargs = {}
 if self.sequence_type == 'spelling':
 kwargs['spelling'] = v
 kwargs['transcription'] = word.transcription
 kwargs['frequency'] = variants[v]
 elif self.sequence_type == 'transcription':
 kwargs['spelling'] = word.spelling
 kwargs['transcription'] = v
 kwargs['frequency'] = variants[v]
 else:
 kwargs['spelling'] = word.spelling
 kwargs['transcription'] = word.transcription
 kwargs['frequency'] = variants[v]
 kwargs[self.sequence_type] = v
 if self.type_or_token == 'type':
 kwargs['frequency'] = 1
 w = Word(**kwargs)
 yield w

[docs]class WeightedVariantContext(BaseCorpusContext):
 """
 Corpus context that weights frequency of pronunciation variants by the
 number of variants or the token frequency
 for transcriptions and tiers

 See the documentation of `BaseCorpusContext` for additional information
 """
 def __enter__(self):
 self = BaseCorpusContext.__enter__(self)
 if not self.corpus.has_wordtokens:
 raise(PCTError('The corpus specified does not have variants.'))
 return self

 def __exit__(self, exc_type, exc, exc_tb):
 BaseCorpusContext.__exit__(self, exc_type, exc, exc_tb)

 def __iter__(self):
 for word in self.corpus:
 if math.isnan(word.frequency):
 continue
 if self.type_or_token == 'token' and word.frequency == 0:
 continue
 if self.frequency_threshold > 0 and word.frequency < self.frequency_threshold:
 continue
 variants = word.variants(self.sequence_type)
 num_of_variants = len(variants)
 total_variants = sum(variants.values())
 for v in variants: # Create a new word from each variant
 kwargs = {}
 if self.sequence_type == 'spelling':
 kwargs['spelling'] = v
 kwargs['transcription'] = word.transcription
 kwargs['frequency'] = variants[v]/total_variants
 elif self.sequence_type == 'transcription':
 kwargs['spelling'] = word.spelling
 kwargs['transcription'] = v
 kwargs['frequency'] = variants[v]/total_variants
 else:
 kwargs['spelling'] = word.spelling
 kwargs['transcription'] = word.transcription
 kwargs['frequency'] = variants[v]/total_variants
 kwargs[self.sequence_type] = v
 if self.type_or_token == 'type':
 kwargs['frequency'] = 1/num_of_variants
 w = Word(**kwargs)
 yield w

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/kl/kl.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.kl.kl

from math import log
from collections import defaultdict
import os
from codecs import open

from corpustools.exceptions import KLError

class Context(object):

 def __init__(self):
 self.seg1 = 0
 self.seg2 = 0
 self.other = 0

 def sum(self):
 return sum([self.seg1,self.seg2,self.other])

 def __repr__(self):
 return str((self.seg1, self.seg2, self.other))

def KullbackLeibler(corpus_context, seg1, seg2, side, outfile = None,
 stop_check = False, call_back = False):
[docs] """
 Calculates KL distances between two Phoneme objects in some context,
 either the left or right-hand side.
 Segments with identical distributions (ie. seg1==seg2) have a KL of zero.
 Segments with similar distributions therefore have low numbers, so *high*
 numbers indicate possible allophones.

 Parameters

 corpus_context : CorpusContext
 Context manager for a corpus
 seg1 : str
 First segment
 seg2 : str
 Second segment
 side : str
 One of 'right', 'left' or 'both'
 outfile : str
 Full path to save output
 stop_check : callable or None
 Optional function to check whether to gracefully terminate early
 call_back : callable or None
 Optional function to supply progress information during the function
 """
 ## FIXME: This function should be refactored into in KL proper and
 ## another function that determines underlying form type things

 if isinstance(seg1, tuple):
 for x in seg1:
 if x not in corpus_context.inventory:
 raise ValueError('Segment \'{}\' does not exist in this corpus.'.format(x))
 else:
 if not seg1 in corpus_context.inventory or not seg2 in corpus_context.inventory:
 raise ValueError('Segment \'{}\' does not exist in this corpus.'.format(seg1))
 seg1 = [seg1]

 if isinstance(seg2, tuple):
 for x in seg2:
 if x not in corpus_context.inventory:
 raise ValueError('Segment \'{}\' does not exist in this corpus.'.format(x))
 else:
 if not seg2 in corpus_context.inventory:
 raise ValueError('Segment \'{}\' does not exist in this corpus.'.format(seg2))
 seg2 = [seg2]

 allC = defaultdict(Context)
 seg_counts = {'seg1':0, 'seg2':0}

 for word in corpus_context:
 tier = getattr(word, corpus_context.sequence_type)
 symbols = tier.with_word_boundaries()
 for pos in range(1, len(symbols)-1):
 seg = symbols[pos]
 thisc = (symbols[pos-1],symbols[pos+1])
 if side.startswith('r'):
 thisc = thisc[0]
 elif side.startswith('l'):
 thisc = thisc[1]

 flag = False
 if seg in seg1:
 allC[thisc].seg1 += word.frequency
 seg_counts['seg1'] += word.frequency
 flag = True

 if seg in seg2:
 allC[thisc].seg2 += word.frequency
 seg_counts['seg2'] += word.frequency
 flag = True

 if not flag:
 allC[thisc].other += word.frequency

 totalC = len(allC)
 freq_c = defaultdict(int)
 for c in allC:
 freq_c[c] += 1

 P = lambda c,s: (getattr(c,s)+1)/(seg_counts[s]+totalC)

 KL = sum(
 [(P(c,'seg1')*log(P(c,'seg1')/P(c,'seg2')))
 +(P(c,'seg2')*log(P(c,'seg2')/P(c,'seg1')))
 for c in allC.values()])

 seg1_entropy = sum(P(result,'seg1')*log(
 P(result,'seg1')/(freq_c[context]/totalC))
 for (context,result) in allC.items())

 seg2_entropy = sum(P(result,'seg2')*log(
 P(result,'seg2')/(freq_c[context]/totalC))
 for (context,result) in allC.items())

 ur,sr = (seg1,seg2) if seg1_entropy < seg2_entropy else (seg2,seg1)

 if outfile is not None:
 if not outfile.endswith('.txt'):
 outfile += '.txt'

 with open(outfile, mode='w', encoding='utf-8') as f:
 print('Context, Context frequency, {} frequency in context, {} frequency in context\n\r'.format(seg1,seg2), file=f)
 for context,result in allC.items():
 cfrequency = freq_c[context]/totalC
 print('{},{},{},{}\n\r'.format(context,
 cfrequency,
 result.seg1/result.sum(),
 result.seg2/result.sum()),
 file=f)

 is_spurious = check_spurious(ur, sr, corpus_context)

 if side.startswith('r'):
 retside = 'right'
 elif side.startswith('l'):
 retside = 'left'
 elif side.startswith('b'):
 retside = 'both'
 return seg1_entropy, seg2_entropy, KL, ur, is_spurious

def check_spurious(ur, sr, corpus_context):
 if len(ur) > 1: #Set of segments, probably supplied from GUI, hack until refactor

 return 'No'
 #returns a string, not a bool, for printing to a results table
 if corpus_context.specifier is None:
 return 'Maybe'
 ur = corpus_context.corpus.segment_to_features(ur[0]).features
 sr = corpus_context.corpus.segment_to_features(sr[0]).features
 diff = lambda flist1,flist2: len([f1 for f1,f2 in zip(sorted(flist1.values()),
 sorted(flist2.values()))
 if not f1==f2])

 seg_diff = diff(ur, sr)
 if seg_diff == 1:
 return 'No' #minimally different, could be allophones

 for seg in corpus_context.inventory:
 if diff(seg.features, ur) < seg_diff:
 return 'Yes' #something else is more similar

 return 'Maybe' #nothing else is more similar

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/corpus/io/binary.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.corpus.io.binary

from urllib.request import urlretrieve

import pickle

def download_binary(name, path, call_back = None):
[docs] """
 Download a binary file of example corpora and feature matrices.

 Names of available corpora: 'example' and 'iphod'

 Names of available feature matrices: 'ipa2spe', 'ipa2hayes',
 'celex2spe', 'celex2hayes', 'arpabet2spe', 'arpabet2hayes',
 'cpa2spe', 'cpa2hayes', 'disc2spe', 'disc2hayes', 'klatt2spe',
 'klatt2hayes', 'sampa2spe', and 'sampa2hayes'

 Parameters

 name : str
 Identifier of file to download

 path : str
 Full path for where to save downloaded file

 call_back : callable
 Function that can handle strings (text updates of progress),
 tuples of two integers (0, total number of steps) and an integer
 for updating progress out of the total set by a tuple

 Returns

 bool
 True if file was successfully saved to the path specified, False
 otherwise

 """
 reported_size = False
 if call_back is not None:
 call_back('Downloading file...')
 def report(blocknum, bs, size):
 if call_back is not None:
 nonlocal reported_size
 if not reported_size:
 reported_size = True
 call_back(0,size)
 call_back(blocknum * bs)
 if name == 'example':
 download_link = 'https://www.dropbox.com/s/a0uar9h8wtem8cf/example.corpus?dl=1'
 elif name == 'lemurian':
 download_link = 'https://www.dropbox.com/s/v6jwgym7tc98v4c/lemurian.corpus?dl=1'
 elif name == 'iphod':
 download_link = 'https://www.dropbox.com/s/xb16h5ppwmo579s/iphod.corpus?dl=1'
 elif name == 'ipa2spe':
 download_link = 'https://www.dropbox.com/s/g6lsnxacc81ot26/ipa2spe.feature?dl=1'
 elif name == 'ipa2hayes':
 download_link = 'https://www.dropbox.com/s/lqhyux5mzx46x15/ipa2hayes.feature?dl=1'
 elif name == 'celex2spe':
 download_link = 'https://www.dropbox.com/s/mzpn1w27gtqo965/celex2spe.feature?dl=1'
 elif name == 'celex2hayes':
 download_link = 'https://www.dropbox.com/s/gtn4cn849ab5rky/celex2hayes.feature?dl=1'
 elif name == 'arpabet2spe':
 download_link = 'https://www.dropbox.com/s/g1yhfc1951ztzdt/arpabet2spe.feature?dl=1'
 elif name == 'arpabet2hayes':
 download_link = 'https://www.dropbox.com/s/gt6ow1duk97mpyk/arpabet2hayes.feature?dl=1'
 elif name == 'cpa2spe':
 download_link = 'https://www.dropbox.com/s/mekaqc4kkbz7d1l/cpa2spe.feature?dl=1'
 elif name == 'cpa2hayes':
 download_link = 'https://www.dropbox.com/s/4e057221f6ciwix/cpa2hayes.feature?dl=1'
 elif name == 'disc2spe':
 download_link = 'https://www.dropbox.com/s/jpfrpnq7b2myfd6/disc2spe.feature?dl=1'
 elif name == 'disc2hayes':
 download_link = 'https://www.dropbox.com/s/v1t99ys3t8w0guf/disc2hayes.feature?dl=1'
 elif name == 'klatt2spe':
 download_link = 'https://www.dropbox.com/s/7yqm7xark4l3p0h/klatt2spe.feature?dl=1'
 elif name == 'klatt2hayes':
 download_link = 'https://www.dropbox.com/s/9e8mtf45rwme9jo/klatt2hayes.feature?dl=1'
 elif name == 'sampa2spe':
 download_link = 'https://www.dropbox.com/s/4ymm9789xhrvxid/sampa2spe.feature?dl=1'
 elif name == 'sampa2hayes':
 download_link = 'https://www.dropbox.com/s/ch5yzlisoeaz58e/sampa2hayes.feature?dl=1'
 elif name == 'buckeye2spe':
 download_link = 'https://www.dropbox.com/s/p8cazx943ky8i3z/buckeye2spe.feature?dl=1'
 elif name == 'buckeye2hayes':
 download_link = 'https://www.dropbox.com/s/oi58pqd8dzl7puu/Buckeye2hayes.feature?dl=1'
 else:
 return False
 filename, headers = urlretrieve(download_link, path, reporthook=report)
 return True

def load_binary(path):

[docs] """
 Unpickle a binary file

 Parameters

 path : str
 Full path of binary file to load

 Returns

 Object
 Object generated from the text file
 """
 with open(path,'rb') as f:
 obj = pickle.load(f)
 return obj

def save_binary(obj, path):

[docs] """
 Pickle a Corpus or FeatureMatrix object for later loading

 Parameters

 obj : Corpus or FeatureMatrix
 Object to save

 path : str
 Full path for where to save object

 """
 with open(path,'wb') as f:
 pickle.dump(obj,f)

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/corpus/io/multiple_files.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.corpus.io.multiple_files

import os
import re
import sys

FILLERS = set(['uh','um','okay','yes','yeah','oh','heh','yknow','um-huh',
 'uh-uh','uh-huh','uh-hum','mm-hmm'])

from corpustools.corpus.classes import SpontaneousSpeechCorpus
from .helper import DiscourseData,data_to_discourse, AnnotationType, Annotation, BaseAnnotation, find_wav_path

from corpustools.corpus.io.binary import load_binary

def phone_match(one,two):
 if one != two and one not in two:
 return False
 return True

def inspect_discourse_multiple_files(word_path, dialect):
[docs] """
 Generate a list of AnnotationTypes for a specified dialect

 Parameters

 word_path : str
 Full path to text file
 dialect : str
 Either 'buckeye' or 'timit'

 Returns

 list of AnnotationTypes
 Autodetected AnnotationTypes for the dialect
 """
 if dialect == 'buckeye':
 annotation_types = [AnnotationType('spelling', 'surface_transcription', None, anchor = True),
 AnnotationType('transcription', None, 'spelling', base = True, token = False),
 AnnotationType('surface_transcription', None, 'spelling', base = True, token = True),
 AnnotationType('category', None, 'spelling', base = False, token = True)]
 elif dialect == 'timit':

 annotation_types = [AnnotationType('spelling', 'transcription', None, anchor = True),
 AnnotationType('transcription', None, 'spelling', base = True, token = True)]
 else:
 raise(NotImplementedError)
 return annotation_types

def multiple_files_to_data(word_path, phone_path, dialect, annotation_types = None,

 call_back = None, stop_check = None):
 if annotation_types is None:
 annotation_types = inspect_discourse_multiple_files(word_path, dialect)
 for a in annotation_types:
 a.reset()
 name = os.path.splitext(os.path.split(word_path)[1])[0]

 if call_back is not None:
 call_back('Reading files...')
 call_back(0,0)
 words = read_words(word_path, dialect)
 phones = read_phones(phone_path, dialect)

 data = DiscourseData(name, annotation_types)

 if call_back is not None:
 call_back('Parsing files...')
 call_back(0,len(words))
 cur = 0
 for i, w in enumerate(words):
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 cur += 1
 if cur % 20 == 0:
 call_back(cur)
 annotations = {}
 word = Annotation()
 word.label = w['spelling']
 beg = w['begin']
 end = w['end']
 if dialect == 'timit':
 found_all = False
 found = []
 while not found_all:
 p = phones.pop(0)
 if p.begin < beg:
 continue
 found.append(p)
 if p.end == end:
 found_all = True
 n = 'transcription'
 level_count = data.level_length(n)
 word.references.append(n)
 word.begins.append(level_count)
 word.ends.append(level_count + len(found))
 annotations[n] = found
 elif dialect == 'buckeye':
 if w['transcription'] is None:
 for n in data.base_levels:
 level_count = data.level_length(n)
 word.references.append(n)
 word.begins.append(level_count)
 word.ends.append(level_count)
 else:
 for n in data.base_levels:
 if data[n].token:
 expected = w[n]
 found = []
 while len(found) < len(expected):
 cur_phone = phones.pop(0)
 if phone_match(cur_phone.label,expected[len(found)]) \
 and cur_phone.end >= beg and cur_phone.begin <= end:
 found.append(cur_phone)
 if not len(phones) and i < len(words)-1:
 print(name)
 print(w)
 raise(Exception)
 else:
 found = [BaseAnnotation(x) for x in w[n]]
 level_count = data.level_length(n)
 word.references.append(n)
 word.begins.append(level_count)
 word.ends.append(level_count+len(found))
 annotations[n] = found
 for at in annotation_types:
 if at.ignored:
 continue
 if at.base:
 continue
 if at.anchor:
 continue
 value = w[at.name]
 if at.delimited:
 value = [Annotation(x) for x in parse_transcription(ti.mark)]
 if at.token:
 word.token[at.name] = value
 else:
 word.additional[at.name] = value
 annotations[data.word_levels[0]] = [word]
 data.add_annotations(**annotations)
 return data

def load_directory_multiple_files(corpus_name, path, dialect,
[docs] annotation_types = None,
 feature_system_path = None,
 stop_check = None, call_back = None):
 """
 Loads a directory of corpus standard files (separated into words files
 and phones files)

 Parameters

 corpus_name : str
 Name of corpus
 path : str
 Path to directory of text files
 dialect : str
 One of 'buckeye' or 'timit'
 annotation_types : list of AnnotationType, optional
 List of AnnotationType specifying how to parse the glosses.
 Auto-generated based on dialect.
 feature_system_path : str, optional
 File path of FeatureMatrix binary to specify segments
 stop_check : callable or None
 Optional function to check whether to gracefully terminate early
 call_back : callable or None
 Optional function to supply progress information during the loading

 Returns

 SpontaneousSpeechCorpus
 Corpus containing Discourses corresponding to the text files
 """
 if call_back is not None:
 call_back('Finding files...')
 call_back(0, 0)
 file_tuples = []
 for root, subdirs, files in os.walk(path):
 for filename in files:
 if stop_check is not None and stop_check():
 return
 if not (filename.lower().endswith('.words') or filename.lower().endswith('.wrd')):
 continue
 file_tuples.append((root, filename))
 if call_back is not None:
 call_back('Parsing files...')
 call_back(0,len(file_tuples))
 cur = 0
 corpus = SpontaneousSpeechCorpus(corpus_name, path)
 for i, t in enumerate(file_tuples):
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 call_back('Parsing file {} of {}...'.format(i+1, len(file_tuples)))
 call_back(i)
 root, filename = t
 name,ext = os.path.splitext(filename)
 if ext == '.words':
 phone_ext = '.phones'
 else:
 phone_ext = '.phn'
 word_path = os.path.join(root,filename)
 phone_path = os.path.splitext(word_path)[0] + phone_ext
 d = load_discourse_multiple_files(name, word_path, phone_path,
 dialect, annotation_types,
 corpus.lexicon, None,
 stop_check, None)
 corpus.add_discourse(d)

 if feature_system_path is not None:
 feature_matrix = load_binary(feature_system_path)
 corpus.lexicon.set_feature_matrix(feature_matrix)
 return corpus

def load_discourse_multiple_files(corpus_name, word_path, phone_path, dialect,

[docs] annotation_types = None,
 lexicon = None,
 feature_system_path = None,
 stop_check = None, call_back = None):
 """
 Load a discourse from a text file containing interlinear glosses

 Parameters

 corpus_name : str
 Informative identifier to refer to corpus
 word_path : str
 Full path to words text file
 phone_path : str
 Full path to phones text file
 dialect : str
 One of 'buckeye' or 'timit'
 annotation_types : list of AnnotationType, optional
 List of AnnotationType specifying how to parse the glosses.
 Auto-generated based on dialect.
 lexicon : Corpus, optional
 Corpus to store Discourse word information
 feature_system_path : str
 Full path to pickled FeatureMatrix to use with the Corpus
 stop_check : callable or None
 Optional function to check whether to gracefully terminate early
 call_back : callable or None
 Optional function to supply progress information during the loading

 Returns

 Discourse
 Discourse object generated from the text file
 """
 data = multiple_files_to_data(word_path,phone_path, dialect,
 annotation_types,
 call_back, stop_check)
 data.name = corpus_name
 data.wav_path = find_wav_path(word_path)
 discourse = data_to_discourse(data, lexicon)

 if feature_system_path is not None:
 feature_matrix = load_binary(feature_system_path)
 discourse.lexicon.set_feature_matrix(feature_matrix)
 return discourse

def read_phones(path, dialect, sr = None):

 output = []
 with open(path,'r') as file_handle:
 if dialect == 'timit':
 if sr is None:
 sr = 16000
 for line in file_handle:

 l = line.strip().split(' ')
 start = float(l[0])
 end = float(l[1])
 label = l[2]
 if sr is not None:
 start /= sr
 end /= sr
 output.append(BaseAnnotation(label, begin, end))
 elif dialect == 'buckeye':
 header_pattern = re.compile("#\r{0,1}\n")
 line_pattern = re.compile("\s+\d{3}\s+")
 label_pattern = re.compile(" {0,1};| {0,1}\+")
 f = header_pattern.split(file_handle.read())[1]
 flist = f.splitlines()
 begin = 0.0
 for l in flist:
 line = line_pattern.split(l.strip())
 end = float(line[0])
 label = sys.intern(label_pattern.split(line[1])[0])
 output.append(BaseAnnotation(label, begin, end))
 begin = end

 else:
 raise(NotImplementedError)
 return output

def read_words(path, dialect, sr = None):
 output = list()
 with open(path,'r') as file_handle:
 if dialect == 'timit':
 for line in file_handle:

 l = line.strip().split(' ')
 start = float(l[0])
 end = float(l[1])
 word = l[2]
 if sr is not None:
 start /= sr
 end /= sr
 output.append({'spelling':word, 'begin':start, 'end':end})
 elif dialect == 'buckeye':
 f = re.split(r"#\r{0,1}\n",file_handle.read())[1]
 line_pattern = re.compile("; | \d{3} ")
 begin = 0.0
 flist = f.splitlines()
 for l in flist:
 line = line_pattern.split(l.strip())
 end = float(line[0])
 word = sys.intern(line[1])
 if word[0] != "<" and word[0] != "{":
 citation = line[2].split(' ')
 phonetic = line[3].split(' ')
 category = line[4]
 else:
 citation = None
 phonetic = None
 category = None
 if word in FILLERS:
 category = 'UH'
 line = {'spelling':word,'begin':begin,'end':end,
 'transcription':citation,'surface_transcription':phonetic,
 'category':category}
 output.append(line)
 begin = end
 else:
 raise(NotImplementedError)
 return output

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_modules/corpustools/corpus/io/text_ilg.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 		Module code »

 Source code for corpustools.corpus.io.text_ilg

import os
import re
from collections import Counter

from corpustools.corpus.classes import SpontaneousSpeechCorpus
from corpustools.corpus.classes import Corpus, Word, Discourse, WordToken, Attribute

from corpustools.corpus.io.binary import load_binary

from corpustools.exceptions import (DelimiterError, ILGError, ILGLinesMismatchError,
 ILGWordMismatchError)

from .helper import (compile_digraphs, parse_transcription,
 DiscourseData, AnnotationType,data_to_discourse,
 Annotation, BaseAnnotation)

def calculate_lines_per_gloss(lines):
 line_counts = [len(x[1]) for x in lines]
 equaled = list()
 number = 1
 for i,line in enumerate(line_counts):
 if i == 0:
 equaled.append(False)
 else:
 equaled.append(line == line_counts[i-1])
 if False not in equaled[1:]:
 #All lines happen to have the same length
 for i in range(2,6):
 if len(lines) % i == 0:
 number = i
 else:
 false_intervals = list()
 ind = 0
 for i,e in enumerate(equaled):
 if i == 0:
 continue
 if not e:
 false_intervals.append(i - ind)
 ind = i
 false_intervals.append(i+1 - ind)
 counter = Counter(false_intervals)
 number = max(counter.keys(), key = lambda x: (counter[x],x))
 if number > 10:
 prev_maxes = set([number])
 while number > 10:
 prev_maxes.add(number)
 number = max(x for x in false_intervals if x not in prev_maxes)
 return number

def most_frequent_value(dictionary):
 c = Counter(dictionary.values())
 return max(c.keys(), key = lambda x: c[x])

def inspect_discourse_ilg(path, number = None):
[docs] """
 Generate a list of AnnotationTypes for a specified text file for parsing
 it as an interlinear gloss text file

 Parameters

 path : str
 Full path to text file
 number : int, optional
 Number of lines per gloss, if not supplied, it is auto-detected

 Returns

 list of AnnotationTypes
 Autodetected AnnotationTypes for the text file
 """
 trans_delimiters = ['.', ';', ',']
 lines = {}
 if os.path.isdir(path):
 numbers = {}
 for root, subdirs, files in os.walk(path):
 for filename in files:
 if not filename.lower().endswith('.txt'):
 continue
 p = os.path.join(root, filename)
 lines[p] = text_to_lines(p)
 numbers[p] = calculate_lines_per_gloss(lines[p])
 number = most_frequent_value(numbers)
 else:
 lines[path] = text_to_lines(path)
 number = calculate_lines_per_gloss(lines[path])
 p = path
 annotation_types = []
 for i in range(number):
 name = 'Line {}'.format(i+1)
 if i == 0:
 att = Attribute('spelling','spelling','Spelling')
 a = AnnotationType(name, None, None, anchor = True, token = False, attribute = att)
 else:
 labels = lines[p][i][1]
 cat = Attribute.guess_type(labels, trans_delimiters)
 att = Attribute(Attribute.sanitize_name(name), cat, name)
 a = AnnotationType(name, None, annotation_types[0].name, token = False, attribute = att)
 if cat == 'tier' and a.trans_delimiter is None:
 for l in labels:
 for delim in trans_delimiters:
 if delim in l:
 a.trans_delimiter = delim
 break
 if a.trans_delimiter is not None:
 break
 a.add(lines[p][i][1], save = False)
 annotation_types.append(a)
 for k,v in lines.items():
 if k == p:
 continue
 for i in range(number):
 labels = lines[k][i][1]
 annotation_types[i].add(labels, save = False)

 return annotation_types

def text_to_lines(path):

 delimiter = None
 with open(path, encoding='utf-8-sig', mode='r') as f:
 text = f.read()
 if delimiter is not None and delimiter not in text:
 e = DelimiterError('The delimiter specified does not create multiple words. Please specify another delimiter.')
 raise(e)
 lines = enumerate(text.splitlines())
 lines = [(x[0],x[1].strip().split(delimiter)) for x in lines if x[1].strip() != '']
 return lines

def ilg_to_data(path, annotation_types,
 stop_check = None, call_back = None):
 #if 'spelling' not in line_names:
 # raise(PCTError('Spelling required for parsing interlinear gloss files.'))

 lines = text_to_lines(path)

 if len(lines) % len(annotation_types) != 0:
 raise(ILGLinesMismatchError(lines))

 if call_back is not None:
 call_back('Processing file...')
 call_back(0,len(lines))
 cur = 0
 index = 0
 name = os.path.splitext(os.path.split(path)[1])[0]

 for a in annotation_types:
 a.reset()
 data = DiscourseData(name, annotation_types)
 mismatching_lines = list()
 while index < len(lines):
 cur_line = {}
 mismatch = False
 for line_ind, annotation_type in enumerate(annotation_types):
 if annotation_type.name == 'ignore':
 continue
 actual_line_ind, line = lines[index+line_ind]
 if len(cur_line.values()) != 0 and len(list(cur_line.values())[-1]) != len(line):
 mismatch = True

 if annotation_type.delimited:
 line = [parse_transcription(x, annotation_type) for x in line]
 cur_line[annotation_type.name] = line
 if mismatch:
 start_line = lines[index][0]
 end_line = start_line + len(annotation_types)
 mismatching_lines.append(((start_line, end_line), cur_line))
 if len(mismatching_lines) > 0:
 index += len(annotation_types)
 continue
 for word_name in data.word_levels:
 for i, s in enumerate(cur_line[word_name]):
 annotations = {}
 word = Annotation(s)

 for n in data.base_levels:
 tier_elements = cur_line[n][i]
 level_count = data.level_length(n)
 word.references.append(n)
 word.begins.append(level_count)
 word.ends.append(level_count + len(tier_elements))
 annotations[n] = tier_elements
 for line_type in cur_line.keys():
 if data[line_type].ignored:
 continue
 if data[line_type].base:
 continue
 if data[line_type].anchor:
 continue
 if data[line_type].token:
 word.token[line_type] = cur_line[line_type][i]
 else:
 word.additional[line_type] = cur_line[line_type][i]
 annotations[word_name] = [word]
 data.add_annotations(**annotations)
 index += len(annotation_types)

 if len(mismatching_lines) > 0:
 raise(ILGWordMismatchError(mismatching_lines))
 return data

def load_discourse_ilg(corpus_name, path, annotation_types,
[docs] lexicon = None,
 feature_system_path = None,
 stop_check = None, call_back = None):
 """
 Load a discourse from a text file containing interlinear glosses

 Parameters

 corpus_name : str
 Informative identifier to refer to corpus
 path : str
 Full path to text file
 annotation_types : list of AnnotationType
 List of AnnotationType specifying how to parse the glosses.
 Can be generated through ``inspect_discourse_ilg``.
 lexicon : Corpus, optional
 Corpus to store Discourse word information
 feature_system_path : str
 Full path to pickled FeatureMatrix to use with the Corpus
 stop_check : callable or None
 Optional function to check whether to gracefully terminate early
 call_back : callable or None
 Optional function to supply progress information during the loading

 Returns

 Discourse
 Discourse object generated from the text file
 """
 data = ilg_to_data(path, annotation_types,
 stop_check, call_back)
 discourse = data_to_discourse(data, lexicon)

 if feature_system_path is not None:
 feature_matrix = load_binary(feature_system_path)
 discourse.lexicon.set_feature_matrix(feature_matrix)

 return discourse

def load_directory_ilg(corpus_name, path, annotation_types,

[docs] feature_system_path = None,
 stop_check = None, call_back = None):
 """
 Loads a directory of interlinear gloss text files

 Parameters

 corpus_name : str
 Name of corpus
 path : str
 Path to directory of text files
 annotation_types : list of AnnotationType
 List of AnnotationType specifying how to parse the glosses.
 Can be generated through ``inspect_discourse_ilg``.
 feature_system_path : str, optional
 File path of FeatureMatrix binary to specify segments
 stop_check : callable or None
 Optional function to check whether to gracefully terminate early
 call_back : callable or None
 Optional function to supply progress information during the loading

 Returns

 SpontaneousSpeechCorpus
 Corpus containing Discourses corresponding to the text files
 """
 if call_back is not None:
 call_back('Finding files...')
 call_back(0, 0)
 file_tuples = []
 for root, subdirs, files in os.walk(path):
 for filename in files:
 if not filename.lower().endswith('.txt'):
 continue
 file_tuples.append((root, filename))
 if call_back is not None:
 call_back('Parsing files...')
 call_back(0,len(file_tuples))
 cur = 0
 corpus = SpontaneousSpeechCorpus(corpus_name, path)
 for i, t in enumerate(file_tuples):
 if stop_check is not None and stop_check():
 return
 if call_back is not None:
 call_back('Parsing file {} of {}...'.format(i+1,len(file_tuples)))
 call_back(i)
 root, filename = t
 name = os.path.splitext(filename)[0]
 d = load_discourse_ilg(name, os.path.join(root,filename),
 annotation_types, corpus.lexicon,
 None,
 stop_check, call_back)
 corpus.add_discourse(d)

 if feature_system_path is not None:
 feature_matrix = load_binary(feature_system_path)
 corpus.lexicon.set_feature_matrix(feature_matrix)
 return corpus

def export_discourse_ilg(discourse, path, trans_delim = '.'):

[docs] """
 Export a discourse to an interlinear gloss text file, with a maximal
 line size of 10 words

 Parameters

 discourse : Discourse
 Discourse object to export
 path : str
 Path to export to
 trans_delim : str, optional
 Delimiter for segments, defaults to ``.``
 """
 with open(path, encoding='utf-8', mode='w') as f:
 spellings = list()
 transcriptions = list()
 for wt in discourse:
 spellings.append(wt.spelling)
 transcriptions.append(trans_delim.join(wt.transcription))
 if len(spellings) > 10:
 f.write(' '.join(spellings))
 f.write('\n')
 f.write(' '.join(transcriptions))
 f.write('\n')
 spellings = list()
 transcriptions = list()
 if spellings:
 f.write(' '.join(spellings))
 f.write('\n')
 f.write(' '.join(transcriptions))
 f.write('\n')

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

_images/neighdencolumn.png
LN M .. < (77T 1 —"

[Search...
speling v | | Frequency | Neighborhood density
atema 110 0
enuta 110 0
masho... 5.0 0
mata 20 1
nata 20 1
sasi 139.0 0
shashi | f.a. 43.0 0
shisata | fis.ata 3.0 0
f.u.lo.m.a 0

_images/neighdeninputresults.png
600 Neighborhood density results

_ Neighborhood density | Swingtype | Typeortoken | Algorithmtype | Threshold
snow |15 Transcription | N/A Edit distance 1

bell 64 Transcri N/A 1

tree |41 Transcription | N/A 1

ice 37 Transcription | N/A 1

love |21 Transcription | N/A Edit distance 1

star 21 Transcription | N/A Edit distance 1

Angel |2 Transcription | N/A 1

[Reopen function dialog | | Save to file) (Close window

_images/examplecvtier.png
[Search...
Transcription | Frequency | Cvskeleton
atema atema vevey
enuta enuta vevey
mashomisi cvevevey
mata cvev
nata cvev
sasi cvev
shashi cvev
shisata cvevey
shushoma | f.u.f.o.m.a cvevey

_images/featurefile.png
8 06 [] sample_feature file.txt

releaseapproxin

Fymbol syliabic consonantal — sonorant continuant gelayed

e
RN

'

'

'

T

R
'

TN
EEEETERT]
Lieeh e
' '

' '

' '

' '

T

O @t €3 < 4P IV TT
'
A st
'
+
+
'
'
'
'
'

'
+
+
'
'
'
'
+
'

_images/examplevoweltier.png
8086 . Phonological CorpusTools e el

[Search...
_i
atema 110
enuta enuta 110 eua
mashomisi 5.0
mata 2.0 aa
nata nata 2.0 aa
139.0
430
3.0
shushoma. 126.0 uo.a

_images/gitksanparsing.png
©® OO Parsing transcription

Transcription delimiter :

Morpheme delimiter

| Checkall | | Uncheckall |

Number parsing No numbers
Punctuation to ignore

B AEpPENmM

| Checkall | [Uncheckall |

Multicharacter segments

hlLkw,kw',gw,xw,'w,'y,'n,'m,ts,ts",t'k',p',aa

(Construct a segment |

[ok][Ccancel |

_static/ajax-loader.gif

_static/file.png

_static/comment-bright.png

_static/plus.png

_modules/index.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 All modules for which code is available

		corpustools.contextmanagers

		corpustools.corpus.classes.lexicon

		corpustools.corpus.classes.spontaneous

		corpustools.corpus.io.binary

		corpustools.corpus.io.csv

		corpustools.corpus.io.multiple_files

		corpustools.corpus.io.text_ilg

		corpustools.corpus.io.text_spelling

		corpustools.corpus.io.text_transcription

		corpustools.freqalt.freq_of_alt

		corpustools.funcload.functional_load

		corpustools.kl.kl

		corpustools.mutualinfo.mutual_information

		corpustools.neighdens.neighborhood_density

		corpustools.phonoprob.phonotactic_probability

		corpustools.prod.pred_of_dist

		corpustools.symbolsim.edit_distance

		corpustools.symbolsim.khorsi

		corpustools.symbolsim.phono_edit_distance

		corpustools.symbolsim.string_similarity

 © Copyright 2015, PCT.
 Created using Sphinx 1.3.1.

