Functional Load¶
About the function¶
Functional load is a measure of the “work” that any particular contrast does in a language, as compared to other contrasts (e.g., [Hockett1955], [Hockett1966]; [Kucera1963]; [King1967]; [Surendran2003]). Two contrasts in a language, such as [d] / [t] vs. [ð] / [θ] in English, may have very different functional loads. The difference between [d] and [t] is used to distinguish between many different lexical items, so it has a high functional load; there are, on the other hand, very few lexical items that hinge on the distinction between [ð] and [θ], so its functional load is much lower. One of the primary claims about functional load is that it is related to sounds’ propensity to merge over time, with pairs of sounds that have higher functional loads being less likely to merge than pairs of sounds with lower functional loads (e.g., [Wedel2013], [Todd2012]). The average functional load of a particular sound has also been claimed to affect its likelihood of being used as an epenthetic vowel [Hume2013]. Functional load has also been illustrated to affect the perceived similarity of sounds [Hall2014a].
Method of calculation¶
There are two primary ways of calculating functional load that are provided as part of the PCT package. One is based on the change of entropy in a system upon merger of a segment pair or set of segment pairs (cf. [Surendran2003]); the other is based on simply counting up the number of minimal pairs (differing in only the target segment pair or pairs) that occur in the corpus.
Change in entropy¶
The calculation based on change in entropy is described in detail in [Surendran2003]. Entropy is an InformationTheoretic measure of the amount of uncertainty in a system [Shannon1949], and is calculated using the formula in (1); it will also be used for the calculation of predictability of distribution (see Method of calculation). For every symbol i in some inventory (e.g., every phoneme in the phoneme inventory, or every word in the lexicon), one multiplies the probability of i by the \(log_{2}\) of the probability of i; the entropy is the sum of the products for all symbols in the inventory.
Entropy:
\(H = \sum_{i \in N} p_{i} * log_{2}(p_{i})\)
The functional load of any pair of sounds in the system, then, can be calculated by first calculating the entropy of the system at some level of structure (e.g., words, syllables) with all sounds included, then merging the pair of sounds in question and recalculating the entropy of the new system. That is, the functional load is the amount of uncertainty (entropy) that is lost by the merger. If the pair has a functional load of 0, then nothing has changed when the two are merged, and \(H_{1}\) will equal \(H_{2}\). If the pair has a nonzero functional load, then the total inventory has become smaller through the conflating of pairs of symbols that were distinguished only through the given pair of sounds.
Functional load as change in entropy:
\(\Delta H = H_{1}  H_{2}\)
Consider a toy example, in which the following corpus is assumed (note that, generally speaking, there is no “type frequency” column in a PCT corpus, as it is assumed that each row in the corpus represents 1 type; it is included here for clarity):
Consider a toy example, in which the following corpus is assumed (note that, generally speaking, there is no “type frequency” column in a PCT corpus, as it is assumed that each row in the corpus represents 1 type; it is included here for clarity):
Word  Original  Under [h] / [ŋ] merger  Under [t] / [d] merger  

Trans.  Type Freq.  Token Freq.  Trans.  Type Freq.  Token Freq.  Trans.  Type Freq.  Token Freq.  
hot  [hɑt]  1  2  [Xɑt]  1  2  [hɑX]  1  2 
song  [sɑŋ]  1  4  [sɑX]  1  4  [sɑŋ]  1  4 
hat  [hæt]  1  1  [Xæt]  1  1  [hæX]  1  1 
sing  [sɪŋ]  1  6  [sɪX]  1  6  [sɪŋ]  1  6 
tot  [tɑt]  1  3  [tɑt]  1  3  [XɑX]  1  8 
dot  [dɑt]  1  5  [dɑt]  1  5  [XɑX]  
hip  [hɪp]  1  2  [Xɪp]  1  2  [hɪp]  1  2 
hid  [hɪd]  1  7  [Xɪd]  1  7  [hɪX]  1  7 
team  [tim]  1  5  [tim]  1  5  [Xim]  1  10 
deem  [dim]  1  5  [dim]  1  5  [Xim]  
toot  [tut]  1  9  [tut]  1  9  [XuX]  1  11 
dude  [dud]  1  2  [dud]  1  2  [XuX]  
hiss  [hɪs]  1  3  [Xɪs]  1  3  [hɪs]  1  3 
his  [hɪz]  1  5  [Xɪz]  1  5  [hɪz]  1  5 
sizzle  [sɪzəl]  1  4  [sɪzəl]  1  4  [sɪzəl]  1  4 
dizzy  [dɪzi]  1  3  [dɪzi]  1  3  [Xɪzi]  1  7 
tizzy  [tɪzi]  1  4  [tɪzi]  1  4  [Xɪzi]  
Total  17  70  17  70  13  70 
The starting entropy, assuming word types as the relative unit of structure and counting, is:
\(H_{1  types} = [(\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))\\ + (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))\\ + (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))] =4.087\)
The starting entropy, assuming word tokens, is:
\(H_{1  tokens} = [(\frac{2}{70} log_{2}(\frac{2}{70})) + (\frac{4}{70} log_{2}(\frac{4}{70})) + (\frac{1}{70} log_{2}(\frac{1}{70})) + (\frac{6}{70} log_{2}(\frac{6}{70})) + (\frac{3}{70} log_{2}(\frac{3}{70}))\\ + (\frac{5}{70} log_{2}(\frac{5}{70})) + (\frac{2}{70} log_{2}(\frac{2}{70})) + (\frac{7}{70} log_{2}(\frac{7}{70})) + (\frac{5}{70} log_{2}(\frac{5}{70})) + (\frac{5}{70} log_{2}(\frac{5}{70})) + (\frac{9}{70} log_{2}(\frac{9}{70}))\\ + (\frac{2}{70} log_{2}(\frac{2}{70})) + (\frac{3}{70} log_{2}(\frac{3}{70})) + (\frac{5}{70} log_{2}(\frac{5}{70})) + (\frac{4}{70} log_{2}(\frac{4}{70})) + (\frac{3}{70} log_{2}(\frac{3}{70})) + (\frac{4}{70} log_{2}(\frac{4}{70}))] = 3.924\)
Upon merger of [h] and [ŋ], there is no change in the number of unique words; there are still 17 unique words with all their same token frequencies. Thus, the entropy after an [h] / [ŋ] merger will be the same as it was before the merger. The functional load, then would be 0, as the premerger and postmerger entropies are identical.
Upon merger of [t] and [d], on the other hand, four pairs of words have been collapsed. E.g., the difference between team and deem no longer exists; there is now just one word, [Xim], where [X] represents the result of the merger. Thus, there are only 13 unique words, and while the total token frequency count remains the same, at 70, those 70 occurrences are divided among only 13 unique words instead of 17.
Thus, the entropy after a [t] / [d] merger, assuming word types, is:
\(H_{1  types} = [(\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))\\ + (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))\\ + (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))] = 3.700\)
And the entropy after a [t] / [d] merger, assuming word tokens, is:
\(H_{1  tokens} = [(\frac{2}{70} log_{2}(\frac{2}{70})) + (\frac{4}{70} log_{2}(\frac{4}{70})) + (\frac{1}{70} log_{2}(\frac{1}{70})) + (\frac{6}{70} log_{2}(\frac{6}{70})) + (\frac{8}{70} log_{2}(\frac{8}{70}))\\ + (\frac{2}{70} log_{2}(\frac{2}{70})) + (\frac{7}{70} log_{2}(\frac{7}{70})) + (\frac{10}{70} log_{2}(\frac{10}{70})) + (\frac{11}{70} log_{2}(\frac{11}{70})) + (\frac{3}{70} log_{2}(\frac{3}{70})) + (\frac{5}{70} log_{2}(\frac{5}{70}))\\ + (\frac{4}{70} log_{2}(\frac{4}{70})) + (\frac{7}{70} log_{2}(\frac{7}{70}))] = 3.466\)
\(\Delta H = H_{1types}  H_{2types} = 4.087– 3.700 = 0.387\)
And the functional load of [t] / [d] based on word tokens is:
\(\Delta H = H_{1tokens}  H_{2tokens} = 3.924– 3.466 = 0.458\)
(Relative) Minimal Pair Counts¶
The second means of calculating functional load that is included in PCT is a straight count of minimal pairs, which can be relativized to the number of words in the corpus that are potential minimal pairs—i.e. the number of words in the corpus with at least one of the target segments.
In the above example, the number of minimal pairs that hinge on [h] vs. [ŋ] is of course 0, so the functional load of [h] / [ŋ] is 0. The number of minimal pairs that hinge on [t] / [d] is 3, and the number of words with either [t] or [d] is 11; the functional load as a relativized minimal pair count would therefore be 3/11 = 0.273. Note that here, a relatively loose definition of minimal pair is used; specifically, two words are considered to be a minimal pair hinging on sounds A and B if, upon merger of A and B into a single symbol X, the words are identical. Thus, toot and dude are considered a minimal pair on this definition, because they both become [XuX] upon merger of [t] and [d].
The resulting calculations of functional load are thus quite similar between the two measures, but the units are entirely different. Functional load based on change in entropy is measured in bits, while functional load based on relativized minimal pair counts is simply a percentage. Also note that functional load based on minimal pairs is only based on type frequency; the frequency of the usage of the words is not used as a weighting factor, the way it can be under the calculation of functional load as change in entropy.
Average Functional Load¶
[Hume2013] suggests that the average functional load (there called “relative contrastiveness”) is a useful way of indicating how much work an individual segment does, on average, in comparison to other segments. This is calculated by taking an individual segment, calculating the pairwise functional load of that segment and each other segment in the inventory, and then taking the average across all those pairs. This calculation can also be performed in PCT.
Calculating functional load in the GUI¶
As with most analysis functions, a corpus must first be loaded (see Loading in corpora). Once a corpus is loaded, use the following steps.
Getting started: Choose “Analysis” / “Calculate functional load...” from the top menu bar.
Sound selection: First, decide whether you want to calculate the average functional load of a single segment (i.e., its functional load averaged across all possible pairwise comparisons), or the more standard functional load of a pair of sounds, defined over segments or features. To calculate the average functional load of a single sound, choose “Add one segment”; to calculate the pairwise functional load of two segments, choose “Add pair of segments”; to calculate the pairwise functional load based on features, choose “Add pair of features.”
For details on how to actually select segments or features, see Sound Selection or Feature Selection as relevant.
When multiple individual segments or individual pairs are selected, each entry will be treated separately.
Functional load algorithm: Select which of the two methods of calculation you want to use—i.e., minimal pairs or change in entropy. (See discussion above for details of each.)
Minimal pair options: If minimal pairs serve as the means of calculation, there are three additional parameters can be set.
 Raw vs. relative count: First, PCT can report only the raw count of minimal pairs that hinge on the contrast in the corpus, if you just want to know the scope of the contrast. On the other hand, the default is to relativize the raw count to the corpus size, by dividing the raw number by the number of lexical entries that include at least one instance of any of the target segments.
 Include vs. ignore homophones: Second, PCT can either include homophones or ignore them. For example, if the corpus includes separate entries for the words sock (n.), sock (v.), shock (n.), and shock (v.), this would count as four minimal pairs if homophones are included, but only one if homophones are ignored. The default is to ignore homophones.
 Output list of minimal pairs to a file: It is possible to save a list of all the actual minimal pairs that PCT finds that hinge on a particular chosen contrast to a .txt file. To do so, enter a file path name, or select “Choose file...” to use a regular system dialogue box. If nothing is entered here, no list will be saved, but the overall output will still be provided (and can be saved independently).
Change in entropy options: If you are calculating functional load using change in entropy, one additional parameter can be set.
 Type or token frequency: As described in Change in entropy, entropy can be calculated using either type or token frequencies. This option determines which to use.
Tier: Select which tier the functional load should be calculated from. The default is the “transcription” tier, i.e., looking at the entire word transcriptions. If another tier has been created (see Creating new tiers in the corpus), functional load can be calculated on the basis of that tier. For example, if a vowel tier has been created, then “minimal pairs” will be entries that are identical except for one entry in the vowels only, entirely independently of consonants. Thus, the words [mapotik] and [ʃɹaɡefli] would be treated as a minimal pair, given that their voweltier representations are [aoi] and [aei].
Pronunciation variants: If the corpus contains multiple pronunciation variants for lexical items, select what strategy should be used. For details, see Pronunciation Variants.
Minimum frequency: It is possible to set a minimum token frequency for words in the corpus in order to be included in the calculation. This allows easy exclusion of rare words; for example, if one were calculating the functional load of [s] vs. [ʃ] in English and didn’t set a minimum frequency, words such as santy (vs. shanty) might be included, which might not be a particularly accurate reflection of the phonological knowledge of speakers. To include all words in the corpus, regardless of their token frequency, set the the minimum frequency to 0.
Here is an example of selecting [m] and [n], with functional load to be calculated on the basis of minimal pairs, only including words with a token frequency of at least 1, from the builtin example corpus (which only has canonical forms):
 Results: Once all parameters have been set, click one of the two “Calculate functional load” buttons. If this is the first calculation, the option to “start new results table” should be selected. For subsequent calculations, the calculation can be added to the already started table, for direct comparison, or a new table can be started.
 Note that if a table is closed, new calculations will not be added to the previously
open table; a new table must be started.Either way, the results table will have the following columns, with one row per calculation: segment 1, segment 2, which tier was used, what environments were selected, which measurement method was selected, the resulting functional load, what the minimum frequency was, what strategy was used for dealing with pronunciation variants, and for calculations using minimal pairs, whether the count is absolute or relative and whether homophones were distinguished or not. (For calculations using change in entropy, “N/A” values are entered into the latter two columns.)
 Saving results: Once a results table has been generated for at least one pair, the table can be saved by clicking on “Save to file” at the bottom of the table to open a system dialogue box and save the results at a userdesignated location.
Note
that in the above screen shot, not all columns are visible; they are visible only by scrolling over to the right, due to constraints on the window size. All columns would be saved to the results file.)
To return to the function dialogue box with your most recently used selections, click on “Reopen function dialog.” Otherwise, the results table can be closed and you will be returned to your corpus view.
Implementing the functional load function on the command line¶
In order to perform this analysis on the command line, you must enter a command in the following format into your Terminal:
pct_funcload CORPUSFILE [additional arguments]
...where CORPUSFILE is the name of your *.corpus file. If calculating
FL from a file of segment pairs, it must list the pairs
of segments whose functional load you wish to calculate with each pair
separated by a tab (\t
) and one pair on each line. Note that you must either
specify a file or segment (using p
) or request the functional loads of all
segment pairs in the inventory (using l
). You may also use
command line options to change various parameters of your functional
load calculations. Descriptions of these arguments can be viewed by
running pct_funcload –h
or pct_funcload help
. The help text from
this command is copied below, augmented with specifications of default values:
Positional arguments:

corpus_file_name
¶
Name of corpus file
Mandatory argument group (call must have one of these two):

p
PAIRS_FILE_NAME_OR_SEGMENT
¶ 
pairs_file_name_or_segment
PAIRS_FILE_NAME_OR_SEGMENT
¶ Name of file with segment pairs (or target segment if relative fl is True)
Optional arguments:

c
CONTEXT_TYPE
¶ 
context_type
CONTEXT_TYPE
¶ How to deal with variable pronunciations. Options are ‘Canonical’, ‘MostFrequent’, ‘SeparatedTokens’, or ‘Weighted’. See documentation for details.

a
ALGORITHM
¶ 
algorithm
ALGORITHM
¶ Algorithm to use for calculating functional load: “minpair” for minimal pair count or “deltah” for change in entropy. Defaults to minpair.

f
FREQUENCY_CUTOFF
¶ 
frequency_cutoff
FREQUENCY_CUTOFF
¶ Minimum frequency of words to consider as possible minimal pairs or contributing to lexicon entropy.

d
DISTINGUISH_HOMOPHONES
¶ 
distinguish_homophones
DISTINGUISH_HOMOPHONES
¶ For minimal pair FL: if False, then you’ll count sock~shock (sock=clothing) and sock~shock (sock=punch) as just one minimal pair; but if True, you’ll overcount alternative spellings of the same word, e.g. axel~actual and axle~actual. False is the value used by Wedel et al.

t
TYPE_OR_TOKEN
¶ 
type_or_token
TYPE_OR_TOKEN
¶ For change in entropy FL: specifies whether entropy is based on type or token frequency.

e
RELATIVE_FL
¶ 
relative_fl
RELATIVE_FL
¶ If True, calculate the relative FL of a single segment by averaging across the functional loads of it and all other segments.

s
SEQUENCE_TYPE
¶ 
sequence_type
SEQUENCE_TYPE
¶ The attribute of Words to calculate FL over. Normally this will be the transcription, but it can also be the spelling or a userspecified tier.
EXAMPLE 1: If your corpus file is example.corpus (no prounciation variants)
and you want to calculate the minimal pair functional load of the segments
[m] and [n] using defaults for all optional arguments, you first need to
create a text file that contains the text m\tn
(where \t
is a tab).
Let us call this file pairs.txt. You would then run the
following command in your terminal window:
pct_funcload example.corpus p pairs.txt
EXAMPLE 2: Suppose you want to calculate the relative (average) functional load of the segment [m]. Your corpus file is again example.corpus. You want to use the change in entropy measure of functional load rather than the minimal pairs measure, and you also want to use type frequency instead of (the default value of) token frequency. In addition, you want the script to produce an output file called output.txt. You would need to run the following command:
pct_funcload example.corpus p m e a deltah t type o output.txt
EXAMPLE 3: Suppose you want to calculate the functional loads of all segment pairs. Your corpus file is again example.corpus. All other parameters are set to defaults. In addition, you want the script to produce an output file called output.txt. You would need to run the following command:
pct_funcload example.corpus l o output.txt
Classes and functions¶
For further details about the relevant classes and functions in PCT’s source code, please refer to Functional load.