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CHAPTER 1

Introduction

1.1 General Background

Phonological CorpusTools (PCT) is a freely available open-source tool for doing phonological analysis on transcribed
corpora. For the latest information, please refer to the PCT website. PCT is intended to be an analysis aid for
researchers who are specifically interested in investigating the relationships that may hold between individual sounds
in a language. There is an ever-increasing interest in exploring the roles of frequency and usage in understanding
phonological phenomena (e.g., [Bybee2001], [Ernestus2011], [Frisch2011]), but many corpora and existing corpus-
analysis software tools are focused on dialogue- and sentence-level analysis, and/or the computational skills needed to
efficiently handle large corpora can be daunting to learn.

PCT is designed with the phonologist in mind and has an easy-to-use graphical user interface that requires no pro-
gramming knowledge, though it can also be used with a command-line interface,1 and all of the original code is freely
available for those who would like access to the source. It specifically includes the following capabilities:

• Summary descriptions of a corpus, including type and token frequency of individual segments in user-defined
environments;

• Calculation of the phonotactic probability of a word, given the other words that exist in the corpus (cf.
[Vitevitch2004]);

• Calculation of functional load of individual pairs of sounds, defined at either the segment or feature level (cf.
[Hockett1966]; [Surendran2003]; [Wedel2013]);

• Calculation of the extent to which any pair of sounds is predictably distributed given a set of environments
that they can occur in, as a measure of phonological contrastiveness (cf. [Hall2009], [Hall2012]; [Hall2013a]);

• Calculation of the Kullback-Leibler divergence between the distributions of two sounds, again as a measure
of phonological contrastiveness (cf. [Peperkamp2006]);

• Calculation of the extent to which pairs of words are similar to each other using either orthographic or phonetic
transcription, and calculation of neighbourhood density (cf. [Frisch2004], [Khorsi2012]; [Greenberg1964];
[Luce1998]; [Yao2011]);

• Approximation of the frequency with which two sounds alternate with each other, given a measure of mor-
phological relatedness (cf. [Silverman 2006]_, [Johnson2010], [Lu2012]);

• Calculation of the mutual information between pairs of segments in the corpus (cf. [Brent1999];
[Goldsmith2012]); and

• Calculation of the acoustic similarity between sounds or words, derived from sound files, based on alignment
of MFCCs (e.g., [Mielke2012]) or of logarithmically spaced amplitude envelopes (cf. [Lewandowski2012]).

The software can make use of pre-existing freely available corpora (e.g., the IPHOD corpus; [IPHOD]), which are
included with the system, or a user may upload his or her own corpus in several formats. First, lexical lists with
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transcription and token frequency information can be directly uploaded; such a list is what is deemed a “corpus” by
PCT. Second, raw running text (orthographically and/or phonetically transcribed) can be uploaded and turned into
lexical lists in columnar format (corpora) for subsequent analysis. Raw sound files accompanied by Praat TextGrids
[PRAAT] may also be uploaded for analyses of acoustic similarity, and certain pre-existing special types of corpora
can be uploaded natively (Buckeye [BUCKEYE], TIMIT [TIMIT]). Orthographic corpora can have their transcriptions
“looked up” in a pre-existing transcribed corpus of the same language.

Phonological analysis can be done using built-in feature charts based on Chomsky & Halle [SPE] or Hayes
[Hayes2009], or a user may create his or her own specifications by either modifying these charts or uploading a
new chart. Feature specifications can be used to pull out separate “tiers” of segments for analysis (e.g., consonants
vs. vowels, all nasal elements, tonal contours, etc.). PCT comes with IPA transcription installed, with characters
mapped to the two feature systems mentioned above. Again, users may create their own transcription-to-feature map-
pings by modifying the existing ones or uploading a new transcription-to-feature mapping file, and several alternative
transcription-to-feature mapping files are available for download.

Analysis can be done using type or token frequency, if token frequency is available in the corpus. All analyses are
presented both on screen and saved to plain .txt files in user-specfied locations.

The following sections walk through the specifics of downloading, installing, and using the various components of
Phonological CorpusTools. We will do our best to keep the software up to date and to answer any questions you might
have about it; questions, comments, and suggestions should be sent to Kathleen Currie Hall.

Version 1.1 (July 2015) differs from version 1.0.1 (March 2015) in three main areas:

1. Loading of corpora – The interface for corpus loading has been streamlined, and users have more options for
adjusting the interpretation of transcriptions and columns as they initiate a corpus. Better support for interlinear
glosses and TextGrids is also provided.

2. Specification of inventories, features, and environments – Inventories can now be displayed in IPA-like charts
based on user-specified features. Feature selection in analysis functions has been streamlined and natural class
selection is better supported. Environment selection is now iterative and more interactive.

3. Pronunciation variants – Analysis functions now provide users with options for how to handle pronunciation
variants when they occur in a corpus.

Version 1.0 differs from the original release version (0.15, July 2014) primarily in its user interface; we switched the
GUI from TK to QT and tried to reorganize the utility menus to be somewhat more intuitive. For example, the original
release version had all segment inventory views in alphabetical order; segments are now arranged as closely as possible
to standard IPA chart layouts (based on their featural interpretations). Additionally, we have added greater search and
edit functions as well as some additional analysis tools (phonotactic probability, mutual information, neighbourhood
density), and a greater ability to work with running text / spontaneous speech corpora.

1.2 Code and interfaces

PCT is written in Python 3.4, and users are welcome to add on other functionality as needed. The software works on
any platform that supports Python (Windows, Mac, Linux). All code is available on the GitHub repository; the details
for getting access are given in Downloading and installing.

There is both a graphical user interface (GUI) and a command-line interface for PCT. In the following sections, we
generally discuss interface-independent aspects of some functionality first, and then detail how to implement it in
both the GUI and the command line. All functions are available in the GUI; many, but not all, are currently available
in the command line due to complications in entering in phonological transcriptions that match a given corpus in a
command-line interface.

The command-line interface is accessed using command line scripts that are installed on your machine along with the
core PCT GUI.

4 Chapter 1. Introduction
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NOTE: If you did not install PCT on your computer but are instead running the GUI through a binary file (executable),
then the command line scripts are not installed on your computer either. In order to run them, you will need to
download the PCT source code and then find the scripts within the command_line subdirectory. These can then be run
as scripts in Python 3.

The procedure for running command-line analysis scripts is essentially the same for any analysis. First, open
a Terminal window (on Mac OS X or Linux) or a CygWin window (on Windows, can be downloaded at
https://www.cygwin.com/). Using the “cd” command, navigate to the directory containing your corpus file. If the
analysis you want to perform requires any additional input files, then they must also be in this directory. (Instead of
running the script from the relevant file directory, you may also run scripts from any working directory as long as you
specify the full path to any files.) You then type the analysis command into the Terminal and press enter/return to run
the analysis. The first (positional) argument after the name of the analysis script is always the name of the corpus file.

1.2. Code and interfaces 5
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CHAPTER 2

Downloading and installing

PCT is currently available for Mac, PC, and Linux machines. It can be downloaded from PCT releases page using
the following steps. Note that there are several dependencies that are pre-requisites before PCT can function properly.
For Mac and Windows machines, we have created executable files that bundle most of the dependencies and the PCT
software itself into a single package. Using these is the easiest / fastest way to get PCT up and running on your
machine.

2.1 Download

1. Go to the PCT releases page.

2. Click on the link for your operating system with the highest number (= most recent version). As of June 2015,
that is 1.1.

2.2 Windows Installer

1. NOTE: This method requires that you are running a 64-bit version of windows. You can check this in Control
Panel -> System and Security -> System.

2. Download the file called “corpustools-1.1.0-amd64.msi” (or similar, for a more recent version), by clicking or
right-clicking on the link. This is an installer program.

3. Run the downloaded installer program by double-clicking on it, wherever it has been saved locally.

4. PCT should now be available from your “Start” menu under “Programs.”

5. If you run into trouble, try the “Fallback” instructions in below.

2.3 Mac Executable

1. Download the file called ‘Phonological.CorpusTools-1.1.0.dmg’ by clicking or ctrl-clicking on the link.

2. Open the dmg file and drag the Phonological CorpusTools app into Applications.

3. Phonological CorpusTools is now available in your Applications, and can be opened as other applications. You
may have to enable applications from third-party developers in your security settings.

4. If you run into trouble, try the “Fallback” instructions in below.

7
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2.4 Linux / Fallback instructions

1. Dependencies: You’ll first need to make sure all of the following are installed. The third and fourth ones (NumPy
and SciPy) are needed only for the Acoustic Similarity functionality to work.

1. Python 3.3 or higher

2. NumPy

3. SciPy

4. (NB: If you are on Windows and can’t successfully use the acoustic similarity module after installing NumPy
and SciPy from the above sources, you may want to try installing them from precompiled binaries.)

2. Get the source code for PCT. Click on either the .zip or the .gz file on the PCT releases page or the GitHub
repository, to download the zipped or tarball version of the code, depending on your preference.

3. After expanding the file, you will find a file called setup.py in the top level directory. Run it in one of the
following ways:

1. Double-click it. If this doesn’t work, access the file properties and ensure that you have permission to run the
file; if not, give them to yourself. In Windows, this may require that you open the file in Administrator mode
(also accessible through file properties). If your computer opens the .py file in a text editor rather than running
it, you can access the file properties to set Python 3.x as the default program to use with run .py files. If the
file is opened in IDLE (a Python editor), you can use the “Run” button in the IDLE interface to run the script
instead.

2. Open a terminal window and run the file. In Linux or Mac OS X, there should be a Terminal application pre-
installed. In Windows, you may need to install Cygwin. Once the terminal window is open, nagivate to the top
level CorpusTools folder—the one that has setup.py in it. (Use the command ‘cd’ to navigate your filesystem;
Google “terminal change directory” for further instructions.) Once in the correct directory, run this command:
python3 setup.py install. You may lack proper permissions to run this file, in which case on Linux
or Mac OS X you can instead run sudo python3 setup.py install. If Python 3.x is the only version
of Python on your system, it may be possible or necessary to use the command python rather than python3.

4. Phonological CorpusTools should now be installed! Run it from a terminal window using the command pct.
You can also open a “Run” dialogue and use the command pct there. In Windows, the Run tool is usually
found in All Programs -> Accessories.

8 Chapter 2. Downloading and installing
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CHAPTER 3

Loading in corpora

In order to use the analysis functions in PCT, you’ll first need to open up a corpus. When we say a “corpus” in PCT,
we mean a file that has the following basic structure: a list of words with other possible information about each: e.g.,
its transcription, its frequency of occurrence, its lexical category, its syllable structure, etc. These are in columnar
format; e.g., loaded from a CSV or tab-delimited text file. (See more at Required format of corpus.)

There are five possible ways of getting a corpus in PCT:

1. Use one of the built-in corpora to get started immediately. You can choose between two small, entirely invented
corpora that have various parameters (see Example corpora) or use the Irvine Phonotactic Online Dictionary of
English [IPHOD];

2. Use a corpus in the above format that is independently stored on your local computer;

3. Create a corpus from running text (e.g., straight transcriptions of speech or interlinear texts);

4. Create a corpus from Praat TextGrids [PRAAT];

5. Import a corpus from your own local copy of another standard corpus (currently, we support the Buckeye corpus
[BUCKEYE] and the TIMIT corpus [TIMIT]).

Each of these options is discussed in more detail below.

3.1 Using a built-in corpus

To use a built-in corpus, simply go to the “File” menu and select “Load corpus...” from the list, which will open the
“Load corpora” dialogue box.

The first time you want to use a built-in corpus, you’ll need to download it (from a Dropbox link accessed by PCT
internally); you must therefore be connected to the internet to complete this step. To do so, click on “Download
example corpora” from the right-hand menu. This will allow you to download either of the two example corpora (one
is called “example” and the other called “Lemurian” (both are entirely made up; see Example corpora) and/or the
IPHOD corpus [IPHOD]. Note that the version of the IPHOD corpus that is contained here has been altered from the
freely downloadable version, in that it (1) does not have the derived columns and (2) has been re-formatted as a .corpus
file for easy reading by PCT. It also contains only the following information: word, transcription, and token frequency
(from the SUBTLEX corpus [SUBTLEX]). Please note that if you use the IPHOD corpus, you should use the following
citation (see more on citing corpora and functions of PCT in Citing PCT and the algorithms used therein):

Vaden, K. I., Halpin, H. R., Hickok, G. S. (2009). Irvine Phonotactic Online Dictionary, Version 2.0. [Data file].
Available from http://www.iphod.com/.

After the corpus has been downloaded, it appears in the lefthand side of the “Load corpora” dialogue box. Simply
select the corpus and click on “Load selected corpus” at the bottom of the dialogue box. Once these corpora have been
downloaded once, you don’t have to do so again; they will be saved automatically to your local system unless and until
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you delete them. On subsequent loadings of the PCT software, you will still see these corpora listed in the lefthand
side of the “Load corpora” dialogue box, as in the following diagram:

The example corpora and the included version of the IPHOD corpus include phonetic transcriptions in IPA, and are
by default interpreted either using the feature system of [Mielke2012], which in turn is based on SPE features [SPE]
[this is the default for the example corpus], or using the feature system suggested by [Hayes2009] [this is the default
for the IPHOD corpus and the Lemurian corpus]. These systems are fully functional for doing subsequent analyses.
Note, however, that this is a built-in functionality of these particular corpora, and does not allow you to use SPE or
Hayes features with other corpora. To use SPE features with other corpora, or to change the feature system associated
with a built-in corpus, you’ll need to download the actual feature files, as described in Working with transcriptions and
feature systems. Features can be used for defining classes of sounds (e.g., creating separate tiers for different types of
segments) and for defining environments (e.g., the environments in which segments might occur, for use in calculating
their predictability of distribution).

The corpus may take several seconds to load, but will eventually appear; the following is the example corpus:
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Note that the name of the corpus and the current feature system are shown at the bottom right-hand corner of the screen
for easy reference. Summary information about a corpus gives more detail on how to find out summary information
about your corpus. Typing a word or part-word in the “search” box takes you to each successive occurrence of that
word in the corpus (hit “return” once to see the first instance; hit “return” again to see the second, etc.). Note that
the “search” box searches only the “Spelling” column of the corpus. To do a phonological search, please use the
“Phonological search” function under the “Corpus” menu (see detailed discussion in Phonological Search).

For more details on the structure of the Lemurian corpus, which has been built to show particular kinds of phenomena
that may be of interest to PCT users, please see the section on The Lemurian corpus.

3.2 Creating a corpus

It is also possible to create a corpus within PCT. These can be pre-formatted columnar corpora or corpora that are
compiled from running text, TextGrids, or special corpus formats. It may be helpful to first load the relevant feature
system for your corpus into PCT, so that the transcriptions in your corpus can be interpreted; detailed instructions for
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doing this are given in Working with transcriptions and feature systems (note that the corpus can be loaded in without
featural interpretation, and features added later).

In all cases, to use a custom corpus, click on “File” / “Load corpus...” and then choose “Import corpus.” The “Import
corpus” dialogue box opens up.

At the top of the box, enter the path for the file that will form the corpus or select it using “Choose file...” and navigating
to it from a system dialogue box. If the corpus is being created from a series of .txt files or .TextGrid files or other
special files instead of a single file (e.g., being compiled from multiple files of running text or specially formatted
corpora such as the Buckeye corpus), you can instead choose the directory that contains the files. All files that PCT
thinks are plausible will be selected, ignoring other files. For example, if you have both .txt and .pdf files in a directory,
only the .txt files will be selected. If there are both .txt and .TextGrid files (both of which could be used by PCT), it
will read in only the one that has a greater number of instances in the directory. That is, if there are more .TextGrid
files than .txt files, it will assume it should read the .TextGrid files (or vice versa). If you have selected a directory, you
can hover the mouse over the box labeled “Mouseover for included files” to see a pop-up list of exactly which files in
a directory have been chosen. Obviously, you can manually force PCT to read in all of your intended files by simply
putting all and only those files into a single directory. Note that for a pre-formatted columnar corpus, a single file must
be chosen, rather than a directory of files.

Enter a name for the corpus in the box to the right of the corpus source selection. (Note that on some screens, the box
may initially appear to be absent; simply re-size the “Import corpus” dialogue box to make it appear.)

PCT will automatically detect what kind of file type you have selected and select the tab for the corpus type that it
thinks most likely. For .txt files, it will default to assuming it is a column-delimited file, but you can easily select the
“running text” or “interlinear text” tabs instead. For .TextGrid files, it will take you to the TextGrid tab; if it detects a
directory of Buckeye or TIMIT files, it will take you to the “Other standards” tab. The choices within each of these
tabs is described below: Column-delimited files; Running Text; Interlinear Text; TextGrids; Other Standards

3.3 Column-delimited files

If you have a corpus that is in the appropriate format (see Required format of corpus) and stored independently on
your computer, you can read it in as a column-delimited file.

Once you have selected the file path and named the corpus (see Creating a corpus) , make sure that the “Column-
delimited file” tab is selected. PCT will automatically try to figure out what delimiter (e.g., comma, tab) is used to
separate columns, but you can also enter it manually (e.g., a comma (,) or a tab (t)). Any symbol can be used; PCT
will simply break elements at that symbol, so whatever symbol is used should be used only to delimit columns within
the corpus.

If there is a column in the corpus that shows phonetic transcription, choose which feature system you would like to
use. As noted above, in order for there to be feature systems to choose from, you must first have loaded them into PCT
(Working with transcriptions and feature systems). If you haven’t yet added any, you may still import the corpus and
then add them later.

On the right-hand side of the “Import corpus” dialogue box, you will see a “Parsing preview” window. This shows
each of the columns in the corpus and allows you to specify particular parameters for each one. For details on this,
please see the section on Parsing Parameters.

Once all selections have been made, click “Ok.” PCT will process the corpus (depending on how big it is, this may
take a few minutes). It will then appear listed in the “Available corpora” window in the “Load corpus” dialogue box;
you can select it and then click “Load selected corpus” to open it.

Note: the processed version of the corpus is stored in a .corpus file and automatically lives in a “CORPUS” folder in
Documents / PCT / CorpusTools on your hard drive. See Preferences for information on how to change this.

See also Logging / Saving Parsing Parameters for information about how the parameters you picked when loading the
corpus are temporarily saved.

12 Chapter 3. Loading in corpora



Phonological CorpusTools Documentation, Release 1.0.0

Below is a picture of the “Import corpus” dialogue box set up to load in a .csv file with orthography, transcription, and
frequency columns:

And here is the “Parsing settings” window of the transcription column:
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3.4 Running Text

It is also possible to have PCT create a corpus for you from running text, either in orthographic or transcribed form.
If the text is orthographic, of course, then segmental / phonological analysis won’t be possible, but if the text is itself
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a transcription, then all subsequent analysis functions are available. (Please see the section on Interlinear Text for
running texts that interleave orthographic and phonetic transcriptions.)

Once you have selected the file path or directory and named the corpus (see Creating a corpus), make sure that the
“Running text” tab is selected. Select whether the text is spelling (“Orthography”) or phonetic transcription (“Tran-
scribed”).

If the running text is transcribed, choose which feature system you would like to use. As noted above, in order for
there to be feature systems to choose from, you must first have loaded them into PCT (Working with transcriptions
and feature systems). If you haven’t yet added any, you may still import the corpus and then add them later.

If the running text is orthographic, and you have a corpus that contains transcriptions for the language of the running
text, you can have PCT look up the transcriptions of words in that “support corpus.” This must be a corpus that has
already been created in PCT. For example, you could first download the IPHOD corpus (see Using a built-in corpus)
and then ask PCT to create a corpus from a .txt file that contains English prose, looking up each word’s transcription
in the IPHOD corpus. You can specify that case should be ignored during lookup (e.g., to allow PCT to find the
transcriptions of words even if they happen to be capitalized at the beginning of sentences in the running text).

At the right-hand side of the “Import corpus” dialogue box, you will see a “Parsing preview” window for the column
of the corpus that will result from the running text. (The frequency of individual words in the text will be created
automatically.) Please see the section on Parsing Parameters for details on how to make choices in this window.

Once all selections have been made, click “Ok.” PCT will process the corpus (depending on how big it is, this may
take a few minutes). It will then appear listed in the “Available corpora” window in the “Load corpus” dialogue box;
you can select it and then click “Load selected corpus” to open it.

Note: the processed version of the corpus is stored in a .corpus file and automatically lives in a “CORPUS” folder in
Documents / PCT / CorpusTools on your hard drive. See Preferences for information on how to change this.

See also Logging / Saving Parsing Parameters for information about how the parameters you picked when loading the
corpus are temporarily saved.

3.5 Interlinear Text

In addition to plain running text (Running Text), PCT also supports building corpora from interlinear texts, e.g., those
with spelling and transcription on alternating lines. Interlinear texts may have any number of repeating lines.

Once you have selected the file path or directory and named the corpus (see Creating a corpus), make sure that the
“Interlinear text” tab is selected.

PCT will start by automatically inspecting the text for characteristics that seem to repeat on particular sets of lines,
to figure out how many lines there are per “unit.” E.g., a text that has spelling on the first line, transcription on the
second, and glosses on the third will be automatically detected as having 3 lines per unit. The number can also be
specified manually. Note that the text must maintain this pattern throughout; deviations will cause errors in how PCT
reads in the data.

If the text is transcribed, choose which feature system you would like to use. As noted above, in order for there to be
feature systems to choose from, you must first have loaded them into PCT (Working with transcriptions and feature
systems). If you haven’t yet added any, you may still import the corpus and then add them later.

On the right hand side of the dialogue box, you’ll see a “Parsing preview” window which allows you to inspect each
line of the gloss and specify how that line is interpreted. Please see the section on Parsing Parameters for details on
how to make choices in this window.

Once all selections have been made, click “Ok.” PCT will process the corpus (depending on how big it is, this may
take a few minutes). It will then appear listed in the “Available corpora” window in the “Load corpus” dialogue box;
you can select it and then click “Load selected corpus” to open it.
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Note: the processed version of the corpus is stored in a .corpus file and automatically lives in a “CORPUS” folder in
Documents / PCT / CorpusTools on your hard drive. See Preferences for information on how to change this.

See also Logging / Saving Parsing Parameters for information about how the parameters you picked when loading the
corpus are temporarily saved.

An example of the “Import corpus” dialogue box set up for loading in a 3-line interlinear Gitksan text:

3.6 TextGrids

PCT can also be used to create corpora from a collection of Praat TextGrids [PRAAT]. This is particularly useful for
creating spontaneous speech corpora from recordings, especially if the transcription is based on what was actually
spoken rather than on canonical forms of each word – PCT can keep track of the individual pronunciation variants
associated with individual words (see Pronunciation Variants).

Once you have selected the file path or directory and named the corpus (see Creating a corpus), make sure that the
“TextGrid” tab is selected (this should happen automatically if the file extension(s) is .TextGrid).

If any of the tiers in the TextGrid is a transcription tier, choose which feature system you would like to use. As noted
above, in order for there to be feature systems to choose from, you must first have loaded them into PCT (Working
with transcriptions and feature systems). If you haven’t yet added any, you may still import the corpus and then add
them later.

If any of the tiers in the TextGrid is orthographic, and you have a corpus that contains transcriptions for the language of
the text, you can have PCT look up the transcriptions of words in that “support corpus.” This must be a corpus that has
already been created in PCT. For example, you could first download the IPHOD corpus (see Using a built-in corpus)
and then ask PCT to create a corpus from a .txt file that contains English prose, looking up each word’s transcription
in the IPHOD corpus. You can specify that case should be ignored during lookup (e.g., to allow PCT to find the
transcriptions of words even if they happen to be capitalized at the beginning of sentences in the running text).

At the right-hand side of the “Import corpus” dialogue box, you’ll see a “Parsing preview” window. This will give you
choices for how to parse each tier of the TextGrid, labelled with the original names of the tiers. Please see the section
on Parsing Parameters for details on how to make choices in this window.

Once all selections have been made, click “Ok.” PCT will process the corpus (depending on how big it is, this may
take a few minutes). It will then appear listed in the “Available corpora” window in the “Load corpus” dialogue box;
you can select it and then click “Load selected corpus” to open it.
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Note: the processed version of the corpus is stored in a .corpus file and automatically lives in a “CORPUS” folder in
Documents / PCT / CorpusTools on your hard drive. See Preferences for information on how to change this.

See also Logging / Saving Parsing Parameters for information about how the parameters you picked when loading the
corpus are temporarily saved.

3.7 Other Standards

Finally, PCT comes pre-equipped to handle certain other standard corpus types. At the moment, the only supported
standards are the Buckeye corpus [BUCKEYE] and the TIMIT corpus [TIMIT]. You must obtain your own copy of
either of these corpora through their usual means and store it locally; PCT simply gives you a way to easily open these
corpora in the standard PCT format.

When selecting the corpus source, navigate to the directory where the Buckeye or TIMIT files are stored. PCT will
automatically detect the format of files in the directory and select the “Other Standards” tab. Within that tab, it will
also automatically select the file format.

If the text is transcribed, choose which feature system you would like to use. As noted above, in order for there to be
feature systems to choose from, you must first have loaded them into PCT (Working with transcriptions and feature
systems). If you haven’t yet added any, you may still import the corpus and then add them later. There is an option to
download a Hayes-style feature system [Hayes2009] for the Buckeye corpus transcriptions.

At the right-hand side of the “Import corpus” dialogue box, you’ll see a “Parsing preview” window. This will give you
choices for how to parse each part of the original corpus. Please see the section on Parsing Parameters for details on
how to make choices in this window.

Once all selections have been made, click “Ok.” PCT will process the corpus (depending on how big it is, this may
take a few minutes). It will then appear listed in the “Available corpora” window in the “Load corpus” dialogue box;
you can select it and then click “Load selected corpus” to open it.

Note: the processed version of the corpus is stored in a .corpus file and automatically lives in a “CORPUS” folder in
Documents / PCT / CorpusTools on your hard drive. See Preferences for information on how to change this.

See also Logging / Saving Parsing Parameters for information about how the parameters you picked when loading the
corpus are temporarily saved.

3.7.1 Required format of corpus

In order to use your own corpus, it must have certain properties. First, it should be some plain text file (e.g., .txt, .csv); it
cannot, for example, be a .doc or .pdf file. The file should be set up in columns (e.g., imported from a spreadsheet) and
be delimited with some uniform character (tab, comma, backslash, etc.). The names of most columns of information
can be anything you like, but the column representing common spelling of the word should be called “spelling”; that
with transcription should be called “transcription”; and that with token frequency should be called “frequency.” All
algorithms for doing corpus analysis will assume these column names. If, for example, you were using a corpus that
had different frequency columns for total frequency vs. the frequency of occurrence of the word in its lowercase form
(cf. the SUBTLEX corpus), then whichever column is to be used for token frequency calculations should simply be
labelled “frequency.”

Parsing Parameters

This section outlines the choices that can be made in the “Parsing Preview” section of the import corpus dialogue box.
In order for this section to be available, you need to have first started to import a corpus and selected a file, as described
in the section on Creating a corpus.
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1. Name: Specify the name of the column. If you are importing from a column-delimited file or a TextGrid with
tiers, PCT will default to the name of the column / tier that is there. If you are reading from a running text or
interlinear gloss file, and have specified that the file is either orthographic or transcribed, PCT will default to
“Spelling” or “Transcription,” respectively. You may also manually enter the name.

2. Annotation type: Specify what type of information the column will contain. The default is simply a numeric
or character column, depending on what type of information PCT automatically detects. IMPORTANT: You
should specify which column you want PCT to treat as the “Orthography” and “Transcription” columns – with-
out these named annotation types, some of the functions in PCT will not work, as they call on these particular
types of columns.

3. Word association: Specify whether the information in the column should be associated with lexical items or
should be allowed to vary within lexical items. Most types of information will be associated with lexical items
(e.g., spelling, frequency). There are some kinds of information that do vary depending on the specific token,
however, such as pronunciation variants of individual words or the identity of the speaker of an individual
token. These are most likely to arise when creating a corpus from a TextGrid that has a tier for lexical items
(e.g., based on spelling on canonical transcriptions) and then a separate tier that will show the characteristics
of particular tokens (similar structures may be found with interlinear glosses). See also Pronunciation Variants
and specifically Creating Pronunciation Variants:.

4. Delimiters and Special Characters: For transcription and orthography columns, transcription and morpheme
delimiters as well as any special characters are previewed at the right-hand side of the column informatin box.
By clicking on “Edit parsing settings,” you can edit these, as follows:

(a) Example: At the top of the “parsing” dialogue box, you will see an example of the entries in the column,
to remind yourself of what sort of entries you are dealing with.

(b) Transcription delimiter: If your transcriptions are delimited (i.e., have special characters that indicate
segment breaks, as in [t.ai.d] for the word ‘tide,’ you can enter the delimiting character here). PCT will
automatically search for this delimiter, but you may adjust it manually as well. For more on understanding
complex transcriptions, see Complex transcriptions (Digraphs and other multi-character sequences).

(c) Morpheme delimiter: If your transcriptions include a morpheme delimiter (i.e., have special characters
that indicate morpheme breaks, as in [ri-du] for the word ‘redo,’ you can enter the delimiting character
here. PCT will automatically search for this delimiter, but you may adjust it manually as well.

(d) Number parsing: If PCT detects that there are numbers in the transcriptions, you have several options.
Sometimes, numbers are simply used as alternatives for segmental transcriptions (e.g., [2] is used in the
Lexique corpus [LEXIQUE] for IPA [ø]); in this case, simply select that they should be treated the “Same
as other characters.” In other cases, numbers may be used to indicate tone (e.g., [l.ei6.d.a1.k.s.eoi3] ‘profits
tax’ might be used in a Cantonese corpus like the Hong Kong Cantonese Adult Language Corpus [HKCAC]
to indicate the tone number associated with each vowel). In this case, select that number parsing should
be “Tone.” Finally, numbers might be used to indicate stress (e.g., [EH2.R.OW0.D.AY0.N.AE1.M.IH0.K]
is the representation of the word “aerodynamic” in the IPHOD corpus [IPHOD] using CMU [CMU]
transcriptions that include stress).

(e) Punctuation to ignore: If there are punctuation marks in the file, and these have not already been spec-
ified as being used as either transcription of morpheme delimiters, then they will be listed as possible
punctuation marks that PCT can ignore. Ignoring punctuation allows PCT to compile an accurate count of
unique words, especially from running texts; for example, the words “example” and “example,” should be
treated as two tokens of the same word, ignoring the comma at the end of the second one. Punctuation can
be included, however; this might be desirable in a case where a punctuation symbol is being used within
the transcription system (e.g., [!] used for a retroflex click). Each symbol can be ignored or included
as needed. (Clicking on the symbol so that it is selected makes PCT IGNORE the symbol in the corpus
creation.)

(f) Multicharacter segments: See the discussion in Constructed multicharacter sequences in the section on
Complex transcriptions (Digraphs and other multi-character sequences) for details.
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3.7.2 Complex transcriptions (Digraphs and other multi-character sequences)

There is no way for PCT to know automatically when a single sound is represented by a sequence of multiple characters
– e.g., that the digraphs [aI], [t], [xw], [p’], [tS], and [i:] are intended to represent single sounds rather than sequences
of two sounds. There are currently three possible ways of ensuring that characters are interpreted correctly:

1. One-to-one transcriptions: The first way is to use a transcription system with a one-to-one correspondence
between sounds and symbols, such as DISC. If you need to create a novel transcription system in order to
accomplish this (e.g., using [A] to represent [aI] and [2] to represent [t], etc.), you may certainly do so; it is
then necessary to create a novel feature file so that PCT can interpret your symbols using known features. See
detailed instructions on how to do this in Downloadable transcription and feature choices. The word tide in
American English might then be transcribed as [2Ad]. This is a relatively easy solution to implement by using
find-and-replace in a text editing software, though it does result in less easily human-readable transcriptions.

2. Delimited transcriptions: The second way is to use a standard transcription system, such as IPA, but to delimit
every unitary sound with a consistent mark that is not otherwise used in the transcription system (e.g., a period).
Thus the word tide in American English might be transcribed in IPA as [t.aI.d], with periods around every sound
that is to be treated as a single unit. When creating the corpus, PCT will give you the option of specifying
what the character is. PCT will then read in all elements between delimiting characters as members of a single
“segment” object, which can be looked up in a standard feature file (either an included one or a user-defined
one; see Using a custom feature system). This solution makes it easy to read transcribed words, but can be more
labour-intensive to implement without knowledge of more sophisticated searching options (e.g., using regular
expressions or other text manipulation coding) to automatically insert delimiters in the appropriate places given
a list of complex segments. A first pass can be done using, e.g., commands to find “aI” and replace it with “.aI.”
– but delimiters will also have to be added between the remaining single characters, without interrupting the
digraphs.

3.7.3 Constructed multicharacter sequences

The third option is to tell PCT what the set ofmulticharacter sequences is in your corpus manually, and then to have
PCT automatically identify these when it creates the corpus. This can be done by editing the parsing settings for a
column during the import of a corpus. In the “Import corpus” dialogue box, there is an option to edit the parsing
settings for each column in the corpus. At the bottom there is an option for listing multicharacter segments in the
corpus. You may enter these manually, separated by commas, or choose “Construct a segment” to have help from
PCT. If you are entering them manually, you may copy and paste from other documents (e.g., if you have created a
list of such sequences independently). If you choose “Construct a segment,” PCT will scan the selected file for single
characters and present these to you as options for constructing multi-character segments from.

For example, in the following box, all of the single characters in a Gitksan text file are presented, and can be selected
sequentially to create the appropriate multi-character segments. This method is somewhat more labour-intensive in
terms of knowing ahead of time what all the multi-character segments are and being able to list them, but ensures
that all such occurrences are found in the text file. Note, however, that if there’s a distinction to be made between a
sequence of characters and a digraph (e.g., [tS] as a sequence in great ship vs. as an affricate in grey chip), this method
will be unable to make that distinction; all instances will be treated as multi-character segments. Each multi-character
segment can be as long as you like. If there are shorter sequences that are subsets of longer sequences, PCT will
automatically look for the longer sequences first, and separate them out; it will then scan for the shorter sequences.
E.g., it will search for and delimit [ts’] before it searches for [ts], regardless of the order in which the sequences are
entered. Note that the list of multicharacter segments is temporarily saved in a log file for the current PCT session;
you may want to open the log file and copy and paste the set of multicharacter segments to a new file for your own
later use. For instance, this is useful for times when you may want to re-create the corpus with different settings
or formatting and don’t want to have to re-construct all the multi-character sequences by hand, as the entire list of
multicharacter segments can simply be copy-pasted into the parsing dialogue box. See details on this feature in the
Logging / Saving Parsing Parameters section.
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Logging / Saving Parsing Parameters

When you import a new corpus into PCT, there are many parameters that you choose, such as the name of the corpus,
the type of corpus, the various delimiters, ignored punctuation, multicharacter sequences, etc. – see Creating a corpus.
Sometimes, you may find it necessary to tweak the parameters originally chosen once you’ve imported a corpus and
loaded it in (for instance, you might realize that you forgot a particular digraph when you were specifying multichar-
acter segments). PCT automatically keeps a temporary log of the import settings on any given session. You can, for
example, copy and paste the set of digraphs from this log to save and re-use in future sessions, rather than having to
re-create them from scratch just to add a new one in. To limit the size of the log file, though, PCT will overwrite it
every time PCT is re-launched with a new corpus import, so any information that is important should be saved from
the log file manually.

To access the log file, go to the directory where your PCT files are stored. By default, this is Documents / PCT /
CorpusTools, but you can change this location; to do so, see the Preferences section. Within this directory, click on
the “log” folder; you will see a pct_gui.log file. This can be opened in any text editor. Information from this file can
be copied and pasted into a separate document that can be saved for future reference.

Here’s an example of the log file after importing a 3-line interlinear gloss file of Gitksan:

The following shows an example of a transcribed Gitksan story transformed into a (small!) corpus (with grateful
acknowledgement to Barbara Sennott and the UBC Gitksan language research group, headed by Lisa Matthewson &
Henry Davis, for granting permission to use this text):

1. The original transcribed story:
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2. The transcription delimited with periods to show unitary characters:

3. The dialogue boxes for creating the corpus from text. Note that hyphens and equal signs, which delimit mor-
phological boundaries in the original, have been ignored during the read-in. A feature system called gitk-
san2hayes_delimited, which maps the delimited transcription system used in this example to the features given
in [Hayes2009], has already been loaded into PCT (see Using a custom feature system), and so is selected here.
In this case, the multicharacter segments are indicated manually.
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4. The resulting corpus, ready for subsequent analysis:

The corpus appears on the left, in the familiar columnar format. The original text of the corpus appears at the right.
Right-clicking on a word in the corpus list gives you the option to “Find all tokens” in the running text; these words
will be highlighted. Similarly, right-clicking a word in the running text gives you the option to “Look up word,” which
will highlight the word’s entry in the corpus list.

Here is an example of creating a corpus based on three .TextGrid files from the Corpus of Spontaneous Japanese [CSJ].
Note that the hovering over the box labelled “Mouseover for included files” shows a list of the names of the files in
the chosen directory. In the “parsing preview” window, each set of boxes corresponds to one tier of the TextGrids,
and the original name of the TextGrid is shown at the top (e.g., “word,” “seg”). Note that here, the orthographic
tier is associated with the lexical item, while the transcription tier is allowed wot vary within lexical item, such that
pronunciation variants are kept track of.

Once the TextGrids have been processed, they appear in a window such as the following. The regular corpus view is
in the centre, with frequency counts aggregated over the entire set of speakers / TextGrids. Note that the transcription
column may be blank for many words; this is because in spontaneous speech, the citation / spelled words often have
multiple different transcribed forms in the corpus itself. To see these various transcriptions, right-click on any word
in the corpus and select “List pronunciation variants.” A new dialogue box will pop up that shows the individual pro-
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nunciation variants that occur in the corpus for that word, along with their token frequencies. (See also Pronunciation
Variants.)

In this example, each TextGrid is interpreted as belonging to a different speaker, and these individual speakers are
listed on the left. Clicking on one of the speakers shows the transcript of that speaker’s speech in a box on the right.
This is not a corpus, but rather a sequential listing of each word that was extracted, along with the transcription and
the timestamp of the beginning of that word in the TextGrid. Right-clicking on a word in this list will give you the
option to look up the word’s summary entry in the corpus itself, which apears in the centre. Right-clicking a word
in the overall corpus will give you the option to “Find all tokens” of that word in the transcriptions, where they will
simply be highlighted.

3.8 Creating a corpus file on the command line

In order to create a corpus file on the command line, you must enter a command in the following format into your
Terminal:

pct_corpus TEXTFILE FEATUREFILE

...where TEXTFILE is the name of your input text file and FEATUREFILE is the name of your feature file. You
may specify file names using just the file name itself (plus extension) if your curre nt working directory contains
the files; alternatively, you can specify the full path to these files. Please do not mix short and full paths. This
script will also look in your Documents directory, in the same place where the GUI keeps its corpus files: ...Docu-
ments/PCT/CorpusTools/CORPUS . You may also use command line options to change the column delimiter character
or segment delimiter character from their defaults (\t and ’’, respectively). Descriptions of these arguments can be
viewed by running pct_corpus -h or pct_corpus --help. The help text from this command is copied below,
augmented with specifications of default values:

Positional arguments:

-h
--help

Show this help message and exit

-d DELIMITER
--delimiter DELIMITER

Character delimiting columns in input file, defaults to \t

-t TRANS_DELIMITER
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--trans_delimiter TRANS_DELIMITER
Character delimiting segments in input file, defaults to the empty string

EXAMPLE:

If your pre-formatted text file is called mytext.txt and your features are hayes.feature, and if mytext.txt uses ; as
column delimiters and . as segment delimiters, to create a corpus file, you would need to run the following command:

pct_corpus mytext.txt hayes.feature -d ; -t .

3.9 Summary information about a corpus

Phonological CorpusTools allows you to get summary information about your corpus at any time. To do so, go to
“Corpus” / “Summary.”

1. General information: At the top of the “Corpus summary” dialogue box, you’ll see the name of the corpus, the
feature system currently being used, and the number of word types (entries) in the corpus.

2. Inventory: Under the “Inventory” tab, there will generally be three sections, “Consonants,” “Vowels,” and
“Other.” (Note that this assumes there is an interpretable feature system being used; if not, then all elements
in the inventory will be shown together.) If there is a feature system in place, consonants and vowels will be
arranged in a manner similar to an IPA chart. (For more on how to edit this arrangement, see Edit inventory
categories.) Any other symbols (e.g., the symbol for a word boundary, #) will be shown under “Other.”

(a) Segments: Clicking on any individual segment in the inventory will display its type and token frequency
in the corpus, both in terms of the raw number of occurrences and the percentage of occurrences.

3. Columns: Under the “Columns” tab, you can get information about each of the columns in your corpus (in-
cluding any that you have added as tiers or other columns; see Adding, editing, and removing words, columns,
and tiers). The column labels are listed in the drop-down menu. Selecting any column will show you its type
(spelling, tier, numeric, factor) and other available information. Tier columns (based on transcriptions) will
indicate which segments are included in the tier. Numeric columns will indicate the range of values contained.

Once you are finished examining the summary information, click “Done” to exit.

3.10 Subsetting a corpus

It is possible to subset a corpus, creating new corpora that have only a portion of the original corpus. For example, one
might want to create a subset of a corpus that contains only words with a frequency greater than 1, or contains only
words of a particular part of speech or that are spoken by a particular talker (if such information is available). The new
subsetted corpus will be saved and made available to open in PCT as simply a new corpus.

To create a subset, click on “File” / “Generate a corpus subset” and follow these steps:

1. Name: Enter the name for your new corpus. The default is to use the name of the current corpus, followed by
“_subset,” but a more informative name (e.g., “Gitksan_nouns”) may be useful.

2. Filters: Click on “Add filter” to add a filter that will be used to subset the corpus. You can filter based on any
numeric or factor tier / column that is part of your corpus. For a numeric column (e.g., frequency), you can
specify that you want words that have values that are equal to, greater than, less than, greater than or equal to,
less than or equal to, or not equal to any given value. For a factor column (e.g. an abstract CV skeleton tier),
you can add as many or as few levels of the factor as you like.

3. Multiple filters: After a filter has been created, you can choose to “Add” it or “Add and create another” filter.
The filters are cumulative; i.e., having two filters will mean that the subset corpus will contain items that pass
through BOTH filters (rather than, say, either filter, or having two subsets, one for each filter).

3.9. Summary information about a corpus 25



Phonological CorpusTools Documentation, Release 1.0.0

4. Create subset: Once all filters have been selected, click on “Create subset corpus.” You will be returned to your
current corpus view, but the subsetted corpus is available if you then go to “File” / “Load corpus...” – it will
automatically be added to your list of available corpora. Note that the subset corpus will automatically contain
any additional tiers that were created in your original corpus before subsetting.

3.11 Saving and exporting a corpus or feature file

If “Auto-save” is on (which is the default; see Preferences), most changes to your corpus (adding a feature system,
words, tiers, etc.) will be saved automatically and will be available the next time you load the corpus in PCT. Some
changes are not automatically saved (removing or editing word entries), even if Auto-save is on, to prevent inadvertant
loss of information. If you have made changes that have not been automatically saved, and then quit PCT, you will
receive a warning message indicating that there are unsaved changes. At that point, you may either choose “Don’t
save” (and therefore lose any such changes), “Save” (to save the changes in its current state, to be used the next time
it is loaded into PCT), or “Cancel” (and return to the corpus view).

It is also possible to export the corpus as a text file (.txt), which can be opened in other software, by selecting “File” /
“Export corpus as text file” and entering the file name and location and the column and transcription delimiters. (Note:
use t to indicate a tab.) You can also choose whether and how to export pronunciation variants, if there are any in the
corpus (see Pronunciation Variants and the subsection Exporting Pronunciation Variants: for more details).

Similarly, the feature system can also be exported to a .txt file by selecting “File” / “Export feature system as text file”
and selecting the file name and location and the column delimiter. See more about the utility of doing so in Working
with transcriptions and feature systems.

See also information about the temporary log file that is created when a new corpus is imported by going to Logging
/ Saving Parsing Parameters; this file has information about the various Parsing Parameters that were chosen in the
creation of any given corpus.

3.12 Setting preferences & options; Getting help and updates

3.12.1 Preferences

There are several preferences that can be set in PCT. These can be selected by going to “Options” / “Preferences....”
The following are available:

1. Storage:

(a) File location: By default, PCT will save corpus, feature, and result files to your local “Documents” direc-
tory, which should exist under the default settings on most computers. When saving a particular output
file, you can generally specify the particular storage location as you are saving. However, it is also possible
to change the default storage location by changing the file path in this dialogue box. You may enter the
path name directly, or select it from a system window by selecting “Choose directory...”.

(b) Auto-save: By default, PCT will automatically save changes to a corpus (e.g., if you have updated a feature
system, added a tier, etc.). De-select this option if you prefer to manually save such changes (PCT will
prompt you before closing without saving). Changes to word entries (removing or editing a word) are
NOT auto-saved and should be saved manually if you want them to be saved; again, PCT will prompt you
to save in these cases before exiting. Once Auto-save is deselected, PCT will remember that this is your
preference for the next time you open the software - it will not automatically get turned back on.

2. Display: By default, PCT will display three decimal places in on-screen results tables (e.g., when calculating
predictability of distribution or string similarity, etc.). The number of displayed decimal places can be globally
changed here. Note that regardless of the number specified here, PCT will save results to files using all of the
decimal places it has calculated.
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3. Processing: Some calculations consume rather a lot of computational resources and can be made faster by using
multiprocessing. To allow PCT to use multiprocessing on multiple cores when that is possible, select this option
and indicate how many cores should be used (enter 0 to have PCT automatically use ¾ of the number of cores
available on your machine).

3.12.2 Help and warnings

When using PCT, hovering over a dialogue box within a function will automatically reveal quick ToolTips that give
brief information about the various aspects of the function. These can be turned on or off by going to “Options” /
“Show tooltips.”

PCT will also issue certain warnings if various parameters aren’t met. It is possible to turn warning messages off by
going to “Options” / “Show warnings.”

There is also extensive documentation for all aspects of PCT (of which the current text is part). There are several
options for accessing this information:

1. In the main PCT window (i.e., when viewing your corpus), click on “Help” from the “Help” menu. This will
take you to the main help file, from which you can navigate to other specific topics.

2. Go to the online PCT documentation to get access to the help files online.

3. Go to the PCT website and download a .pdf copy of the entire help file for off-line use.

4. While working in PCT, most dialogue boxes have options at the lower right-hand corner that say either “Help”
or “About...” (e.g., “About functional load...”). Clicking this button will pull up the relevant help file.

3.12.3 Copying and pasting

It is possible to highlight the cells in any table view (a corpus, a results window, etc.) and copy / paste a tab-delimited
string version of the data into another program (e.g., a spreadsheet or text editor) using your standard copy & paste
keyboard commands (i.e., Ctrl-C and Ctrl-V on a PC; Command-C and Command-V on a Mac).

3.12.4 Updates

To manually see whether there is a more recent version of PCT available for download, click on “Help” / “Check for
updates...”.

To be automatically notified of new versions of PCT or any other major news that is relevant to all users, please sign
up for the PCT mailing list, available from the PCT website.
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Example corpora

There are two example corpora that can be used in PCT that consist of entirely made-up data. The first is a very small
corpus called the “example” corpus; the second is a slightly larger corpus called “Lemurian.” Their purpose is to serve
as “practice” corpora, allowing the user to become familiar with PCT while working with an unfamiliar language.

4.1 The example corpus

The example corpus was included in the earliest versions of PCT and has a few useful patterns for testing out analysis
functions. For practical purposes, it is essentially superseded by the Lemurian corpus, which is more complex, but we
continue to include it since many of the “help” examples are based on its contents.

4.1.1 Inventory:

Stops: /t/

Nasals: /m, n/

Fricatives: /s, S/

Vowels: /i, e, u, o, a/

4.1.2 Phonological restrictions:

1. [e] and [o] are allophones of [i] and [u], respectively, which occur only immediately before a nasal consonant.

2. Non-low vowel harmony with blocking nasals: there are no sequences of a non-low front vowel followed (at
any distance) by a non-low mid vowel or vice-versa without an intervening nasal consonant.

3. Left-spreading S-dominant sibilant harmony: there are no sequences of [s] followed (at any distance) by [S].

4. Purely CV syllable structure.

4.2 The Lemurian corpus

The Lemurian corpus is generated by a Python script such that it will contain patterns that are easily detected with
the analysis functions in PCT. It can be generated to any size. The specific instantiation of the Lemurian corpus that
is available in PCT is generated with 30 words. It is a bit larger than the example corpus and has a few specific
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characteristics that users may find useful. Not all of the following may be particularly visible in this sample of
Lemurian, but these are the guidelines along which the corpus is built:

4.2.1 Inventory:

Stops: /p, b, t, d, k/

Nasals: /m, n/

Fricatives: /f, s, x/

Liquids: /l, r/

Glides: /j, w/

Vowels: /i, e, u, o, a/

4.2.2 Phonotactics:

Words in the corpus can be anywhere from 1 to 5 syllables long. Lemurian has a maximum syllable of C1C2VC3 with
the following phonotactics:

1. Codas and onsets are always optional.

2. C1 can be any consonant in the inventory.

3. C2 can be a glide, a stop, or a nasal. Glides can occur after any consonants.

4. C2 can only be a stop or a nasal if C1 is a fricative.

5. C3 if present must be a nasal.

Lemurian has front/back vowel harmony, and a word can only contain vowels from one of those categories. Front
vowels are /i, e/, back vowels are /u, o/. The vowel /a/ is neutral and can appear with vowels from either set.

4.2.3 Other phonological patterns:

1. The sound [z] occurs only as an allophone of /s/ between vowels, i.e. s -> z / V_V

2. Voiced and voiceless stops only contrast in C1 position of a syllable. If a stop appears in C2 (following a
fricative) then it is necessarily a voiceless stop.

3. Coronals have a high functional load.

4. Word frequencies are randomly generated, so there is no guarantee about any sound or sound sequence being
more or less common.

4.2.4 Orthography vs. transcription:

The Lemurian corpus contains a number of intentional mismatches between the spelling system and the transcription
system. This allows users to test out the differences between selecting spelling and transcription for some of the
analysis functions, e.g. string similarity.

1. All of the transcription symbols match the orthographic symbols, except for /x/ which is written as “h.”

2. Coda nasals are not distinguished in writing. Both use the symbol ‘N’. This obscures some minimal pairs.

3. If a syllable starts with /ju/ or /wu/, the glide is not written.
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4. The allophone [z] is written as “s”

For example, the word [junxwa] would be spelled “uNhwa”
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CHAPTER 5

Working with transcriptions and feature systems

In order to do phonological analysis, PCT needs to know what segments exist in a corpus, and what features are
assigned to each segment. There are a variety of built-in transcription systems and feature systems available, but users
can also define their own for custom use. Transcription and feature systems are essentially packaged together as .txt
files in the form of a spreadsheet, where particular transcription symbols are mapped to a set of features (described
below in Required format of a feature file). In general, however, feature systems (i.e., files containing transcriptions
and their features) must be explicitly loaded into PCT before they are available for use. Thus, it makes sense to start
by loading in at least one such system before attempting to work with corpora.

5.1 Required format of a feature file

As mentioned above, transcription and feature systems are packaged together as .txt files in the form of a delimited
spreadsheet. The first column in the file lists all the transcription symbols that are to be recognized. Note that this
column must be labeled with the name “symbol” in order for PCT to correctly read in the file. Every symbol used in
the corpus needs to be in this column. Subsequent columns list individual features that are to be used. Each cell in a
row gives either a + or – for each feature, indicating what value the initial symbol in that row has for that feature; a
0 or n can also be used, to indicate that a particular feature is not defined for a given segment (0 is the default in the
built-in hayes system; n is the default in the built-in spe system). The following shows an example; keep in mind that
this is in fact a tab-delimited .txt file, but the names in the first row are longer than any of the values in subsequent
rows, so the alignment is visually misleading. For example, the first row containing symbols contains the symbol [p],
which is designated as [-syllabic], [+consonantal], [-sonorant], [-continuant], etc., although the column names aren’t
aligned with the feature values visually.
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5.2 Downloadable transcription and feature choices

Currently, the built-in transcription systems that are usable are IPA, ARPABET (used for the [CMU] dictionary),
XSAMPA, CPA, CELEX, DISC, Klatt, and Buckeye. These transcription systems can be associated with either the
features as laid out in [Mielke2012], which in turn are based on [SPE], or as laid out in [Hayes2009] 1. Each of
these transcription-to-feature mappings is laid out as above in a .txt file that can be downloaded from within PCT. The
former system is called “spe” for short within PCT, while the latter is called “hayes.”

To download one of these systems, click on “Corpus” / “Manage feature systems...” and follow these steps:

1. Download: Click on “Download feature systems” to open up the relevant dialogue box.

2. Transcription: Select which of the transcription systems you want (IPA, ARPABET, XSAMPA, CPA, CELEX,
DISC, Klatt, or Buckeye).

3. Feature system: Select which set of features you would like to map the transcription symbols to (SPE or Hayes).

4. Saving: Click “OK” to have PCT load in the selected feature file (you must be connected to the internet to
have this functionality). The newly downloaded feature file will now appear in your “Manage feature systems”
dialogue box, and is available for all subsequent use of PCT unless and until you delete it (done by selecting the
system and clicking “Remove selected feature system”). Click “Done” to return to the regular corpus analysis
window.

See Applying / editing feature systems for more information about applying / editing feature systems in conjunction
with corpora.

1 Note that the original [Hayes2009] system does not include diphthongs. We have included featural interpretations for common English
diphthongs using two additional features, [diphthong] and [front-diphthong]. The former has a [+] value for all diphthongs, a [-] value for all vowels
that are not diphthongs, and a [0] value for non-vowels. The latter references the end point of a diphthong; [aI], [eI], and [OI] are [+front-diphthong],
[aU] and [oU] are [-front-diphthong]. All other segments are left unspecified for this feature. Other vowel features for diphthongs are specified based
on the first element of the diphthong; e.g., all of [aI], [eI], [OI], [aU], and [oU] are [-high]; of these five, only [aI] and [aU] are [+low]; only [eI] is
[+front]; only [oU] and [OI] are [+back]; only [oU] and [OI] are [+round].
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5.3 Using a custom feature system

In addition to using one of the built-in feature systems, you can design your own transcription-to-feature mapping, of
the format specific in Required format of a feature file.

5.3.1 Loading a custom feature system

Once you have a feature file in the required format (see Required format of a feature file and Modifying an existing
feature system’s text file), go to “Corpus” / “Manage feature systems...” to load it in. Select “Create feature system
from text file” and the “Import feature system” dialogue box will open.

1. File selection: Specify the file by entering its directory path or by selecting it using the “Choose file...” button.

2. Transcription system: Indicate which transcription system this is a feature file for. (For example, you can create
a new feature file for existing IPA transcriptions.) If this is a brand-new system for PCT, i.e., a new transcription
system being associated with features, then select “Custom” from the dropdown menu. Then, enter a name for
the transcription system in the box.

3. Feature system: Indicate which feature system is being used (e.g., is this a case of assigning existing SPE
features to a new transcription system?). If this is a brand-new set of features, then select “Custom” from the
dropdown menu. Then, enter a name for the feature system in the box.

Note: For both existing transcription and feature systems, you still need to include both the transcriptions and the
features in the .txt file itself; you can simply indicate here in PCT that these transcriptions and / or features are
identical to ones that are already extant in the system, so that they can be used / interpreted consistently. The name
of the transcription / feature system file in PCT will conventionally be transcription2features (e.g., ipa2hayes for IPA
symbols interpreted using Hayes features), so it’s useful to be consistent about what the names are.

4. Delimiter: Indicate what the column delimiter in the custom file is. The default, tab, is indicated by \t.

Click “OK,” and the feature system should now appear in your “Available feature systems” window. Click “Done.” See
Applying / editing feature systems for more information about applying the feature system to corpora. The image below
shows the dialogue box used to load in the custom, tab-delimited feature file for interpreting the custom “gitksan”
transcription system using Hayes features.
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5.3.2 Modifying an existing feature system’s text file

A custom system can be created from scratch, following the format described in Required format of a feature file. It is
probably easier, however, to create a new system by modifying an existing system’s file. While this can be done to a
certain extent within PCT itself (see Applying / editing feature systems), large-scale changes are best done in separate
text-editing software. To do so, you’ll need to start with an existing file, which can be obtained in one of two ways:

1. Through PCT: Download one of the built-in feature systems (Downloadable transcription and feature choices)
and apply it to your corpus (Applying / editing feature systems). Then go to “File” / “Export feature system as
text file...” and save the file locally.

2. Online: You can directly download .txt files with the currently available feature systems from the PCT Source-
Forge page, under “Files.” One advantage to this method is that there may be additional feature files that are
created as .txt files and made available online before they are packaged into the next release of the downloadable
software itself.

Once you have the file, open it in whatever software you prefer (e.g., TextEdit, OpenOffice, etc.); it may be easiest to
import it into a spreadsheet reader (e.g., Excel, Calc, etc.) in terms of legibility. You can then add new symbols to
the first column, feature specifications in the subsequent columns, new feature names, etc., etc. Remember that the
name of the first column must always be “symbol” in order for PCT to read the file. Save the new file as a CSV or
tab-delimited .txt file, and load it following the instructions in Loading a custom feature system.

5.4 Applying / editing feature systems

Once a feature system has been loaded into PCT (Downloadable transcription and feature choices, Using a custom
feature system), it is available for use with a corpus. To do so, first load in a corpus (Loading in corpora); if you are
using a custom corpus or creating a corpus from text, you can select the feature system you want to use during the
loading. Once a corpus has been loaded (with or without a feature system), you can edit the system by clicking on
“Features” / “View / change feature system....” The following options are shown:
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1. View system: At the top of the “Edit feature system” dialogue box, you’ll see the current transcription and
feature system being used, assuming one has been selected. The first column shows the individual symbols;
subsequent columns give the feature specifications for each symbol. Clicking on the name of any column sorts
the entire set by the values for that feature; clicking again flips the sort order based on that same column.

2. Change transcription and feature systems: If there is no feature system already specified, or if you would
like to change the transcription or feature system, use the dropdown menus under “Change feature systems” to
select from your currently available systems. If no system is available, or the system you want to use is not
available, go back to Downloadable transcription and feature choices or Using a custom feature system to learn
how to load feature systems in to PCT. Be sure to click on “Save changes to this corpus’s feature system” after
selecting a new feature system in order to actually apply it to the corpus.

3. Modify the feature system: You can modify the current feature system directly within PCT. There are three
options.

(a) Add segment: To add a new segment and its associated feature values to the current feature system, click
on “Add segment.” A new dialogue box will open up, with a space to input the symbol and dropdown
menus for all of the features expected in the current system. You can also specify that all features should
be set to a particular value, and then change / edit individual features as needed. Simply fill in all the values
and click “OK”; the symbol and features will be added to the feature system.

(b) Edit segment: To change the feature specifications of an existing segment, click on the row contain-
ing that segment and then on “Edit Segment.” Then use the resulting dialogue box to change the feature
specifications.

(c) Add feature: To add an additional feature to the current system, click on “Add feature.” Enter the name
of the feature in the dialogue box, select the default value that all segments will have for this feature, and
hit “OK.” The feature will be added to all the segments in the corpus, with the default value. To change
the value of the feature for each segment, simply click on the segment and then use the “Edit segment”
functionality described above; the new feature will automatically be added to the dialogue box for each
segment.

Warning: Be sure to click on “Save changes to this corpus’s feature system” after adding a new segment or
feature, or editing the feature specifications of a segment, in order to actually apply the changes to the corpus.

4. Corpus inventory coverage: There are two tools built in to help you check the coverage in your corpus.

(a) Extraneous symbols: The built-in feature systems are fairly extensive, and may include symbols for
sounds that do not occur in your corpus. Click on “Hide all segments not used by corpus” to remove such
segments from the viewing window. (This does NOT remove them from the feature system itself; it just
de-clutters your view of the system.) To revert back to the full system, simply click on “Show full feature
system.”

(b) Corpus coverage: It’s possible that there are symbols used in your corpus that are not covered in whatever
feature system you have selected. To find out, click on “Check corpus inventory coverage.” A new window
will appear that either confirms that all symbols in the corpus are mapped onto features, or lists the symbols
that are currently lacking. If there are symbols that are missing, you’ll need to add them before doing
phonological analysis on the corpus. You can do so in two ways: (1) adding them within the PCT interface,
following the instructions under “Modify the feature system,” immediately below; or (2) changing the
feature system itself by editing the .txt file and reloading it (more information given in Modifying an
existing feature system’s text file).

Below is an example of the “Edit feature” system dialogue box, loaded with the “ipa2spe” transcription and feature
file:
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5. Display options: The standard view (shown below) is to display the segments and features as a matrix. One
can also select “tree” view, which allows one to see a list of the segments included in the transcription system,
organized by phonetic characteristics (but currently without all of their feature specifications).

5.5 Edit inventory categories

There are many instances in which PCT needs to display the inventory of the corpus in order for sounds to be selected
for search or analysis. The default is to display segments in alphabetical order, which is not necessarily particularly
intuitive as far as a linguist’s ability to interact with the list. For example, here is the unordered version of the segments
in the sample “Lemurian” corpus (see Example corpora):
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Once a feature file has been associated with a corpus, this unordered set can be arranged into something more closely
resembling an IPA chart. Here is the Lemurian corpus once the IPA symbols have been interpreted using Hayes-style
features (note that for space reasons, only the consonant chart is shown; the vowel chart is below in the actual PCT
window):
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If the feature system being used is either the built-in [Hayes2009] or the [SPE] style feature system, the sorting of
segments (regardless of the transcription system) in to a standard IPA-like chart will be done automatically (though
it can still be edited). If a different feature system is used, however, the sorting may not be correct if PCT does not
recognize the features. Therefore, the inventory categories can be edited.

To do so, click on “Edit inventory categories” in the “Features” / “View / change feature system....” menu. The “Edit
categories” dialogue box appears. Essentially, you are telling PCT which feature values are associated with which
segments in the inventory. There are five sets of categories to be edited: “Major distinctions,” “Places of articulation,”
“Manners of articulation,” “Vowel height,” and “Vowel backness.” Each is described below. In each case, PCT will
ask for which feature or set of features is used to specify a particular set of segments. You can then type in the box
the name of the feature; PCT will auto-complete feature names. Once a feature has been included, you can simply
mouseover the box on the right-hand side to view which segments from the inventory are included by the selected
features, to check that they are correct and exhaustive. (Note that the order of feature selection doesn’t matter.)

1. Major distinctions: Use the major distinctions tab to edit major class distinctions, i.e., vowels vs. consonants;
voicing; diphthongs; and rounding in vowels. For example, the feature specifying vowels in the [SPE] system
is +voc; the feature in the [Hayes2009] system is +syllabic.

2. Places of articulation: Use the places of articulation tab to indicate which features are associated with each
standard place of articulation. For example, the features to pick out labial segments in the [SPE] system are
-cor, +ant, -back; in the [Hayes2009] system, they are -coronal, +labial.

3. Manners of articulation: Use the manners of articulation tab to indicate which features are associated with
each standard manner of articulation. For example, the features to pick out stops in the [SPE] system are -cont,
-nasal, -son; in the [Hayes2009] system, they are -delayed_release, -sonorant, -nasal, -continuant.
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4. Vowel height: Use the vowel height tab to indicate which features are associated with each standard height of
vowels. For example, the features to pick out close vowels in the [SPE] system are +high, +tense, -low; in the
[Hayes2009] system, they are +high, +tense, -low.

5. Vowel backness: Use the vowel backness tab to indicate which features are associated with each standard degree
of backness of vowels. For example, the features to pick out front vowels in the [SPE] system are +tense, -back;
in the [Hayes2009] system, they are -back, +tense, +front.

Here is an example of the “Edit categories” box:

5.6 Creating new tiers in the corpus

It is possible to have PCT extract a tier of segments from the transcribed words in your corpus, based on any segment,
feature, or set of features that are defined for your corpus. For example, it is easy to extract separate tiers for conso-
nants and vowels. This extraction is particularly useful if, for example, one is interested in looking at an analysis of
predictability of distribution where the conditioning contexts are non-adjacent segments; the extraction of a tier allows
otherwise non-adjacent segments to be adjacent to each other on the selected tier. For example, one could examine
the possibility of vowel height harmony in language X by extracting the vowels from all words and then calculating
the extent to which high / low vowels are predictably distributed in high / low vowel contexts. (See also Adding a
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column for information on how to add a column to a corpus, which contains any kind of user-specified information,
and Adding a “count” column for information on how to add a count column to a corpus, which contains counts of
specific elements within each entry in the corpus.)

To create a new tier for a corpus that is currently open, click on the “Corpus” menu and select either “Add tier...” or
“Add abstract tier...”; the “create tier” dialogue box opens. An “abstract” tier is a tier that is not based directly on the
transcriptins themselves, but rather abstracts to a higher level. As of June 2015, the only abstract tier available is a
CV skeleton tier. Before creating the tier, you can “preview” the tier as in the following example; this shows what
segments PCT thinks are consonants and vowels in the current corpus.

The example corpus after an abstract CV tier has been added:
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To create a less abstract tier, i.e., one that is just an extraction of all transcription symbols in the corpus that have some
particular characteristic(s), use the following instructions after choosing “Corpus” / “Add tier...”:

1. Name: Enter a short-hand name for the tier, which will appear as the column header in your corpus. For
example, “vowels” or “consonants” or “nasals.”

2. Basis for creating tier: You can create the tier using natural classes if you base the tier on features; you can
also create “unnatural” tiers that are simply extractions of any set of user-defined segments.

3. Segments: To actually select the segments, using either features or individually, follow the directions given in
Sound Selection.

The image below shows an example of creating a tier to contain all the non-mid vowels in the example corpus. (Note
that the image shows the mid vowels highlighted but not yet selected; one would need to hit “enter” again or choose
“Select highlighted” to make the actual selection):
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The features available will be based on whatever feature system has been selected as part of the corpus; see Down-
loadable transcription and feature choices for information on selecting or defining different features for the segments
in the corpus.

4. Finalizing the tier: To create the tier and return to the corpus, click on “Create tier.” It may take a moment to
process the entire corpus, but a new column should be added to the corpus that shows the segments matching
these feature selections for every word in the corpus.

5. Saving the tier: The tier can be saved along with the corpus for future use by selecting “Corpus” / “Save corpus”
from the menu items (this will be done automatically if auto-save is on; see Preferences). It is also possible to
export the corpus as a text file (.txt), which can be opened in other software, by selecting “File” / “Export corpus
as text file.”

6. Removing a tier: To delete a tier that has been created, simply click on “Corpus” / “Remove tier or column...”
and select the tier you want to remove; then click “Remove.” You can also right-click on the column name
and select “Remove column.” Note that only tiers that have been added through PCT can be removed; tiers
that are inherent in loaded corpora cannot be removed in PCT. You can, of course, export the corpus itself to
a text file, remove the column manually, and then re-load the changed corpus. To remove all the added tiers,
leaving only the inherent (“essential”) tiers in the corpus, select “Remove all non-essential columns.” PCT will
list which columns are non-essential and verify that you want to remove them before the removal is permanent.
The “essential” columns for most corpora are “Spelling,” “Transcription,” and “Frequency.”

The following shows an example of the a vowel tier added to the example corpus using the SPE feature system:

44 Chapter 5. Working with transcriptions and feature systems



Phonological CorpusTools Documentation, Release 1.0.0

5.7 Adding, editing, and removing words, columns, and tiers

5.7.1 Adding a column

In addition to the ability to add tiers based on information already in the corpus, as described above in Creating new
tiers in the corpus, it is also possible to add a column containing any other user-specified information to a corpus
(see also Adding a “count” column to find out how to add a column based on counts of elements within each corpus
entry). For example, one could add a “Part of Speech” column and indicate what the lexical category of each entry in
the corpus is. Note that as a general proposition, it is probably easier to add such information in a spreadsheet before
importing the corpus to PCT, where sorting and batch updates are easier, but we include this functionality in a basic
form in case it is useful.

To add a column, go to “Corpus” / “Add column...” and do the following:

1. Name: Enter the name of the new column.

2. Type of column: Indicate what type of information the column will contain. The choices are “Spelling,”
“Numeric,” and “Factor.” A spelling column will have values that are written out as strings of characters, with
each entry taken to be a unique string. A numeric column will have numeric values, upon with mathematical
operations can be performed. A factor column will have values that can contain characters or numbers, but
are limited in number, as in the levels of a categorical variable. This is useful when, for example, the column
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encodes categorical information such as part of speech, with each entry in the corpus belonging to one of a
limited set of categories such as “Noun,” “Verb,” and “Preposition.”

3. Default value: A default value for the column can be entered if desired, such that every entry in the corpus
receives that value in the new column. Individual entries can subsequently be edited to reflect its actual value
(see Editing a word).

Click “Add column” to return to the corpus and see the new column, with its default values.

5.7.2 Adding a “count” column

In addition to adding columns that contain any kind of user-specified information (Adding a column), and tiers that
contain phonological information based on the entries themselves (Creating new tiers in the corpus), one can also add
“Count” columns, which contain information about the number of occurrences of a feature or segment in each entry in
a corpus. For example, one could add a column that lists, for each entry, the number of round vowels that are contained
in that entry. To add a count column, go to “Corpus” / “Add count column...” and then do the following:

1. Name: Enter the name of the new column.

2. Tier: Specify what tier the count column should refer to in order to determine the counts (e.g., transcription or
a derived tier such as a vowel tier).

3. Segment selection: Use the standard Sound Selection instructions to select which segments or types of segments
to count.

Click “Add count column” to return to the corpus and see the new column, with its count values automatically filled
in.

5.7.3 Removing a tier or column

To delete a tier or column that has been created, simply click on “Corpus” / “Remove tier or column...” and select the
tier you want to remove; then click “Remove.” Note that only tiers that have been added through PCT can be removed;
tiers that are inherent in loaded corpora cannot be removed in PCT. You can, of course, export the corpus itself to a text
file, remove the column manually, and then re-load the changed corpus. To remove all the added tiers, leaving only
the inherent (“essential”) tiers in the corpus, select “Remove all non-essential columns.” PCT will list which columns
are non-essential and verify that you want to remove them before the removal is permanent. The “essential” columns
for most corpora are “Spelling,” “Transcription,” and “Frequency.”

5.7.4 Adding a word

As a general proposition, we don’t recommend using PCT as a database manager. It is designed to facilitate analyses
of pre-existing corpora rather than to be an interface for creating corpora. That said, it is occasionally useful to be able
to add a word to a pre-existing corpus in PCT. Note that this function will actually add the word to the corpus (and,
if auto-save is on, the word will be saved automatically in future iterations of the corpus). If you simply need to add
a word temporarily, e.g., to calculate the neighbourhood density of a hypothetical word given the current corpus, you
can also add a word in the relevant function’s dialogue box, without adding the word permanently to the corpus.

To do add the word globally, howveer, go to “Corpus” / “Add new word...” and do the following:

1. Spelling: Type in the orthographic representation of the new word.

2. Transcription: To add in the phonetic transcription of the new word, it is best to use the provided inventory.
While it is possible to type directly in to the transcription box, using the provided inventory will ensure that
all characters are understood by PCT to correspond to existing characters in the corpus (with their concomitant
featural interpretation). (If there is no featural interpretation of your inventory, you will simply see a list of all
the available segments, but they will not be classifed by major category.) Clicking on the individual segments
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will add them to the transcription. Note that you do NOT need to include word boundaries at the beginning
and end of the word, even when the boundary symbol is included as a member of the inventory; these will be
assumed automatically by PCT.

3. Frequency: Enter the token frequency of this word.

4. Other: If there are other tiers or columns in your corpus, you can also enter the relevant values for those columns
in the dialogue box. For tiers that are defined via features, the values should be automatically populated as you
enter the transcription. E.g., if you have a vowel tier, and add the word [pim.ku] to your corpus by selecting the
relevant segments from the inventory, the vowel tier should automatically fill in the entry as [i.u].

Once all values are filled in, select “Create word” to return to the corpus with the word added. If auto-save is not on,
you can save this new version of the corpus for future use by going to “File” / “Save corpus.” If you have added a word
and the corpus has NOT been saved (either manually or through auto-save) afterward, and then try to quit PCT, it will
warn you that you have unsaved changes and ask that you verify that you want to quit without saving them.

5.7.5 Removing a word

To remove a word from the corpus, select it in the corpus view and right-click (ctrl-click on a Mac) on it. Choose
“Remove word” from the menu. Regardless of whether warnings are turned on or not (see Help and warnings), PCT
will verify that you want to remove the word before commiting the change. Word removal is not auto-saved with a
corpus, even if “Auto-save” is turned on (see Preferences); if you want to save the new version of the corpus with the
word removed, you should explicitly go to “File” / “Save corpus.” If you have removed a word and NOT manually
saved the corpus afterward, and then try to quit PCT, it will again warn you that you have unsaved changes and ask
that you verify that you want to quit.

5.7.6 Editing a word

To edit a word in the corpus, right-click on the word’s entry and chooser “Edit word details,” or double-click the
word’s entry in the corpus. A dialogue box opens that shows the word’s spelling, transcription, frequency, and any
other information that is included in the corpus. Most of these entries can be edited manually, though a few, such as
tiers that are dependent on a word’s transcription, cannot themselves be directly edited. To edit such a derived tier, edit
the transcription of the word; the derived tier will update automatically as the new transcription is provided.

5.7.7 Hiding / showing non-transcribed items

When working with a corpus, it is possible to hide all entries that do not have a transcription (if any such entries exist).
To do this, right-click anywhere in the corpus itself and select “Hide non-transcribed items.” To reveal them again,
right-click anywhere in the corpus itself and select “Show non-transcribed items.”

5.8 Phonological Search

PCT allows you to do searches for various strings, defined by segments or features. The search returns two types of
information: one, a general count of the number of entries that fit the search description, and two, the actual list of
all the words in the corpus that contain the specified string. To conduct a search, choose “Corpus” / “Phonological
search...” and do the following:

1. Environments: Select the strings you want to search for. See Environment Selection and Sound Selection for
details.

2. Tier: Select the tier on which phonological search should be performed. The default would be the transcription
tier, so that phonological environments are defined locally. But, for example, if a vowel tier is selected, then
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one could search for the occurrence of, e.g., [i] before mid vowels on that tier (hence ignoring intervening
consonants). (Note that it is not currently possible to do a phonological search within Pronunciation Variants;
the search will look only at the canonical forms or whatever forms are listed in the specified tier.)

An example of adding environments (in this case, the environment “word-initial, before a vowel”):

An example of the phonological search window, set up to search for voiceless stops word-initially before vowels and
between [a] vowels, on the transcription tier:

3. Results: Once all selections have been made, click on “Calculate phonological search.” If there is not already
an existing results table, or you want to start a new once, choose the “Start new results table” option. If you
want to add the results to a pre-existing table, choose the “Add to current results table” option. The results
appear in a new dialogue box that first shows the summary results, i.e., a list that contains the segment that
was searched for, each environment that was searched for, the total count of words that contain that segment
in that environment, and the total token frequency for those words (note that these are the frequencies of the
WORDS containing the specified environments, so if for example, a particular word contains multiple instances
of the same environment, this is NOT reflected in the counts). The individual words in the corpus that match
the search criteria can be shown by clicking on “Show individual results” at the bottom of the screen; this opens
a new dialogue box in which each word in the corpus that matches the search criteria is listed, including the
transcription of the word, the segment that was found that matches the search criteria, and which environment
that segment occurred in in that word. Note that the results can be sorted by any of the columns by clicking
on that column’s name (e.g., to get all the words that contained the [a_a] environment together, simply click on
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the “Environment” label at the top of that column). To return to the summary results, click on “Show summary
results.” Each set of results can be saved to a .txt file by clicking “Save to file” at the bottom of the relevant
results window. To return to the search selection dialogue box, click on “Reopen function dialogue.” Otherwise,
when finished, click on “Close window” to return to the corpus.

An example of the summary results window for the above phonological search:

And the individual results from the same search, sorted by environment:
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5.8.1 Classes and functions

For further details about the relevant classes and functions in PCT’s source code, please refer to API Reference.
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CHAPTER 6

Sound Selection

There are many instances in PCT where you are given the opportunity to select sounds that will be used in an analysis
or a search. This section describes the general interface used in all such instances, including using featural descriptions
to select sounds. See also Feature Selection for information about how to seelct features on which to do analyses.

When selecting a sound or a pair of sounds, you will be presented with a dialogue box that contains all of the unique
segments that occur in the corpus. If there is no feature system associated with the corpus, then these will be arranged
in alphabetical order as a solid block. If there is an associated feature system, then the segments will be arranged in
an IPA-style format. You can customize the layout of this display; for details on how to do so, see Edit inventory
categories. If there are associated features, there will also be an option at the top of the “select segment” box to “select
by feature.”

To select sounds, there are two options:

First, you can simply click on individual segments in the list or chart of segments. Multiple segments can be selected
at once. If you are selecting sounds for an analysis that involves a single segment, then each selected segment will
undergo the same analysis. (E.g., in a Phonological Search, if you select A, B, C, and D as the target sounds, then
each of those sounds will be searched for in the same environment.) If you are selecting sounds for an analysis that
involves a pair of sounds, then all the pairwise combinations of the selected sounds will be created. (E.g., if you select
A, B, C, and D as sounds in a pairwise selection, then all of the pairs, i.e., AB, AC, AD, BC, BD, and CD, will be
selected. In many analyses the order of the sounds in the pair doesn’t matter, but PCT also will allow you to switch
the order after the pairs have been created.)

Second, if there is an associated feature file, you can select sounds using featural descriptions. To do so, simply start
typing a feature value into the “Select by feature” box at the top of the sound selection box. As soon as any value or
characters are typed, a dropdown box will appear that lists all of the available features that match the current typing.
For example, just typing a “+” sign will reveal + values of all features that have a + specification in the feature chart
(e.g., +anterior, +coronal, +long, +nasal, + sonorant, +vocalic, etc.). Typing a letter, such as “c” will show all features
that start with that letter (e.g., -consonantal, -constricted glottis, -consonantal, -coronal, +consonantal, +constricted
glottis, +consonantal, +coronal, etc.). You can continue typing out the feature or select one from the list by either
clicking on it or hitting “return” when it is the one highlighted. Once a feature is entered, all segments that have that
feature specification will be highlighted in red on the chart. This does not in fact “select” them yet – it just indicates
which segments match the currently listed specifications. Once segments are highlighted, you may continue entering
features to winnow down the selection, or revert to clicking on individual segments (e.g., from among the highlighted
ones). As more features are typed in and selected, the highlighting in the chart will update to match the current feature
specification. (Features in the list can be separated by commas or spaces.) To actually SELECT all the highlighted
segments, you can simply hit “enter” again after the names of the features are completely entered, and the highlighting
will change to selection. Alternatively, you can click on the “Select highlighted” button. Note that if you just leave
them highlighted, no segments will actually be selected.
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CHAPTER 7

Environment Selection

There are many instances in PCT where you are given the opportunity to define environments that will be used in an
analysis. This section describes the general interface used in all such instances.

When you have the opportunity to define an environment, you will see a blank “Environments” box with a button in it
for “New environment.” Start by clicking this button to create a new environment – you can click it as many times as
you need to define multiple environments.

When a new environment has been added, it starts out blank. Environments are basically divided into three sections:
the target, the left-hand side, and the right-hand side.

The central rectangle marks the “target” of the environment and has an underscore at the top and a set of empty curly
brackets, {}, beneath. Depending on where you are building the environment, you may be able to edit the contents of
this target. E.g., if you are doing a Phonological Search, you can put the target(s) of the search here, and fill in the
environment around them. On the other hand, if you are builiding an environment to be used with pairs of sounds,
as in the Predictability of Distribution analysis, you will have specified the target pairs of sounds independently, and
cannot edit the targets in the environment selection box. In order to select a target in cases where it is editable, simply
click on the central target box; a sound selection box will open. See Sound Selection for details on how to use this
function, but basically, sounds can be selected either by clicking on segments or by specifying feature values. Multiple
sounds can be selected as the targets; each will be placed in the same surrounding environments.

On either side of the central target rectangle, there is a “+” button. These allow you to add segments to either the left-
hand or the right-hand side of the environment in an iterative fashion, starting with segments closest to the target and
working out. Clicking on one of the “+” buttons adds an empty set {} to the left or right of the current environment.

To fill the left- or right-hand side, click on the rectangle containing the empty set {}. This again brings up the
sound selection box; see Sound Selection for details. The environment can be filled by either clicking on segments or
specifying features.

Note that regardless of whether targets and environments are selected by segments or by features, the result will be a
disjunctive set of all segments that have been selected.

For example, to set up an environment that might be used to search for [n] vs. [m] vs. [N] in words that start with [I]
and in which the nasal is followed by voiceless stop, one could do the following:

1. Click on “New environment.” This gives you a blank environment:
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2. Click on the left-hand “+” sign twice, and the right-hand “+” sign once. This will give you the following, still
blank environment:

3. Click the central “target” rectangle.

4. Select [m], [n], and [N] either by hand or through their features (e.g., [+nasal, -vocalic] or whatever combination
of features is relevant for the corpus). (Be sure to fully select the segments if you’re using features; don’t just
have them highlighted, or they won’t get added to the environment. See Sound Selection for details.)

5. Click the leftmost empty set.

6. Select the word boundary symbol, #.

7. Click the empty set immediately to the left of the targets.

8. Select the vowel [I].

9. Select the rightmost empty set.

10. Select all voiceless stops (e.g., by using the features [-voice, -continuant, -delayed release]).

This now gives you an environment that looks something like the following (depending on the total inventory and the
transcription system of your corpus; this example is from the IPHOD corpus):
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To add additional environments, simply click “New environment.” To edit a current environment, simply click on the
rectangle containing the part of the environment you want to edit and re-select the sounds. To remove an environment
entirely, click on the “Remove environment” button to the right.
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CHAPTER 8

Feature Selection

There are several instances in PCT where you are given the opportunity to select sounds for an analysis based on
shared features. This section describes the general interface used in all such instances. See also Sound Selection for
general information on how to select individual segments for analysis, including using features to identify classes of
segments.

In many cases, you will just want to select individual sounds for an analysis (e.g., [e] vs. [o]). Occasionally, however,
it is useful to be able to compare classes of sounds that differ along some dimension (e.g., comparing front vs. back
non-low vowels, i.e., [i, e] on the one hand vs. [u, o] on the other).

To do this in an analysis window, click on “Add pair of features” to open the “Select feature pair” dialogue box.

At the top of the box, there is a place to enter the feature(s) along which the pairs will have OPPOSITE values. No “+”
or “-” value should be entered here; rather, it should just be the name of the feature (e.g., “back”). Note that currently,
PCT has some ability to automatically detect redundant features within a given domain. For instance, if the example
corpus is open and associated with SPE features, and one wanted to calculate the predictability of distribution of [i,e]
on the one hand vs. [u, o] on the other, one would could enter either “back” or “round”, but would also have enter
“-low” in the “Filter pairs” box. To accomplish the same thing with Hayes features, one needs to enter only one of
“back, front, round, or labial.” On the other hand, if one wanted to calculate the predictability of distribution for high
vowels [i, u] on the one hand and [e, o] on the other, one need only list the feature [high]. The automatic detection
is based on the inventory size, so smaller inventories will have more detectable redundancies than larger inventories.
Larger inventories will thus have to have more features entered for the segment sets to be selected.

As soon as a feature or set of features has been entered that describes two sets of sounds that differ on exactly the
feature values for the listed features, the sounds themselves will be shown in the box under “First segments” and
“Second segments.”

One can then filter the entire set by entering in specific values of other features. E.g., if one wanted to limit the
comparison to [i] vs. [e], one could enter “high” in the “feature to make pairs” box and then [-round] in the “filter
pairs” box. (Of course, in this case, it might be easier to simply select those two sounds, [i] and [e], directly as
segments, but the same principle works for more complicated sets of segments.)

Once the correct segments are listed, click “Add” to add the pairs to the segment list in the original analysis dialogue
box. If additional pairs are needed, one can click “Add and create another” instead.

Here’s an example of using both features and filters in the Lemurian corpus to select [o,u] vs. [e,i], to the exclusion of
[w,j]:
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CHAPTER 9

Pronunciation Variants

9.1 About Pronunciation Variants:

In some corpora (e.g., spontaneous speech corpora), there may be different pronunciation variants that are associated
with the same lexical item. For instance, the word “probably” might be variably produced as [pôAb@bli] (its canonical
form) or as [pôAbli], [pôAli], [pôAi], or any of a number of other reduced forms. In the Buckeye corpus, for example,
there are 290 tokens of the word “probably”, only 50 of which have the canonical pronunciation ([BUCKEYE]).

A number of studies have looked at the effects of this kind of surface variation on lexical representations (e.g.,
[Connine2008]; [Pinnow2014]; [Pitt2009]; [Pitt2011]; [Sumner2009]). For example, [Pinnow2014] show that lex-
ical items with high-frequency variants that include deleted schwas have processing advantages over similar items
where the deleted variant is less frequent, suggesting that frequency matters in the representations.

Because such differences may matter, PCT includes several options (Options for Pronunciation Variants:) for handling
pronunciation variants in its analysis functions (though note that not every option is available in every analysis function
as of version 1.1). To the best of our knowledge, none of the analysis functions we provide has ever been applied to
anything other than the canonical pronunciations of forms, so it is a completely open question as to which of these
options is best, or even how to determine which one might be best (e.g., in terms of correlations with other linguistic
or behavioural patterns). It is simply our hope that by allowing the functions to be applied in a variety of ways, such
empirical questions can be answered in the future.

9.2 Creating Pronunciation Variants:

To create a corpus that has pronunciation variants, there are several options (see also Loading in corpora). First
is to use a specially formatted corpus, such as the Buckeye corpus ([BUCKEYE]), that PCT already recognizes as
containing pronunciation variants. Second is to create a corpus from an interlinear gloss file that has separate lines for
lexical items and their pronunciations. For example, a fragment of the text might be as follows:

Line 1:

Well, I’m probably going to go to the pool after.
wEl AIm pôAb@bli goUIN tu goU tu ð@ pul æftÄ
wEl AIm pôAli gn @ goU @ ð@ pul æftÄ

Line 2:

Is Max going with us?
Iz mæks goUIN wI𝜃 s
z mæks goUIN wI𝜃 s

Line 3:
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Oh, no, he’ll probably stay home.
oU noU hil pôAb@bli steI hoUm
oU noU h@l pôAb@bli steI hoUm

The first line shows the spelling; the second the canonical pronunciation of each word; and the third the pronunciation
of the word as it was actually said in context. This would get read in to PCT as:

spelling transcription frequency
I’m AI.m 1
is I.z 1
Max m.æ.k.s 1
oh oU 1
well w.E.l 1
after æ.f.t.Ä 1
go g.oU 1
going g.oU.I.N 2
he’ll h.i.l 1
home h.oU.m 1
no n.oU 1
pool p.u.l 1
probably p.ô.A.b.@.b.l.i 2
stay s.t.eI 1
the ð.@ 1
to t.u 2
us .s 1
with w.I.𝜃 1

...where the words “going,” “to,” and “probably” each have multiple variants associated with them (see Viewing Pro-
nunciation Variants: for more on how to view these). (Note that to achieve this result, you would indicate in the
Parsing Parameters that both lines 2 and 3 are “Transcription” lines, but that line 2 is associated with the lexical item
while line 3 is allowed to vary within lexical items.)

A similar method works for creating pronunciation variants from TextGrid files. As in the interlinear gloss files, you
would have three tiers in a TextGrid; one with spelling, one with canonical pronunciations; and one with the specific
pronunciations used in particular instances. The Parsing Parameters would be filled in similarly.

Note that the canonical pronunciations are in fact optional; it is possible to simply associate pronunciation variants
with spelling forms (though this may limit some of the functionality of searching and some analyses).

9.3 Viewing Pronunciation Variants:

If a corpus has pronunciation variants, you can view these by right-clicking on any word in the corpus and selecting
“List pronunciation variants.” A new dialogue box will pop up that shows the individual pronunciation variants that
occur in the corpus for that word, along with their token frequencies. (See also Exporting Pronunciation Variants: for
information about how to save these to a .txt file for use outside of PCT.)
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9.4 Options for Pronunciation Variants:

There are four basic options in PCT for dealing with pronunciation variants, each of which is described below. In
all cases, the way that PCT handles them is to create a version of the corpus that is set up with the selected option;
analysis functions are then applied as normal. Thus, each time that a non-canonical approach is used, there will be a
slight delay in processing time while the alternative corpus structure is set up.

1. Canonical forms: The first option is for PCT to use only the canonical forms in analyses. This is the default
and the option that is usually reported in the literature. For many corpora, only the canonical pronunciation is
available anyway, and will be the only option. In corpora with pronunciation variants, this option is available
only if there is a form that is known by PCT to be the canonical pronunciation (see Creating Pronunciation
Variants:). Note that the token frequency values are summed across all variants.

As an example, the canonical form for the word “cat” is [kæt]; the canonical form for the word “probably” is
[pôAb@bli]. A fragment of the corpus would be as follows:

Spelling Transcription Type frequency Token frequency
cat k.æ.t 1 6
probably p.ô.A.b.@.b.l.i 1 290

2. Most frequent forms: Alternatively, PCT can use only the most frequent variant of each lexical item in analyses.
This option puts priority on forms as they are actually used most often in the corpus. If there are two or more
forms that have equal frequencies, and one of them is the canonical form, then PCT will fall back on the
canonical form, if one is available. If no canonical form is available or if it is not one of the forms that is tied
for being most frequent, then the longest of the most frequent forms will be chosen (on the assumption that this
will be closest to the canonical form). If there is a tie in terms of frequencies AND a tie in terms of the lengths
of the tied forms, then PCT will simply use the variant that is first alphabetically.

As an example, the most frequent form of the word “probably” in the Buckeye corpus is [pôAbli]; 66 of the
290 tokens of the word have this form (whereas only 50 are the canonical pronunciation). Similarly, the most
frequent form for the word “cat” is [kæ]; 3 of the six tokens of “cat” have this pronunciation. Thus, searches
and analyses using the most frequent forms would use these transcriptions instead. The token frequency values
are again combined across all variants.

A fragment of the corpus would be as follows:

Spelling Transcription Type frequency Token frequency
cat k.æ. 1 6
probably p.ô.A.b.l.i 1 290

9.4. Options for Pronunciation Variants: 61



Phonological CorpusTools Documentation, Release 1.0.0

3. Each word token seaparately: The third option is for PCT to treat each pronunciation variant as its own
separate lexical entry. This allows all variants to be considered, regardless of canonical-ness or frequency. At
the same time, it will somewhat artificially inflate the number of occurrences of segments that relatively stably
occur in words that otherwise have lots of variation. For example, there are 74 different pronunciation variants
of the word “probably” in the Buckeye corpus; 73 of these begin with [p] (one, [frai], begins with [f]). Thus,
while this method is useful for seeing the range of variability elsewhere in the word, it will make word-initial
[p] seem much more relatively frequent than it actually is. It allows every pronunciation variant to count equally
as far as word types are concerned. Token frequencies for each individual variant are used or each variant is
assigned a frequency of 1 if type frequencies are used.

A fragment of the corpus would be as follows:

Spelling Transcription Type frequency Token frequency
cat k.æ.t 1 2
cat k.æ. 1 3
cat k.æ. 1 1
probably p.ô.A.b.@.b.l.i 1 50
probably p.ô.A.b.l.i 1 66
probably p.ô.A.l.i 1 35

... (not all variants of the word “probably” are shown)

4. Weighted word types by the frequency of each variant: The fourth option is for PCT to weight each variant’s
frequency by the overall token frequency (if using token frequency) or by the number of variants (if using type
frequency).

As an example, the word “probably” has 74 variants in the Buckeye corpus. The most frequent, [pôAbli], occurs
66 times out of the 290 tokens. 66/290 = 0.2276. So, there would be a lexical entry in the corpus for [pôAbli],
with a type frequency of 0.2276 (instead of 1). Similarly, the canonical pronunciation, [pôAb@bli], occurs with a
relative frequency of 50/290 = 0.1724, so that would be the type frequency for its lexical entry. Thus, the total
type frequency across all variants of a single lexical item sum to 1. The token frequencies match the original
numbers.

A fragment of the corpus would be as follows:

Spelling Transcription Type frequency Token frequency
cat k.æ.t 0.333 2
cat k.æ. 0.5 3
cat k.æ. 0.167 1
probably p.ô.A.b.@.b.l.i 0.172 50
probably p.ô.A.b.l.i 0.228 66
probably p.ô.A.l.i 0.121 35

... (not all variants of the word “probably” are shown)

9.5 Exporting Pronunciation Variants:

It is possible to export pronunciation variants with a corpus for easy reference or use outside of PCT. General infor-
mation about exporting a corpus can be found in Saving and exporting a corpus or feature file. The basic procedure
is to go to “File” / “Export corpus as text file” and enter the file name and location and the column and transcription
delimiters.

PCT provides three options for exporting pronunciation variants. They can simply be excluded entirely (by selecting
“Do not include”); the resulting file will have only the canonical pronunciations, assuming the corpus contains these.
The following is an example of the resulting single line of the output file from the Buckeye corpus for the word
“probably”:
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Spelling Transcription Frequency
probably p.r.aa.b.ah.b.l.iy 290

Alternatively, pronunciation variants can be included in either of two formats. Selecting “Include in each word’s line”
will organize the output by lexical item, with exactly one line per item. Pronunciation variants of that item will be
listed at the end of the line. Here’s an example of the single line that results for the word “probably” in this version of
the export of the Buckeye corpus:

SpellingTran-
scrip-
tion

Fre-
quency

Variants

prob-
ably

p.r.aa.b.ah.b.l.iy290 p.r.ah.eh, p.r.aa.b.eh.b.l.ey, p.aa.b.l.ih, f.r.ay, p.r.eh.ih, p.r.aa.b.l.uh, p.ah.r.eh,
p.r.aa.b.b.l.iy, p.r.ah.b.l.ah, p.r.aw.b.w.iy, p.r.aw.b.l.iy, p.r.aa.b.ah.b.l.ey,
p.r.aa.w.ah.v.w.iy, p.r.aa.ey, p.r.aa.b.ah.b.l, p.r.aa.b.el.ih, p.r.aa.b.w.iy.jh, p.p.r.aa.b.l.iy,
p.r.aa.b, p.r.ah.ay, p.r.ah.b.l.ih, p.r.aa.iy.m, p.r.aa.b.uh.b.l.ah, p.aa.b.ow.b.l.iy,
p.er.r.eh.ih, p.aa.b.ow.l.iy, p.r.ah.b.w.iy, p.r.aa.b.ow.b.l.ey, p.r.aa.b.ah.b.l.ih, p.r.aa.v.iy,
p.r.ah.ey, p.aa.b.ih, p.aa.ih.ih, p.r.aa.r.iy, p.r.aa.l.uw, p.r.aa.b.r.ih, p.ah.b.l.iy, p.r.ao.b.ih,
p.ah.l.ih, p.aa.r, p.r.aa.w.iy, p.r.ao.ey, p.r.ow.iy, p.aa.l.iy, p.r.ah.b.uh.b.l.iy,
p.r.aa.ah.b.l.iy, p.r.aa.l.eh, p.r.aa.ih, p.r.aa.b.ow.b.l.iy, p.r.ah.l.ih, p.r.ah.b.iy, p.r.aa.b.ih,
p.r.aa.el.iy, p.r.aa.b.el.b.l.iy, p.aa.b.el.b.l.iy, p.r.ah.iy, p.aa.ih, p.aa.b.l.iy, p.r.aa, p.r.ah,
p.r.aa.v.l.iy, p.r.aa.b.uh.b.l.iy, p.r.aa.b.el.iy, p.r.aa.l.ih, p.r.aa.eh, p.r.ah.l.iy, p.r.ah.b.l.iy,
p.r.aa.b.l.ih, p.r.aa.iy, p.r.aa.b.iy, p.r.ay, p.r.aa.l.iy, p.r.aa.b.ah.b.l.iy, p.r.aa.b.l.iy

The other format for exporting pronunciation variants, “Have a line for each variant,” will put each different variant
on a separate line in the exported corpus. Each will also include the spelling and canonical transcription (if available).
This version also lists the frequency with which each different variant occurs in the corpus. Here’s an example of the
74 lines that result for the word “probably” in this version of the export of the Buckeye corpus:

Spelling Transcription Frequency Token_Transcription Token_Frequency
probably p.r.aa.b.ah.b.l.iy 290 p.r.ah.eh 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.eh.b.l.ey 1
probably p.r.aa.b.ah.b.l.iy 290 p.aa.b.l.ih 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.l.iy 66
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.ah.b.l.iy 2
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.l.eh 2
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.l.ih 4
probably p.r.aa.b.ah.b.l.iy 290 f.r.ay 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.ih 2
probably p.r.aa.b.ah.b.l.iy 290 p.r.eh.ih 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.l.uh 1
probably p.r.aa.b.ah.b.l.iy 290 p.ah.r.eh 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.ow.b.l.iy 2
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.b.l.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.ah.b.l.ah 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aw.b.w.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aw.b.l.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.ah.b.l.ey 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.eh 4
probably p.r.aa.b.ah.b.l.iy 290 p.r.ah.l.ih 2
probably p.r.aa.b.ah.b.l.iy 290 p.r.ah.l.iy 4
probably p.r.aa.b.ah.b.l.iy 290 p.r.ah 3
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.w.ah.v.w.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.ey 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.v.l.iy 3

Continued on next page
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Table 9.1 – continued from previous page
Spelling Transcription Frequency Token_Transcription Token_Frequency
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.ah.b.l 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.el.ih 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.ah.b.iy 2
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.w.iy.jh 1
probably p.r.aa.b.ah.b.l.iy 290 p.p.r.aa.b.l.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.uh.b.l.iy 3
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.ih 2
probably p.r.aa.b.ah.b.l.iy 290 p.r.ah.ay 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.ah.b.l.ih 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.iy.m 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.el.iy 2
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.ah.b.l.iy 50
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.iy 6
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.uh.b.l.ah 1
probably p.r.aa.b.ah.b.l.iy 290 p.aa.b.ow.b.l.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.er.r.eh.ih 1
probably p.r.aa.b.ah.b.l.iy 290 p.aa.b.ow.l.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.l.ih 5
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.iy 11
probably p.r.aa.b.ah.b.l.iy 290 p.r.ah.b.w.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.ow.b.l.ey 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.el.b.l.iy 2
probably p.r.aa.b.ah.b.l.iy 290 p.aa.b.el.b.l.iy 2
probably p.r.aa.b.ah.b.l.iy 290 p.r.ah.b.l.iy 4
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.ah.b.l.ih 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.v.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.ah.ey 1
probably p.r.aa.b.ah.b.l.iy 290 p.aa.b.ih 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.ah.iy 2
probably p.r.aa.b.ah.b.l.iy 290 p.aa.ih.ih 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.el.iy 3
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.r.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.l.uw 1
probably p.r.aa.b.ah.b.l.iy 290 p.aa.ih 2
probably p.r.aa.b.ah.b.l.iy 290 p.aa.b.l.iy 2
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.b.r.ih 1
probably p.r.aa.b.ah.b.l.iy 290 p.ah.b.l.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.ao.b.ih 1
probably p.r.aa.b.ah.b.l.iy 290 p.ah.l.ih 1
probably p.r.aa.b.ah.b.l.iy 290 p.aa.r 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.w.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.ao.ey 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa 2
probably p.r.aa.b.ah.b.l.iy 290 p.r.aa.l.iy 35
probably p.r.aa.b.ah.b.l.iy 290 p.r.ow.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.ay 16
probably p.r.aa.b.ah.b.l.iy 290 p.aa.l.iy 1
probably p.r.aa.b.ah.b.l.iy 290 p.r.ah.b.uh.b.l.iy 1
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CHAPTER 10

Phonotactic Probability

10.1 About the function

Phonotactic probability refers to the likelihood of a given set of segments occurring in a given order for a given corpus
of transcriptions. For instance, blick is a phonotactically probable nonword in English, but bnick is phonotactically
improbable. Words as well as nonwords can be assessed for their phonotactic probability, and this measure has been
used in behavioural research ([Vitevitch1999] and others). In particular, the phonotactic probability of words has
been correlated with their ability to be segmented, acquired, processed, and produced; see especially the discussion in
[Vitevitch2004] for extensive references.

10.2 Method of calculation

One method for computing the phonotactic probability, and the current algorithm implemented in PCT, uses average
unigram or bigram positional probabilities across a word ([Vitevitch2004]; their online calculator for this function is
available here). For a word like blick in English, the unigram average would include the probability of /b/ occurring
in the first position of a word, the probability of /l/ in the second position, the probability of /I/ occuring in the third
position, and the probability of /k/ occurring in the fourth position of a word. Each positional probability is calculated
by summing the log token frequency of words containing that segment in that position divided by the sum of the log
token frequency of all words that have that position in their transcription. The bigram average is calculated in an
equivalent way, except that sequences of two segments and their positions are used instead of single segments. So
for blick that would be /bl/, /lI/, /Ik/ as the included poisitional probabilities. As with all n-gram based approaches,
bigrams are preferable to unigrams. In the example of blick versus bnick, unigrams wouldn’t likely capture the intuitive
difference in phonotactic probability, since the probability of /n/ and /l/ in the second position isn’t necessarily radically
different. Using bigrams, however, would capture that the probability of /bl/ versus /bn/ in the first position is radically
different.

There are other ways of calculating phonotactic probability that don’t have the strict left-to-right positional assump-
tions that the Vitevitch & Luce algorithm has, such as the constraint-based method in BLICK by Bruce Hayes (Win-
dows executable available on the Blick homepage, Python package available at python-blick on PyPi with source
code available at python-blick on GitHub). However, such algorithms require training on a specific language, and the
constraints are not computed from transcribed corpora in as straightforward a manner as the probabilities used in the
Vitevitch & Luce algorithm. Therefore, PCT currently supports only the Vitevitch & Luce style algorithm.

10.3 Calculating phonotactic probability in the GUI

To start the analysis, click on “Analysis” / “Calculate phonotactic probability...” in the main menu, and then follow
these steps:
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1. Phonotactic probability algorithm: Currently the only offered algorithm is the Vitevitch & Luce algorithm,
described above.

2. Query type: Phonotactic probability can be calculated for one of three types of inputs:

(a) One word: The phonotactic probability of a single word can be calculated by entering that word’s ortho-
graphic representation in the query box.

(b) One word/nonword not in the corpus: The phonotactic probability can be calculated on a word that is
not itself in the corpus, but using the probabilities derived from the corpus. These words are distinct from
the corpus and won’t be added to it, nor will their creation affect any future calculations. See Adding a
word for information on how to more permanently add a new word to the corpus. Words can be created
through the dialogue opened by pressing the button:

i. Spelling: Enter the spelling for your new word / nonword using the regular input keyboard on your
computer. The spelling is how the word will be referenced in the results table, but won’t affect the
calculation of phonotactic probability.

ii. Transcription: To add in the phonetic transcription of the new word, it is best to use the provided
inventory. While it is possible to type directly in to the transcription box, using the provided inventory
will ensure that all characters are understood by PCT to correspond to existing characters in the corpus
(with their concomitant featural interpretation). Click on “Show inventory” and then choose to show
“Consonants,” “Vowels,” and/or other. (If there is no featural interpretation of your inventory, you
will simply see a list of all the available segments, but they will not be classifed by major category.)
Clicking on the individual segments will add them to the transcription. The selections will remain
even when the sub-inventories are hidden; we allow for showing / hiding the inventories to ensure
that all relevant buttons on the dialogue box are available, even on small computer screens. Note that
you do NOT need to include word boundaries at the beginning and end of the word, even when the
boundary symbol is included as a member of the inventory; these will be assumed automatically by
PCT.

iii. Frequency: This can be left at the default. Note that entering a value will NOT affect the calculation;
there is no particular need to enter anything here (it is an artifact of using the same dialogue box here
as in the “Add Word” function described in Adding a word).

iv. Create word: To finish and return to the “Phonotactic probability” dialogue box, click on “Create
word.”

(c) List of words: If there is a specific list of words for which phonotactic probability is to be calculated
(e.g., the stimuli list for an experiment), that list can be saved as a .txt file with one word per line and
uploaded into PCT for analysis. If words in the list are not in the corpus, you can still calculate their
phonotactic probability by entering in the spelling of the word and the transcription of the word in a single
line delimited by a tab. The transcription should be delimited by periods.

(d) Whole corpus: Alternatively, the phonotactic probability for every current word in the corpus can be cal-
culated. The phonotactic probability of each word will be added to the corpus itself, as a separate column;
in the “query” box, simply enter the name of that column (the default is “Phonotactic probability”).

3. Tier: Phonotactic probability can be calculated from transcription tiers in a corpus (e.g., transcription or tiers
that represent subsets of entries, such as a vowel or consonant tier).

4. Pronunciation variants: Specify whether phonotactic probability should be calculated based on the canonical
pronunciations of each word or the most frequent pronunciations (which may not be the same). See more in
Pronunciation Variants.

5. Type vs. token frequency: Specify whether phonotactic probabilities should be based on word type frequency
or token frequency. The original Vitevitch & Luce algorithm uses token frequency. Token frequency will use
the log frequency when calculating probabilities.
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6. Probability type: Specify whether to use biphone positional probabilities or single segment positional proba-
bilities. Defaults to biphone.

7. Results: Once all options have been selected, click “Calculate phonotactic probability.” If this is not the first
calculation, and you want to add the results to a pre-existing results table, select the choice that says “add to
current results table.” Otherwise, select “start new results table.” A dialogue box will open, showing a table
of the results, including the word, its phonotactic probability, the transcription tier from which phonotactic
probability was calculated, whether type or token frequency was used, whether the algorithm used unigram or
bigram probabilities, and the phonotactic probability algorithm that was used. If the phonotactic probability for
all words in the corpus is being calculated, simply click on the “start new results table” option, and you will be
returned to your corpus, where a new column has been added automatically.

8. Saving results: The results tables can each be saved to tab-delimited .txt files by selecting “Save to file” at
the bottom of the window. If all phonotactic probabilities are calculated for a corpus, the corpus itself can be
saved by going to “File” / “Export corpus as text file,” from where it can be reloaded into PCT for use in future
sessions with the phonotactic probabilities included.

An example of the “Phonotactic Probability” dialogue box for calculating the probability of the non-word “pidger”
[pIdZÄ], or [P.IH.JH.ER] in Arpabet, using unigram position probabilities (using the IPHOD corpus):

To return to the function dialogue box with your most recently used selections, click on “Reopen function dialog.”
Otherwise, the results table can be closed and you will be returned to your corpus view.

10.4 Classes and functions

For further details about the relevant classes and functions in PCT’s source code, please refer to Phonotactic probabil-
ity.
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CHAPTER 11

Functional Load

11.1 About the function

Functional load is a measure of the “work” that any particular contrast does in a language, as compared to other
contrasts (e.g., [Hockett1955], [Hockett1966]; [Kucera1963]; [King1967]; [Surendran2003]). Two contrasts in a
language, such as [d] / [t] vs. [ð] / [𝜃] in English, may have very different functional loads. The difference between
[d] and [t] is used to distinguish between many different lexical items, so it has a high functional load; there are,
on the other hand, very few lexical items that hinge on the distinction between [ð] and [𝜃], so its functional load is
much lower. One of the primary claims about functional load is that it is related to sounds’ propensity to merge over
time, with pairs of sounds that have higher functional loads being less likely to merge than pairs of sounds with lower
functional loads (e.g., [Wedel2013], [Todd2012]). The average functional load of a particular sound has also been
claimed to affect its likelihood of being used as an epenthetic vowel [Hume2013]. Functional load has also been
illustrated to affect the perceived similarity of sounds [Hall2014a].

11.2 Method of calculation

There are two primary ways of calculating functional load that are provided as part of the PCT package. One is based
on the change of entropy in a system upon merger of a segment pair or set of segment pairs (cf. [Surendran2003]); the
other is based on simply counting up the number of minimal pairs (differing in only the target segment pair or pairs)
that occur in the corpus.

11.2.1 Change in entropy

The calculation based on change in entropy is described in detail in [Surendran2003]. Entropy is an Information-
Theoretic measure of the amount of uncertainty in a system [Shannon1949], and is calculated using the formula in (1);
it will also be used for the calculation of predictability of distribution (see Method of calculation). For every symbol
i in some inventory (e.g., every phoneme in the phoneme inventory, or every word in the lexicon), one multiplies
the probability of i by the 𝑙𝑜𝑔2 of the probability of i; the entropy is the sum of the products for all symbols in the
inventory.

Entropy:

𝐻 = −
∑︀

𝑖∈𝑁 𝑝𝑖 * 𝑙𝑜𝑔2(𝑝𝑖)

The functional load of any pair of sounds in the system, then, can be calculated by first calculating the entropy of the
system at some level of structure (e.g., words, syllables) with all sounds included, then merging the pair of sounds in
question and re-calculating the entropy of the new system. That is, the functional load is the amount of uncertainty
(entropy) that is lost by the merger. If the pair has a functional load of 0, then nothing has changed when the two are
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merged, and 𝐻1 will equal 𝐻2. If the pair has a non-zero functional load, then the total inventory has become smaller
through the conflating of pairs of symbols that were distinguished only through the given pair of sounds.

Functional load as change in entropy:

∆𝐻 = 𝐻1 −𝐻2

Consider a toy example, in which the following corpus is assumed (note that, generally speaking, there is no “type
frequency” column in a PCT corpus, as it is assumed that each row in the corpus represents 1 type; it is included here
for clarity):

Consider a toy example, in which the following corpus is assumed (note that, generally speaking, there is no “type
frequency” column in a PCT corpus, as it is assumed that each row in the corpus represents 1 type; it is included here
for clarity):

Word Original Under [h] / [N] merger Under [t] / [d] merger
Trans. Type

Freq.
Token
Freq.

Trans. Type
Freq.

Token
Freq.

Trans. Type
Freq.

Token
Freq.

hot [hAt] 1 2 [XAt] 1 2 [hAX] 1 2
song [sAN] 1 4 [sAX] 1 4 [sAN] 1 4
hat [hæt] 1 1 [Xæt] 1 1 [hæX] 1 1
sing [sIN] 1 6 [sIX] 1 6 [sIN] 1 6
tot [tAt] 1 3 [tAt] 1 3 [XAX] 1 8dot [dAt] 1 5 [dAt] 1 5 [XAX]
hip [hIp] 1 2 [XIp] 1 2 [hIp] 1 2
hid [hId] 1 7 [XId] 1 7 [hIX] 1 7
team [tim] 1 5 [tim] 1 5 [Xim] 1 10deem [dim] 1 5 [dim] 1 5 [Xim]
toot [tut] 1 9 [tut] 1 9 [XuX] 1 11dude [dud] 1 2 [dud] 1 2 [XuX]
hiss [hIs] 1 3 [XIs] 1 3 [hIs] 1 3
his [hIz] 1 5 [XIz] 1 5 [hIz] 1 5
siz-
zle

[sIz@l] 1 4 [sIz@l] 1 4 [sIz@l] 1 4

dizzy [dIzi] 1 3 [dIzi] 1 3 [XIzi] 1 7tizzy [tIzi] 1 4 [tIzi] 1 4 [XIzi]
Total 17 70 17 70 13 70

The starting entropy, assuming word types as the relative unit of structure and counting, is:

𝐻1−𝑡𝑦𝑝𝑒𝑠 = −[( 1
17 𝑙𝑜𝑔2( 1

17 )) + ( 1
17 𝑙𝑜𝑔2( 1

17 )) + ( 1
17 𝑙𝑜𝑔2( 1

17 )) + ( 1
17 𝑙𝑜𝑔2( 1

17 )) + ( 1
17 𝑙𝑜𝑔2( 1

17 ))
+ ( 1

17 𝑙𝑜𝑔2( 1
17 )) + ( 1

17 𝑙𝑜𝑔2( 1
17 )) + ( 1

17 𝑙𝑜𝑔2( 1
17 )) + ( 1

17 𝑙𝑜𝑔2( 1
17 )) + ( 1

17 𝑙𝑜𝑔2( 1
17 )) + ( 1

17 𝑙𝑜𝑔2( 1
17 ))

+ ( 1
17 𝑙𝑜𝑔2( 1

17 )) + ( 1
17 𝑙𝑜𝑔2( 1

17 )) + ( 1
17 𝑙𝑜𝑔2( 1

17 )) + ( 1
17 𝑙𝑜𝑔2( 1

17 )) + ( 1
17 𝑙𝑜𝑔2( 1

17 )) + ( 1
17 𝑙𝑜𝑔2( 1

17 ))] = 4.087

The starting entropy, assuming word tokens, is:

𝐻1−𝑡𝑜𝑘𝑒𝑛𝑠 = −[( 2
70 𝑙𝑜𝑔2( 2

70 )) + ( 4
70 𝑙𝑜𝑔2( 4

70 )) + ( 1
70 𝑙𝑜𝑔2( 1

70 )) + ( 6
70 𝑙𝑜𝑔2( 6

70 )) + ( 3
70 𝑙𝑜𝑔2( 3

70 ))
+ ( 5

70 𝑙𝑜𝑔2( 5
70 )) + ( 2

70 𝑙𝑜𝑔2( 2
70 )) + ( 7

70 𝑙𝑜𝑔2( 7
70 )) + ( 5

70 𝑙𝑜𝑔2( 5
70 )) + ( 5

70 𝑙𝑜𝑔2( 5
70 )) + ( 9

70 𝑙𝑜𝑔2( 9
70 ))

+ ( 2
70 𝑙𝑜𝑔2( 2

70 )) + ( 3
70 𝑙𝑜𝑔2( 3

70 )) + ( 5
70 𝑙𝑜𝑔2( 5

70 )) + ( 4
70 𝑙𝑜𝑔2( 4

70 )) + ( 3
70 𝑙𝑜𝑔2( 3

70 )) + ( 4
70 𝑙𝑜𝑔2( 4

70 ))] = 3.924

Upon merger of [h] and [N], there is no change in the number of unique words; there are still 17 unique words with all
their same token frequencies. Thus, the entropy after an [h] / [N] merger will be the same as it was before the merger.
The functional load, then would be 0, as the pre-merger and post-merger entropies are identical.

Upon merger of [t] and [d], on the other hand, four pairs of words have been collapsed. E.g., the difference between
team and deem no longer exists; there is now just one word, [Xim], where [X] represents the result of the merger.
Thus, there are only 13 unique words, and while the total token frequency count remains the same, at 70, those 70
occurrences are divided among only 13 unique words instead of 17.
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Thus, the entropy after a [t] / [d] merger, assuming word types, is:

𝐻1−𝑡𝑦𝑝𝑒𝑠 = −[( 1
13 𝑙𝑜𝑔2( 1

13 )) + ( 1
13 𝑙𝑜𝑔2( 1

13 )) + ( 1
13 𝑙𝑜𝑔2( 1

13 )) + ( 1
13 𝑙𝑜𝑔2( 1

13 )) + ( 1
13 𝑙𝑜𝑔2( 1

13 ))
+ ( 1

13 𝑙𝑜𝑔2( 1
13 )) + ( 1

13 𝑙𝑜𝑔2( 1
13 )) + ( 1

13 𝑙𝑜𝑔2( 1
13 )) + ( 1

13 𝑙𝑜𝑔2( 1
13 )) + ( 1

13 𝑙𝑜𝑔2( 1
13 )) + ( 1

13 𝑙𝑜𝑔2( 1
13 ))

+ ( 1
13 𝑙𝑜𝑔2( 1

13 )) + ( 1
13 𝑙𝑜𝑔2( 1

13 ))] = 3.700

And the entropy after a [t] / [d] merger, assuming word tokens, is:

𝐻1−𝑡𝑜𝑘𝑒𝑛𝑠 = −[( 2
70 𝑙𝑜𝑔2( 2

70 )) + ( 4
70 𝑙𝑜𝑔2( 4

70 )) + ( 1
70 𝑙𝑜𝑔2( 1

70 )) + ( 6
70 𝑙𝑜𝑔2( 6

70 )) + ( 8
70 𝑙𝑜𝑔2( 8

70 ))
+ ( 2

70 𝑙𝑜𝑔2( 2
70 )) + ( 7

70 𝑙𝑜𝑔2( 7
70 )) + ( 10

70 𝑙𝑜𝑔2( 10
70 )) + ( 11

70 𝑙𝑜𝑔2( 11
70 )) + ( 3

70 𝑙𝑜𝑔2( 3
70 )) + ( 5

70 𝑙𝑜𝑔2( 5
70 ))

+ ( 4
70 𝑙𝑜𝑔2( 4

70 )) + ( 7
70 𝑙𝑜𝑔2( 7

70 ))] = 3.466

∆𝐻 = 𝐻1−𝑡𝑦𝑝𝑒𝑠 −𝐻2−𝑡𝑦𝑝𝑒𝑠 = 4.087˘3.700 = 0.387

And the functional load of [t] / [d] based on word tokens is:

∆𝐻 = 𝐻1−𝑡𝑜𝑘𝑒𝑛𝑠 −𝐻2−𝑡𝑜𝑘𝑒𝑛𝑠 = 3.924˘3.466 = 0.458

11.2.2 (Relative) Minimal Pair Counts

The second means of calculating functional load that is included in PCT is a straight count of minimal pairs, which
can be relativized to the number of words in the corpus that are potential minimal pairs—i.e. the number of words in
the corpus with at least one of the target segments.

In the above example, the number of minimal pairs that hinge on [h] vs. [N] is of course 0, so the functional load of
[h] / [N] is 0. The number of minimal pairs that hinge on [t] / [d] is 3, and the number of words with either [t] or
[d] is 11; the functional load as a relativized minimal pair count would therefore be 3/11 = 0.273. Note that here, a
relatively loose definition of minimal pair is used; specifically, two words are considered to be a minimal pair hinging
on sounds A and B if, upon merger of A and B into a single symbol X, the words are identical. Thus, toot and dude
are considered a minimal pair on this definition, because they both become [XuX] upon merger of [t] and [d].

The resulting calculations of functional load are thus quite similar between the two measures, but the units are entirely
different. Functional load based on change in entropy is measured in bits, while functional load based on relativized
minimal pair counts is simply a percentage. Also note that functional load based on minimal pairs is only based on
type frequency; the frequency of the usage of the words is not used as a weighting factor, the way it can be under the
calculation of functional load as change in entropy.

11.2.3 Average Functional Load

[Hume2013] suggests that the average functional load (there called “relative contrastiveness”) is a useful way of
indicating how much work an individual segment does, on average, in comparison to other segments. This is calculated
by taking an individual segment, calculating the pairwise functional load of that segment and each other segment in
the inventory, and then taking the average across all those pairs. This calculation can also be performed in PCT.

11.3 Calculating functional load in the GUI

As with most analysis functions, a corpus must first be loaded (see Loading in corpora). Once a corpus is loaded, use
the following steps.

1. Getting started: Choose “Analysis” / “Calculate functional load...” from the top menu bar.

2. Sound selection: First, decide whether you want to calculate the average functional load of a single segment
(i.e., its functional load averaged across all possible pairwise comparisons), or the more standard functional
load of a pair of sounds, defined over segments or features. To calculate the average functional load of a single
sound, choose “Add one segment”; to calculate the pairwise functional load of two segments, choose “Add pair
of segments”; to calculate the pairwise functional load based on features, choose “Add pair of features.”
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For details on how to actually select segments or features, see Sound Selection or Feature Selection as relevant.

When multiple individual segments or individual pairs are selected, each entry will be treated separately.

3. Functional load algorithm: Select which of the two methods of calculation you want to use—i.e., minimal
pairs or change in entropy. (See discussion above for details of each.)

4. Minimal pair options: If minimal pairs serve as the means of calculation, there are three additional parameters
can be set.

(a) Raw vs. relative count: First, PCT can report only the raw count of minimal pairs that hinge on the
contrast in the corpus, if you just want to know the scope of the contrast. On the other hand, the default is
to relativize the raw count to the corpus size, by dividing the raw number by the number of lexical entries
that include at least one instance of any of the target segments.

(b) Include vs. ignore homophones: Second, PCT can either include homophones or ignore them. For
example, if the corpus includes separate entries for the words sock (n.), sock (v.), shock (n.), and shock
(v.), this would count as four minimal pairs if homophones are included, but only one if homophones are
ignored. The default is to ignore homophones.

(c) Output list of minimal pairs to a file: It is possible to save a list of all the actual minimal pairs that PCT
finds that hinge on a particular chosen contrast to a .txt file. To do so, enter a file path name, or select
“Choose file...” to use a regular system dialogue box. If nothing is entered here, no list will be saved, but
the overall output will still be provided (and can be saved independently).

5. Change in entropy options: If you are calculating functional load using change in entropy, one additional
parameter can be set.

(a) Type or token frequency: As described in Change in entropy, entropy can be calculated using either type
or token frequencies. This option determines which to use.

6. Tier: Select which tier the functional load should be calculated from. The default is the “transcription” tier, i.e.,
looking at the entire word transcriptions. If another tier has been created (see Creating new tiers in the corpus),
functional load can be calculated on the basis of that tier. For example, if a vowel tier has been created, then
“minimal pairs” will be entries that are identical except for one entry in the vowels only, entirely independently
of consonants. Thus, the words [mapotik] and [Sôagefli] would be treated as a minimal pair, given that their
vowel-tier representations are [aoi] and [aei].

7. Pronunciation variants: If the corpus contains multiple pronunciation variants for lexical items, select what
strategy should be used. For details, see Pronunciation Variants.

8. Minimum frequency: It is possible to set a minimum token frequency for words in the corpus in order to be
included in the calculation. This allows easy exclusion of rare words; for example, if one were calculating the
functional load of [s] vs. [S] in English and didn’t set a minimum frequency, words such as santy (vs. shanty)
might be included, which might not be a particularly accurate reflection of the phonological knowledge of
speakers. To include all words in the corpus, regardless of their token frequency, set the the minimum frequency
to 0.

Here is an example of selecting [m] and [n], with functional load to be calculated on the basis of minimal pairs,
only including words with a token frequency of at least 1, from the built-in example corpus (which only has
canonical forms):
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10. Results: Once all parameters have been set, click one of the two “Calculate functional load” buttons. If this is
the first calculation, the option to “start new results table” should be selected. For subsequent calculations, the
calculation can be added to the already started table, for direct comparison, or a new table can be started.

Note: that if a table is closed, new calculations will not be added to the previously open table; a new table must
be started.

Either way, the results table will have the following columns, with one row per calculation: segment 1, segment
2, which tier was used, which measurement method was selected, the resulting functional load, what the mini-
mum frequency was, what strategy was used for dealing with pronunciation variants, and for calculations using
minimal pairs, whether the count is absolute or relative and whether homophones were ignored or not. (For
calculations using change in entropy, “N/A” values are entered into the latter two columns.)

11. Saving results: Once a results table has been generated for at least one pair, the table can be saved by clicking on
“Save to file” at the bottom of the table to open a system dialogue box and save the results at a user-designated
location.

Note: that in the above screen shot, not all columns are visible; they are visible only by scrolling over to
the right, due to constraints on the window size. All columns would be saved to the results file.)

To return to the function dialogue box with your most recently used selections, click on “Reopen function
dialog.” Otherwise, the results table can be closed and you will be returned to your corpus view.
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11.4 Implementing the functional load function on the command line

In order to perform this analysis on the command line, you must enter a command in the following format into your
Terminal:

pct_funcload CORPUSFILE [additional arguments]

...where CORPUSFILE is the name of your *.corpus file. If calculating FL from a file of segment pairs, it must list
the pairs of segments whose functional load you wish to calculate with each pair separated by a tab (\t) and one
pair on each line. Note that you must either specify a file or segment (using -p) or request the functional loads of all
segment pairs in the inventory (using -l). You may also use command line options to change various parameters of
your functional load calculations. Descriptions of these arguments can be viewed by running pct_funcload -h
or pct_funcload --help. The help text from this command is copied below, augmented with specifications of
default values:

Positional arguments:

corpus_file_name
Name of corpus file

Mandatory argument group (call must have one of these two):

-p PAIRS_FILE_NAME_OR_SEGMENT
--pairs_file_name_or_segment PAIRS_FILE_NAME_OR_SEGMENT

Name of file with segment pairs (or target segment if relative fl is True)

-l
--all_pairwise_fls

Flag: calculate FL for all pairs of segments

Optional arguments:

-h
--help

Show help message and exit

-s SEQUENCE_TYPE
--sequence_type SEQUENCE_TYPE

The attribute of Words to calculate FL over. Normally this will be the transcription, but it can also be the spelling
or a user-specified tier.

-c CONTEXT_TYPE
--context_type CONTEXT_TYPE

How to deal with variable pronunciations. Options are ‘Canonical’, ‘MostFrequent’, ‘SeparatedTokens’, or
‘Weighted’. See documentation for details.

-a ALGORITHM
--algorithm ALGORITHM

Algorithm to use for calculating functional load: “minpair” for minimal pair count or “deltah” for change in
entropy. Defaults to minpair.

-f FREQUENCY_CUTOFF
--frequency_cutoff FREQUENCY_CUTOFF

Minimum frequency of words to consider as possible minimal pairs or contributing to lexicon entropy.

-r True/False
--frequency_cutoff True/False

For minimal pair FL: whether or not to divide the number of minimal pairs by the number of possible minimal
pairs (words with either segment in the proper environment). Defaults to True; pass ‘-r False’ to set as False.
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-d DISTINGUISH_HOMOPHONES
--distinguish_homophones DISTINGUISH_HOMOPHONES

For minimal pair FL: if False, then you’ll count sock~shock (sock=clothing) and sock~shock (sock=punch) as
just one minimal pair; but if True, you’ll overcount alternative spellings of the same word, e.g. axel~actual and
axle~actual. False is the value used by Wedel et al.

-t TYPE_OR_TOKEN
--type_or_token TYPE_OR_TOKEN

For change in entropy FL: specifies whether entropy is based on type or token frequency.

-e RELATIVE_FL
--relative_fl RELATIVE_FL

If True, calculate the relative FL of a single segment by averaging across the functional loads of it and all other
segments.

-q ENVIRONMENT_LHS
--environment_lhs ENVIRONMENT_LHS

Left hand side of environment filter. Format: positions separated by commas, groups by slashes, e.g. m/n,i
matches mi or ni.

-w ENVIRONMENT_RHS
--environment_rhs ENVIRONMENT_RHS

Right hand side of environment filter. Format: positions separated by commas, groups by slashes, e.g. m/n,i
matches mi or ni. Use # for word edges.

-x
--separate_pairs

If present, calculate FL for each pair in the pairs file separately.

-o OUTFILE
--outfile OUTFILE

Name of output file

EXAMPLE 1: If your corpus file is example.corpus (no prounciation variants) and you want to calculate the minimal
pair functional load of the segments [m] and [n] using defaults for all optional arguments, you first need to create a text
file that contains the text m\tn (where \t is a tab). Let us call this file pairs.txt. You would then run the following
command in your terminal window:

pct_funcload example.corpus -p pairs.txt

EXAMPLE 2: Suppose you want to calculate the relative (average) functional load of the segment [m]. Your corpus
file is again example.corpus. You want to use the change in entropy measure of functional load rather than the minimal
pairs measure, and you also want to use type frequency instead of (the default value of) token frequency. In addition,
you want the script to produce an output file called output.txt. You would need to run the following command:

pct_funcload example.corpus -p m -e -a deltah -t type -o output.txt

EXAMPLE 3: Suppose you want to calculate the functional loads of all segment pairs. Your corpus file is again
example.corpus. All other parameters are set to defaults. In addition, you want the script to produce an output file
called output.txt. You would need to run the following command:

pct_funcload example.corpus -l -o output.txt

EXAMPLE 4: Suppose you want to calculate the minimal pair functional loads of these segment pairs _separately_:
i/u, e/o, i/e, and u/o. Your corpus file this time is lemurian.corpus. Specifically, you want to calculate the functional
load of these pairs when they occur at the right edge of a word immediately following a nasal (n, m, or N). You want
only the raw minimal pair counts, not relative counts. All other parameters are set to defaults. You would need first
to create a file (e.g. ‘pairs.txt’) containing the following text (no quotes): itunetonitenuto ...where t is a tab and n is a
newline (enter/return). You would then need to run the following command:
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pct_funcload lemurian.corpus -p pairs.txt -q n/m/N -w \# -x -r False

11.5 Classes and functions

For further details about the relevant classes and functions in PCT’s source code, please refer to Functional load.
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CHAPTER 12

Predictability of Distribution

12.1 About the function

Predictability of distribution is one of the common methods of determining whether or not two sounds in a language are
contrastive or allophonic. The traditional assumption is that two sounds that are predictably distributed (i.e., in com-
plementary distribution) are allophonic, and that any deviation from complete predictability of distribution means that
the two sounds are contrastive. [Hall2009], [Hall2012] proposes a way of quantifying predictability of distribution in
a gradient fashion, using the information-theoretic quantity of entropy (uncertainty), which is also used for calculating
functional load (see Method of calculation), which can be used to document the degree to which sounds are contrastive
in a language. This has been shown to be useful in, e.g., documenting sound changes [Hall2013b], understanding the
choice of epenthetic vowel in a languages [Hume2013], modeling intra-speaker variability [Thakur2011], gaining in-
sight into synchronic phonological patterns [Hall2013a], and understanding the influence of phonological relations on
perception ([Hall2009], [Hall2014a]). See also the related measure of Kullback-Leibler divergence (Kullback-Leibler
Divergence), which is used in [Peperkamp2006] and applied to acquisition; it is also a measure of the degree to which
environments overlap, but the method of calculation differs (especially in terms of environment selection).

It should be noted that predictability of distribution and functional load are not the same thing, despite the fact that
both give a measure of phonological contrast using entropy. Two sounds could be entirely unpredictably distributed
(perfectly contrastive), and still have either a low or high functional load, depending on how often that contrast is
actually used in distinguishing lexical items. Indeed, for any degree of predictability of distribution, the functional
load may be either high or low, with the exception of the case where both are 0. That is, if two sounds are entirely
predictably distributed, and so have an entropy of 0 in terms of distribution, then by definition they cannot be used to
distinguish between any words in the language, and so their functional load, measured in terms of change in entropy
upon merger, would also be 0.

12.2 Method of calculation

As mentioned above, predictability of distribution is calculated using the same entropy formula as above, repeated
here below, but with different inputs.

Entropy:

𝐻 = −
∑︀

𝑖∈𝑁 𝑝𝑖 * 𝑙𝑜𝑔2(𝑝𝑖)

Because predictability of distribution is determined between exactly two sounds, i will have only two values, that is,
each of the two sounds. Because of this limitation to two sounds, entropy will range in these situations between 0
and 1. An entropy of 0 means that there is 0 uncertainty about which of the two sounds will occur; i.e., they are
perfectly predictably distributed (commonly associated with being allophonic). This will happen when one of the two
sounds has a probability of 1 and the other has a probability of 0. On the other hand, an entropy of 1 means that there
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is complete uncertainty about which of the two sounds will occur; i.e., they are in perfectly overlapping distribution
(what might be termed “perfect” contrast). This will happen when each of the two sounds has a probability of 0.5.

Predictability of distribution can be calculated both within an individual environment and across all environments in
the language; these two calculations are discussed in turn.

12.2.1 Predictability of Distribution in a Single Environment

For any particular environment (e.g., word-initially; between vowels; before a [+ATR] vowel with any number of
intervening consonants; etc.), one can calculate the probability that each of two sounds can occur. This probability can
be calculated using either types or tokens, just as was the case with functional load. Consider the following toy data,
which is again repeated from the examples of functional load, though just the original distribution of sounds.

Word Original
Trans. Type Freq. Token Freq.

hot [hAt] 1 2
song [sAN] 1 4
hat [hæt] 1 1
sing [sIN] 1 6
tot [tAt] 1 3
dot [dAt] 1 5
hip [hIp] 1 2
hid [hId] 1 7
team [tim] 1 5
deem [dim] 1 5
toot [tut] 1 9
dude [dud] 1 2
hiss [hIs] 1 3
his [hIz] 1 5
sizzle [sIz@l] 1 4
dizzy [dIzi] 1 3
tizzy [tIzi] 1 4
Total 17 70

Consider the distribution of [h] and [N], word-initially. In this environment, [h] occurs in 6 separate words, with a total
token frequency of 20. [N] occurs in 0 words, with, of course, a token frequency of 0. The probability of [h] occurring
in this position as compared to [N], then, is 6/6 based on types, or 20/20 based on tokens. The entropy of this pair of
sounds in this context, then, is:

𝐻𝑡𝑦𝑝𝑒𝑠/𝑡𝑜𝑘𝑒𝑛𝑠 = −[1𝑙𝑜𝑔2(1) + 0𝑙𝑜𝑔2(0)] = 0

Similar results would obtain for [h] and [N] in word-final position, except of course that it’s [N] and not [h] that can
appear in this environment.

For [t] and [d] word-initially, [t] occurs 4 words in this environment, with a total token frequency of 21, and [d]
also occurs in 4 words, with a total token frequency of 15. Thus, the probability of [t] in this environment is 4/8,
counting types, or 21/36, counting tokens, and the probability of [d] in this environment is 4/8, counting types, or
15/36, counting tokens. The entropy of this pair of sounds is therefore:

𝐻𝑡𝑦𝑝𝑒𝑠 = −[( 4
8 𝑙𝑜𝑔2( 4

8 )) + ( 4
8 𝑙𝑜𝑔2( 4

8 ))] = 1

𝐻𝑡𝑦𝑝𝑒𝑠 = −[( 21
36 𝑙𝑜𝑔2( 21

36 )) + ( 15
36 𝑙𝑜𝑔2( 15

36 ))] = 0.98

In terms of what environment(s) are interesting to examine, that is of course up to individual researchers. As mentioned
in the preface to Predictability of Distribution, these functions are just tools. It would be just as possible to calculate
the entropy of [t] and [d] in word-initial environments before [A], separately from word-initial environments before
[u]. Or one could calculate the entropy of [t] and [d] that occur anywhere in a word before a bilabial nasal...etc., etc.
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The choice of environment should be phonologically informed, using all of the resources that have traditionally been
used to identify conditioning environments of interest. See also the caveats in the following section that apply when
one is calculating systemic entropy across multiple environments.

12.2.2 Predictability of Distribution across All Environments (Systemic Entropy)

While there are times in which knowing the predictability of distribution within a particular environment is helpful,
it is generally the case that phonologists are more interested in the relationship between the two sounds as a whole,
across all environments. This is achieved by calculating the weighted average entropy across all environments in
which at least one of the two sounds occurs.

As with single environments, of course, the selection of environments for the systemic measure need to be phono-
logically informed. There are two further caveats that need to be made about environment selection when multiple
environments are to be considered, however: (1) exhaustivity and (2) uniqueness.

With regard to exhausitivity: In order to calculate the total predictability of distribution of a pair of sounds in a
language, one must be careful to include all possible environments in which at least one of the sounds occurs. That
is, the total list of environments needs to encompass all words in the corpus that contain either of the two sounds;
otherwise, the measure will obviously be incomplete. For example, one would not want to consider just word-initial
and word-medial positions for [h] and [N]; although the answer would in fact be correct (they have 0 entropy across
these environments), it would be for the wrong reason—i.e., it ignores what happens in word-final position, where
they could have had some other distribution.

With regard to uniqueness: In order to get an accurate calculation of the total predictability of distribution of a pair
of sounds, it is important to ensure that the set of environments chosen do not overlap with each other, to ensure that
individual tokens of the sounds are not being counted multiple times. For example, one would not want to have both
[#__] and [__i] in the environment list for [t]/[d] while calculating systemic entropy, because the words team and
deem would appear in both environments, and the sounds would (in this case) appear to be “more contrastive” (less
predictably distributed) than they might otherwise be, because the contrasting nature of these words would be counted
twice.

To be sure, one can calculate the entropy in a set of individual environments that are non-exhaustive and/or overlap-
ping, for comparison of the differences in possible generalizations. But, in order to get an accurate measure of the
total predictability of distribution, the set of environments must be both exhaustive and non-overlapping. As will be
described below, PCT will by default check whether any set of environments you provide does in fact meet these
characteristics, and will throw a warning message if it does not.

It is also possible that there are multiple possible ways of developing a set of exhaustive, non-overlapping environ-
ments. For example, “word-initial” vs. “non-word-initial” would suffice, but so would “word-initial” vs. “word-
medial” vs. “word-final.” Again, it is up to individual researchers to determine which set of environments makes the
most sense for the particular pheonmenon they are interested in. See [Hall2012] for a comparison of two different sets
of possible environments in the description of Canadian Raising.

Once a set of exhaustive and non-overlapping environments has been determined, the entropy in each individual en-
vironment is calculated, as described in Predictability of Distribution in a Single Environment. The frequency of
each environment itself is then calculated by examining how many instances of the two sounds occurred in each
environment, as compared to all other environments, and the entropy of each environment is weighted by its fre-
quency. These frequency-weighted entropies are then summed to give the total average entropy of the sounds across
the environments. Again, this value will range between 0 (complete predictability; no uncertainty) and 1 (complete
unpredictability; maximal uncertainty). This formula is given below; e represents each individual environment in the
exhaustive set of non-overlapping environments.

Formula for systemic entropy:

𝐻𝑡𝑜𝑡𝑎𝑙 = −
∑︀

𝑒∈𝐸 𝐻(𝑒) * 𝑝(𝑒)

As an example, consider [t]/[d]. One possible set of exhaustive, non-overlapping environments for this pair of sounds
is (1) word-initial and (2) word-final. The relevant words for each environment are shown in the table below, along
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with the calculation of systemic entropy from these environments.

The calculations for the entropy of word-initial environments were given above; the calculations for word-final envi-
ronments are analogous.

To calculate the probability of the environments, we simply count up the number of total words (either types or
tokens) that occur in each environment, and divide by the total number of words (types or tokens) that occur in all
environments.

Calculation of systemic entropy of [t] and [d]:

e words

words
Types Types

H(e) p(e) p(e) * H(e) H(e) p(e) p(e) * H(e)

[#__] tot, team, toot, tizzy dot, dude, deem, dizzy 1 (4+4)/ (8+7) =8/15 0.533 0.98 (21+15)/ (36+29) =36/65
0.543

[__#] hot, hat, tot, dot, toot hid, dude 0.863 7/15 0.403 0.894 29/65 0.399

0.533+0.403=0.936 0.543+0.399=0.942

In this case, [t]/[d] are relatively highly unpredictably distributed (contrastive) in both environments, and both envi-
ronments contributed approximately equally to the overall measure. Compare this to the example of [s]/[z], shown
below.

Calculation of systemic entropy of [s] and [z]:

e words

words
Types Types

H(e) p(e) p(e) * H(e) H(e) p(e) p(e) * H(e)

[#__] song, sing, sizzle 0 3/8 0 0 14/33 0

[__#] hiss his 1 2/8 0.25 0.954 8/33 0.231

[V_V] sizzle, dizzy, tizzy 0 3/8 0 0 11/33 0

0.25 0.231

In this case, there is what would traditionally be called a contrast word finally, with the minimal pair hiss vs. his;
this contrast is neutralized (made predictable) in both word-initial position, where [s] occurs but [z] does not, and
intervocalic position, where [z] occurs but [s] does not. The three environments are roughly equally probable, though
the environment of contrast is somewhat less frequent than the environments of neutralization. The overall entropy of
the pair of sounds is on around 0.25, clearly much closer to perfect predictability (0 entropy) than [t]/[d].

Note, of course, that this is an entirely fictitious example—that is, although these are real English words, one would
not want to infer anything about the actual relationship between either [t]/[d] or [s]/[z] on the basis of such a small
corpus. These examples are simplified for the sake of illustrating the mathematical formulas!
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12.2.3 “Predictability of Distribution” Across All Environments (i.e., Frequency-
Only Entropy)

Given that the calculation of predictability of distribution is based on probabilities of occurrence across different
environments, it is also possible to calculate the overall entropy of two segments using their raw probabilities and
ignoring specific environments. Note that this doesn’t really reveal anything about predictability of distribution per
se; it simply gives the uncertainty of occurrence of two segments that is related to their relative frequencies. This is
calculated by simply taking the number of occurrences of each of sound 1 (N1) and sound 2 (N2) in the corpus as a
whole, and then applying the following formula:

Formula for frequency-only entropy:

𝐻 = (−1) * [( 𝑁1
𝑁1+𝑁2 )𝑙𝑜𝑔2( 𝑁1

𝑁1+𝑁2 ) + ( 𝑁2
𝑁1+𝑁2 )𝑙𝑜𝑔2( 𝑁2

𝑁1+𝑁2 )]

The entropy will be 0 if one or both of the sounds never occur(s) in the corpus. The entropy will be 1 if the two sounds
occur with exactly the same frequency. It will be a number between 0 and 1 if both sounds occur, but not with the
same frequency.

Note that an entropy of 1 in this case, which was analogous to perfect contrast in the environment-specific imple-
mentation of this function, does not align with contrast here. For example, [h] and [N] in English, which are in
complementary distribution, could theoretically have an entropy of 1 if environments are ignored and they happened
to occur with exactly the same frequency in some corpus. Similarly, two sounds that do in fact occur in the same
environments might have a low entropy, close to 0, if one of the sounds is vastly more frequent than the other. That is,
this calculation is based ONLY on the frequency of occurrence, and not actually on the distribution of the sounds in the
corpus. This function is thus useful only for getting a sense of the frequency balance / imbalance between two sounds.
Note that one can also get total frequency counts for any segment in the corpus through the “Summary” information
feature (Summary information about a corpus).

12.3 Calculating predictability of distribution in the GUI

Assuming a corpus has been opened or created, predictability of distribution is calculated using the following steps.

1. Getting started: Choose “Analysis” / “Calculate predictability of distribution...” from the top menu bar.

2. Segments: First, select which pairs of sounds you want the predictability of distribution to be calculated for.
There are two options for this. First is to add individual pairs of sounds. Do this by clicking on “Add pair of
sounds”; the “Select segment pair” dialogue box will open. The order that the sounds are selected in is irrelevant;
picking [i] first and [u] second will yield the same results as picking [u] first and [i] second. See more about
interacting with the sound selection box (including, e.g., the use of features in selecting sounds and the options
for selecting multiple pairs) in Sound Selection.

The second alternative is to select pairs of sounds based on shared vs. contrasting features. This option allows you,
for example, to test the predictability of distribution of the front/back contrast in vowels, regardless of vowel height.
To do this, click on “Add pair of features”; the “Select feature pair” dialogue box will open. See Feature Selection for
more information on using this interface.

Once sounds have been selected, click “Add.” Pairs will appear in the “Predictability of distribution” dialogue box.

3. Environments: Click on “New environment” to add an environment in which to calculate predictability of
distribution. See Environment Selection for details on how to use this interface. Note that you will not be able to
edit the “target” segments in this function, because the targets are automatically populated from the list of pairs
selected on the left-hand side.

Note: If NO environments are added, PCT will calculate the overall predictability of distribution of the two
sounds based only on their frequency of occurrence. This will simply count the frequency of each sound in the
pair and calculate the entropy based on those frequencies (either type or token). See below for an example of
calculating environment-free entropy for four different pairs in the sample corpus:
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4. Environment list: Individual environments from the list can be selected and edited or removed if it is determined
that an environment needs to be changed. It is this list that PCT will verify as being both exhaustive and unique;
i.e., the default is that the environments on this list will exhaustively cover all instances in your corpus of the
selected sounds, but will do so in such a way that each instance is counted exactly once.

5. Tier: Under “Options,” first pick the tier on which you want predictability of distribution to be calculated.
The default is for the entire transcription to be used, such that environments are defined on any surrounding
segments. If a separate tier has been created as part of the corpus (see Creating new tiers in the corpus),
however, predictability of distribution can be calculated on this tier. For example, one could extract a separate
tier that contains only vowels, and then calculate predictability of distribution based on this tier. This makes it
much easier to define non-adjacent contexts. For instance, if one wanted to investigate the extent to which [i]
and [u] are predictably distributed before front vs. back vowels, it will be much easier to to specify that the
relevant environments are _[+back] and _[-back] on the vowel tier than to try to account for possible intervening
segments on the entire transcription tier.

6. Pronunciation variants: If the corpus contains multiple pronunciation variants for lexical items, select what
strategy should be used. For details, see Pronunciation Variants.

7. Type vs. Token Frequency: Next, pick whether you want the calculation to be done on types or tokens,
assuming that token frequencies are available in your corpus. If they are not, this option will not be available.
(Note: if you think your corpus does include token frequencies, but this option seems to be unavailable, see
Required format of corpus on the required format for a corpus.)

8. Exhaustivity & Uniqueness: The default is for PCT to check for both exhaustivity and uniqueness of en-
vironments, as described above in Predictability of Distribution across All Environments (Systemic Entropy).
Un-checking this box will turn off this mechanism. For example, if you wanted to compare a series of different
possible environments, to see how the entropy calculations differ under different generalizations, uniqueness
might not be a concern. Keep in mind that if uniqueness and exhaustivity are not met, however, the calculation
of systemic entropy will be inaccurate.

(a) If you ask PCT to check for exhaustivity, and it is not met, an error message will appear that warns you that
the environments you have selected do not exhaustively cover all instances of the symbols in the corpus, as
in the following; the “Show details...” option has been clicked to reveal the specific words that occur in the
corpus that are not currently covered by your list of environments. Furthermore, a .txt file is automatically
created that lists all of the words, so that the environments can be easily adjusted. This file is stored in the
ERRORS folder within the working directory that contains the PCT software (see also Preferences), and
can be accessed directly by clicking “Open errors directory.” If exhaustivity is not important, and only the
entropy in individual environments matters, then it is safe to not enforce exhaustivity; it should be noted
that the weighted average entropy across environments will NOT be accurate in this scenario, because not
all words have been included.
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(b) If you ask PCT to check for uniqueness, and it is not met, an error message will appear that indicates that
the environments are not unique, as shown below. Furthermore, a .txt file explaining the error and listing
all the words that are described by multiple environments in your list is created automatically and stored in
the ERRORS folder within the working directory that contains the PCT software. Clicking “Show details”
in the error box also reveals this information.

Here’s an example of correctly exhaustive and unique selections for calculating the predictability of distribution
based on token frequency for [s] and [S] in the example corpus (note that the environments were selected using
features, e.g., _#, _[-voc], _[+voc, -high], _[+voc, +high], even though they appear as sets of segments in the
environments):
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8. Entropy calculation / results: Once all environments have been specified, click “Calculate predictability of
distribution.” If you want to start a new results table, click that button; if you’ve already done at least one
calculation and want to add new calculations to the same table, select the button with “add to current results
table.” Results will appear in a pop-up window on screen. The last row for each pair gives the weighted average
entropy across all selected environments, with the environments being weighted by their own frequency of
occurrence. See the following example (noting that not all columns in the result file are visible on screen):

9. Output file / Saving results: If you want to save the table of results, click on “Save to file” at the bottom of the
table. This opens up a system dialogue box where the directory and name can be selected.

To return to the function dialogue box with your most recently used selections, click on “Reopen function
dialog.” Otherwise, the results table can be closed and you will be returned to your corpus view.

12.4 Classes and functions

For further details about the relevant classes and functions in PCT’s source code, please refer to Predictability of
distribution.
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Kullback-Leibler Divergence

13.1 About the function

Another way of measuring the distribution of environments as a proxy for phonological relationships is the Kullback-
Leibler (KL) measure of the dissimilarity between probability distributions [Kullback1951]. Sounds that are distinct
phonemes appear in the same environments, that is, there are minimal or near-minimal, pairs. Allophones, on the other
hand, have complementary distribution, and never appear in the same environment. Distributions that are identical have
a KL score of 0, and the more dissimilar two distributions, the higher the KL score. Applied to phonology, the idea is to
calculate the probability of two sounds across all environments in a corpus, and use KL to measure their dissimilarity.
Scores close to 0 suggest that the two sounds are distinct phonemes, since they occur in many of the same environments
(or else there is extensive free variation). Higher scores represent higher probabilities that the two sounds are actually
allophones. Since KL scores have no upper bound, it is up to the user to decide what counts as “high enough” for
two sounds to be allophones (this is unlike the predictability of distribution measure described in Predictability of
Distribution). See [Peperkamp2006] for a discussion of how to use Z-Scores to make this discrimination.

As with the predictability of distribution measure in Predictability of Distribution, spurious allophony is also possible,
since many sounds happen to have non-overlapping distributions. As a simple example, vowels and consonants gen-
erally have high KL scores, because they occur in such different environments. Individual languages might have cases
of accidental complementary distribution too. For example, in English /h/ occurs only initially and [N] only occurs
finally. However, it is not usual to analyze them as being in allophones of a single underlying phonemes. Instead, there
is a sense that allophones need to be phonetically similar to some degree, and /h/ and /N/ are simply too dissimilar.

To deal with this problem, [Peperkamp2006] suggest two “linguistic filters” that can be applied, which can help
identify cases of spurious allophones, such as /h/ and /N/. Their filters do not straightforwardly apply to CorpusTools,
since they use 5-dimensional vectors to represent sounds, while in CorpusTools most sounds have only binary features.
An alternative filter is used instead, and it is described below.

It is important to note that this function’s usefulness depends on the level of analysis in your transcriptions. In many
cases, corpora are transcribed at a phonemic level of detail, and KL will not be very informative. For instance, the
IPHOD corpus does not distinguish between aspirated and unaspirated voiceless stops, so you cannot measure their
KL score.

13.2 Method of calculation

All calculations were adopted from [Peperkamp2006]. The variables involved are as follows: s is a segment, c is a
context, and C is the set of all contexts. The Kullback-Leibler measure of dissimilarity between the distributions of
two segments is the sum for all contexts of the entropy of the contexts given the segments:

KL Divergence:
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𝑚𝐾𝐿(𝑠1, 𝑠2) =
∑︀

𝑐∈𝐶 𝑃 (𝑐|𝑠1)𝑙𝑜𝑔(𝑃 (𝑐|𝑠1)
𝑃 (𝑐|𝑠2) ) + 𝑃 (𝑐|𝑠2)𝑙𝑜𝑔(𝑃 (𝑐|𝑠2)

𝑃 (𝑐|𝑠1) )

The notation P(c|s) means the probability of context c given segment s, and it is calculated as follows:

𝑃 (𝑐|𝑠) = 𝑛(𝑐,𝑠)+1
𝑛(𝑠)+𝑁

...where n(c,s) is the number of occurrences of segments s in context c. [Peperkamp2006] note that this equal to the
number of occurrences of the sequence sc, which suggests that they are only looking at the right hand environment.
This is probably because in their test corpora, they were looking at allophones conditioned by the following segment.
PCT provides the option to look only at the left-hand environment, only at the right-hand environment, or at both.

[Peperkamp2006] then compare the average entropy values of each segment, in the pair. The segment with the higher
entropy is considered to be a surface representation (SR), i.e. an allophone, while the other is the underlying represen-
tation (UR). In a results window in PCT, this is given as “Possible UR.” More formally:

𝑆𝑅 = max𝑆𝑅,𝑈𝑅[
∑︀

𝑐 𝑃 (𝑐|𝑠)𝑙𝑜𝑔 𝑃 (𝑐|𝑠)
𝑃 (𝑐) ]

[Peperkamp2006] give two linguistic filters for getting rid of spurious allophones, which rely on sounds be coded as
5-dimensional vectors. In PCT, this concept as been adopted to deal with binary features. The aim of the filter is the
same, however. In a results window the column labeled “spurious allophones” gives the result of applying this filter.

The features of the supposed UR and SR are compared. If they differ by only one feature, they are considered plausibly
close enough to be allophones, assuming the KL score is high enough for this to be reasonable (which will depend on
the corpus and the user’s expectations). In this case, the “spurious allophones?” results will say ‘No.’

If they differ by more than 1 feature, PCT checks to see if there any other sounds in the corpus that are closer to the
SR than the UR is. For instance, if /p/ and /s/ are compared in the IPHOD corpus, /p/ is considered the UR and /s/ is
the SR. The two sounds differ by two features, namely [continuant] and [coronal]. There also exists another sound, /t/,
which differs from /s/ by [continuant], but not by [coronal] (or any other feature). In other words, /t/ is more similar
to /s/ than /p/ is to /s/. If such an “in-between” sound can be found, then in the “spurious allophones?” column, the
results will say ‘Yes.’

If the two sounds differ by more than 1 feature, but no in-between sound can be found, then the “spurious allophones?”
results will say ‘Maybe.’

Note too that a more direct comparison of the acoustic similarity of sounds can also be conducted using the functions
in Acoustic Similarity.

13.3 Calculating Kullback-Leibler Divergence in the GUI

To implement the KL function in the GUI, select “Analysis” / “Calculate Kullback-Leibler...” and then follow these
steps:

1. Pair of sounds: First, select which pairs of sounds you want the functional load to be calculated for. Do this
by clicking on either “Add pair of sounds” or “Add pair of features” – use the former for selecting segments
(even if the segments are chosen using features); use the latter for selecting featural differences to calculate KL
divergence for (e.g., the KL score for [+/-high]). See Sound Selection or Feature Selection for more on how to
interact with these options.

2. Tier: Select which tier the KL-divergence should be calculated from. The default is the “transcription” tier, i.e.,
looking at the entire word transcriptions. If another tier has been created (see Creating new tiers in the corpus),
KL can be calculated on the basis of that tier. For example, if a vowel tier has been created, then the sounds will
be considered only in terms of their adjacent vowels, ignoring intervening consonants.

3. Pronunciation variants: If the corpus contains multiple pronunciation variants for lexical items, select what
strategy should be used. For details, see Pronunciation Variants.

4. Type or token frequency: Select whether probabilities should be based on type or token frequencies.
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5. Contexts: Using KL requires a notion of “context,” and there are three options: left, right, or both. Consider
the example word [atema]. If using the “both” option, then this word consists of these environments: [#_t],
[a_e], [t_m], [e_a], and [m_#]. If the left-side option is chosen, then only the left-hand side is used, i.e., the
word consists of the environments [#_], [a_], [t_], [e_], and [m_]. If the right-side option is chosen, then the
environments in the word are [_t], [_e], [_m], [_a], and [_#]. Note that the word boundaries don’t count as
elements of words, but can count as parts of environments.

6. Results: Once all selections have been made, click “Calculate Kullback-Leibler.” If you want to start a new
results table, click that button; if you’ve already done at least one calculation and want to add new calculations
to the same table, select the button with “add to current results table.” Results will appear in a pop-up window
on screen. Each member of the pair is listed, along with which context was selected, what tier was used, what
strategy was used for pronunciation variants, what kind of frequency was used, the entropy of each segment, the
KL score, which of the two members of the pair is more likely to be the UR (as described above), and PCT’s
judgment as to whether this is a possible case of spurious allophones based on the featural distance.

7. Output file / Saving results: If you want to save the table of results, click on “Save to file” at the bottom of the
table. This opens up a system dialogue box where the directory and name can be selected.

To return to the function dialogue box with your most recently used selections, click on “Reopen function
dialog.” Otherwise, the results table can be closed and you will be returned to your corpus view.

An example of calculating the KL scores in the Example corpus (which has canonical forms only), with the sounds
[s], [S], [t], [n], [m], [e], [u] selected (and therefore all pairwise comparisons thereof calculated), examining only
right-hand side contexts:

The “Select segment pair” dialogue box, within the “Kullback-Leibler” dialogue box:
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The “Kullback-Leibler” dialogue box, with pairs of sounds and contexts selected:
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The resulting table of results:

13.4 Implementing the KL-divergence function on the command line

In order to perform this analysis on the command line, you must enter a command in the following format into your
Terminal:

pct_funcload CORPUSFILE [additional arguments]

...where CORPUSFILE is the name of your *.corpus file. If calculating FL from a file of segment pairs, it must list
the pairs of segments whose functional load you wish to calculate with each pair separated by a tab (\t) and one
pair on each line. Note that you must either specify a file or segment (using -p) or request the functional loads of all
segment pairs in the inventory (using -l). You may also use command line options to change various parameters of
your functional load calculations. Descriptions of these arguments can be viewed by running pct_funcload -h
or pct_funcload --help. The help text from this command is copied below, augmented with specifications of
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default values:

Positional arguments:

corpus_file_name
Name of corpus file

seg1
First segment

seg2
Second segment

side
Context to check. Options are ‘right’, ‘left’ and ‘both’. You can enter just the first letter.

Optional arguments:

-h
--help

Show help message and exit

-s SEQUENCE_TYPE
--sequence_type SEQUENCE_TYPE

The attribute of Words to calculate KL-divergence over. Normally this will be the transcription, but it can also
be the spelling or a user-specified tier.

-t TYPE_OR_TOKEN
--type_or_token TYPE_OR_TOKEN

Specifies whether quantifications are based on type or token frequency.

-c CONTEXT_TYPE
--context_type CONTEXT_TYPE

How to deal with variable pronunciations. Options are ‘Canonical’, ‘MostFrequent’, ‘SeparatedTokens’, or
‘Weighted’. See documentation for details.

-o OUTFILE
--outfile OUTFILE

Name of output file

EXAMPLE 1: If your corpus file is example.corpus (no prounciation variants) and you want to calculate the KL-
divergence of the segments [m] and [n] considering contexts on both sides and using defaults for all optional arguments,
you would run the following command in your terminal window:

pct_kl example.corpus m n both

13.5 Classes and functions

For further details about the relevant classes and functions in PCT’s source code, please refer to Kullback-Leibler
divergence.
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CHAPTER 14

String similarity

14.1 About the function

String similarity is any measure of how similar any two sequences of characters are. These character strings can be
strings of letters or phonemes; both of the methods of calculation included in PCT allow for calculations using either
type of character. It is, therefore, a basic measure of overall form-based similarity.

String similarity finds more widespread use in areas of linguistics other than phonology; it is, for example, used in
Natural Language Processing applications to determine, for example, possible alternative spellings when a word has
been mistyped. It is, however, also useful for determining how phonologically close any two words might be.

String similarity could be part of a calculation of morphological relatedness, if used in conjunction with a measure
of semantic similarity (see, e.g., [Hall2014b]). In particular, it can be used in conjunction with the Frequency of
Alternation function of PCT (see Frequency of alternation) as a means of calculating the frequency with which two
sounds alternate with each other in a language.

Some measure of string similarity is also used to calculate neighbourhood density (e.g. [Greenberg1964]; [Luce1998];
[Yao2011]), which has been shown to affect phonological processing. A phonological “neighbour” of some word X is
a word that is similar in some close way to X. For example, it might differ by maximally one phone (through deletion,
addition, or subsitution) from X. X’s neighbourhood density, then, is the number of words that fit the criterion for
being a neighbour.

14.2 Method of calculation

14.2.1 Levenshtein Edit Distance

Edit distance is defined as the minimum number of one-symbol deletions, additions, and substitutions necessary to
turn one string into another. For example, turn and burn would have an edit distance of 1, as the only change necessary
is to turn the <t> into a <b>, while the edit distance between turn and surfs would be 3, with <t> becoming <s>, <n>
becoming <f>, and ∅ becoming <s> at the end of the word. All such one-symbol changes are treated as equal in
Levenshtein edit distance, unlike phonological edit distance, described in the following section. Generally speaking,
the neighbourhood density of a particular lexical item is measured by summing the number of lexical items that have
an edit distance of 1 from that item [Luce1998].

14.2.2 Phonological Edit Distance

Phonological edit distance is quite similar to Levenshtein edit distance, in that it calculates the number of one-symbol
changes between strings, but it differs in that changes are weighted based on featural similarity. For example, depend-
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ing on the feature system used, changing <t> to <s> might involve a single feature change (from [-cont] to [+cont]),
while changing <t> to <b> might involve two (from [-voice, +cor] to [+voice, -cor]). By default, the formula for
calculating the phonological distance between two segments—or between a segment and “silence”, i.e. insertion or
deletion—is the one used in the Sublexical Learner [Allen2014]. When comparing two segments, the distance be-
tween them is equal to the sum of the distances between each of their feature values: the distance between two feature
values that are identical is 0, while the distance between two opposing values (+/- or -/+) is 1, and the distance between
two feature values in the case that just one of them is 0 (unspecified) is set to by default to 0.25. When comparing a
segment to “silence” (insertion/deletion), the silence is given feature values of 0 for all features and then compared to
the segment as normal.

14.2.3 Khorsi (2012) Similarity Metric

Khorsi (2012) proposes a particular measure of string similarity based on orthography, which he suggests can be used
as a direct measure of morphological relatedness. PCT allows one to calculate this measure, which could be used, as
Khorsi describes, on its own, or could be used in conjunction with other measures (e.g., semantic similarity) to create
a more nuanced view.

This measure starts with the sum of the log of the inverse of the frequency of occurrence of each of the letters in
the longest common shared sequence between two words, and then subtracts the sum of the log of the inverse of the
frequency of the letters that are not shared, as shown below.

Formula for string similarity from [Khorsi2012]:∑︀‖𝐿𝐶𝑆(𝑤1,𝑤2)‖
𝑖=1 𝑙𝑜𝑔( 1

𝑓𝑟𝑒𝑞(𝐿𝐶𝑆(𝑤1,𝑤2)[𝑖])
) −

∑︀‖𝐿𝐶𝑆(𝑤1,𝑤2)‖
𝑖=1 𝑙𝑜𝑔( 1

𝑓𝑟𝑒𝑞(𝐿𝐶𝑆(𝑤1,𝑤2)[𝑖])
)

Note:

• w1, w2 are two words whose string similarity is to be measured

• LCS(w1, w2) represents the Longest Common Shared Sequence of symbols between the two words

As with other functions, the frequency measure used for each character will be taken from the current corpus. This
means that the score will be different for a given pair of words (e.g., pressed vs. pressure) depending on the frequency
of the individual characters in the loaded corpus.

14.3 Calculating string similarity in the GUI

To start the analysis, click on “Analysis” / “Calculate string similarity...” in the main menu, and then follow these steps:

1. String similarity algorithm: The first step is to choose which of the three methods described above is to be used
to calculate string similarity. The options are phonological edit distance, standard (Levenshtein) edit distance,
and the algorithm described above and in [Khorsi2012].

2. Comparison type: Next, choose what kind of comparison is to be done. One can either take a single word
and get its string similarity score to every other word in the corpus (useful, for example, when trying to figure
out which words are most / least similar to a given word, as one might for stimuli creation), or can compare
individual pairs of words (useful if a limited set of pre-determined words is of interest). For each of these, you
can use words that already exist in the corpus or calculate the similarity for words (or non-words) that are not in
the corpus. Note that these words will NOT be added to the corpus itself; if you want to globally add the word
(and therefore have its own properties affect calculations), please use the instructions in Adding a word.

(a) One word in the corpus: To compare the similarity of one word that already exists in the corpus to every
other word in the corpus, simply select “Compare one word to entire corpus” and enter the single word
into the dialogue box, using its standard orthographic representation. Note that you can choose later which
tier string similarity will be calculated on (spelling, transcription, etc.); this simply identifies the word for
PCT.
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(b) One word not in the corpus: Click on “Calculate for a word/nonword not in the corpus” and then select
“Create word/nonword” to enter the new word.

i. Spelling: Enter the spelling for your new word / nonword using the regular input keyboard on your
computer.

ii. Transcription: To add in the phonetic transcription of the new word, it is best to use the provided
inventory. While it is possible to type directly in to the transcription box, using the provided inventory
will ensure that all characters are understood by PCT to correspond to existing characters in the corpus
(with their concomitant featural interpretation). Click on “Show inventory.” (See also Edit inventory
categories for more on how to set up the inventory window.) Clicking on the individual segments will
add them to the transcription. Note that you do NOT need to include word boundaries at the beginning
and end of the word, even when the boundary symbol is included as a member of the inventory; these
will be assumed automatically by PCT.

iii. Frequency and other columns: These can be left at the default. Note that entering values will NOT
affect the calculation; there is no particular need to enter anything here (it is an artifact of using the
same dialogue box here as in the “Add Word” function described in Adding a word).

iv. Create word: To finish and return to the “String similarity” dialogue box, click on “Create word.”

(c) Single word pair (in or not in) the corpus: If the similarity of an individual word pair is to be calculated,
one can enter the pair directly into the dialogue box. For each word that is in the corpus, simply enter its
standard orthographic form. For each word that is not in the corpus, you can add it by selecting “Create
word/nonword” and following the steps described immediately above in (2b).

(d) List of pairs of words (in the corpus): If there is a long list of pairs of words, one can simply create a
tab-delimited plain .txt file with one word pair per line. In this case, click on “Choose file” and select the
.txt file in the resulting system dialogue box. Note that this option is currently available only for words
that already exist in the corpus, and that these pairs should be listed using their standard orthographic
representations.

2. Tier: The tier from which string similarity is to be calculated can be selected. Generally, one is likely to care
most about either spelling or transcription, but other tiers (e.g., a vowel tier) can also be selected; in this case,
all information removed from the tier is ignored. Words should always be entered orthographically (e.g., when
telling PCT what word pairs to compare). If similarity is to be calculated on the basis of spelling, words that are
entered are broken into their letter components. If similarity is to be calculated on the basis of transcription, the
transcriptions are looked up in the corpus, or taken from the created nonword (see step # 1b above).

3. Pronunciation variants: If the corpus contains multiple pronunciation variants for lexical items, select what
strategy should be used. For details, see Pronunciation Variants. Note that here, the only choices currently
available are canonical or most-frequent forms.

4. Frequency type: If Khorsi similarity is to be calculated, the frequencies of the symbols is relevant, and so
will be looked up in the currently loaded corpus. Either type frequency or token frequency can be used for the
calculation. This option will not be available for either edit distance algorithm, because frequency isn’t taken
into account in either one.

5. Minimum / Maximum similarity: If one is calculating the similarity of one word to all others in the corpus,
an arbitrary minimum and maximum can be set to filter out words that are particularly close or distant. For
example, one could require that only words with an edit distance of both at least and at most 1 are returned,
to get the members of the standard neighbourhood of a particular lexical item. (Recall that the Khorsi calcu-
lation is a measure of similarity, while edit distance and phonological edit distance are measures of difference.
Thus, a minimum similarity value is analogous to a maximum distance value. PCT will automatically interpret
“minimum” and “maximum” relative to the string-similarity algorithm chosen.

Here’s an example for calculating the Khorsi similarity of the pair mata (which occurs in the corpus) and mitoo [mitu]
(which does not), in the sample corpus, using token frequencies and comparing transcriptions:
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6. Results: Once all options have been selected, click “Calculate string similarity.” If this is not the first calculation,
and you want to add the results to a pre-existing results table, select the choice that says “add to current results
table.” Otherwise, select “start new results table.” A dialogue box will open, showing a table of the results,
including word 1, word 2, the result (i.e., the similarity score for Khorsi or distance score for either of the edit
algorithms), what choice was made regarding pronunciation variants, whether type or token frequency was used
(if the Khorsi method is selected; otherwise, N/A), and which algorithm was used. Note that the entries in the
table will be written in spelling regardless of whether spelling or transcriptions were used. This file can be saved
to a desired location by selecting “Save to file” at the bottom of the table.

Here’s an example result file for the above selection:

To return to the function dialogue box with your most recently used selections, click on “Reopen function dialog.”
Otherwise, the results table can be closed and you will be returned to your corpus view.

14.4 Classes and functions

For further details about the relevant classes and functions in PCT’s source code, please refer to Symbol similarity.

94 Chapter 14. String similarity



CHAPTER 15

Neighbourhood density

15.1 About the functions

Some measures of String similarity are used to calculate neighbourhood density (e.g. [Greenberg1964]; [Luce1998];
[Yao2011]), which has been shown to affect phonological processing. A phonological “neighbor” of some word X is
a word that is similar in some close way to X. For example, it might differ by maximally one phone (through deletion,
addition, or subsitution) from X. X’s neighborhood density, then, is the number of words that fit the criterion for being
a neighbour.

15.2 Method of calculation

A word’s neighborhood density is equal to the number of other words in the corpus similar to that word (or, if using
token frequencies, the sum of those words’ counts). The threshold that defines whether two words are considered
similar to each other can be calculated using any of the three distance metrics described in Method of calculation:
Levenshtein edit distance, phonological edit distance, or Khorsi (2012) similarity. As implemented in PCT, for a
query word, each other word in the corpus is checked for its similarity to the query word and then added to a list of
neighbors if sufficiently similar.

For further detail about the available distance/similarity metrics, refer to Method of calculation.

15.3 Calculating neighbourhood density in the GUI

To start the analysis, click on “Analysis” / “Calculate neighbourhood density...” in the main menu, and then follow
these steps:

1. String similarity algorithm: The first step is to choose which of the three methods of String similarity is to
be used to calculate neighbourhood density. Note that the standard way of calculating density is using regular
(Levenshtein) edit distance. We include the other two algorithms here as options primarily for the purpose of
allowing users to explore whether they might be useful measures; we make no claims that either phonological
edit distance or the Khorsi algorithm might be better than edit distance for any reason.

(a) Minimal pair counts / Substitution neighbours: It is also possible to calculate neighbourhood density
by using a variation of edit distance that allows for “substitutions only” (not deletions or insertions). This
is particularly useful if, for example, you wish to know the number of or identity of all minimal pairs for
a given word in the corpus, as minimal pairs are generally assumed to be substitution neighbours with an
edit distance of 1. (Note that the substitution neighbours algorithm automatically assumes a threshold of
1; multiple substitutions are not allowed.)
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2. Query type: Neighbourhood density can be calculated for one of four types of inputs:

(a) One word in the corpus: The neighbourhood density of a single word can be calculated by entering that
word’s orthographic representation in the query box.

(b) One word not in the corpus: (Note that this will NOT add the word itself to the corpus, and will not
affect any subsequent calculations. To globally add a word to the corpus itself, please see the instructions in
Adding a word.) Select “Calculate for a word/nonword in the corpus,” then choose “Create word/nonword”
to enter the new word and do the following:

i. Spelling: Enter the spelling for your new word / nonword using the regular input keyboard on your
computer.

ii. Transcription: To add in the phonetic transcription of the new word, it is best to use the provided
inventory. While it is possible to type directly in to the transcription box, using the provided inventory
will ensure that all characters are understood by PCT to correspond to existing characters in the corpus
(with their concomitant featural interpretation). Click on “Show inventory.” (See also Edit inventory
categories for more on how to set up the inventory window.) Clicking on the individual segments will
add them to the transcription. Note that you do NOT need to include word boundaries at the beginning
and end of the word, even when the boundary symbol is included as a member of the inventory; these
will be assumed automatically by PCT.

iii. Frequency and other columns: These can be left at the default. Note that entering values will NOT
affect the calculation; there is no particular need to enter anything here (it is an artifact of using the
same dialogue box here as in the “Add Word” function described in Adding a word).

iv. Create word: To finish and return to the “String similarity” dialogue box, click on “Create word.”

(c) List of words: If there is a specific list of words for which density is to be calculated (e.g., the stimuli
list for an experiment), that list can be saved as a .txt file with one word per line and uploaded into PCT
for analysis. Note that in this case, if the words are in the corpus, either transcription- or spelling-based
neighbourhood density can be calculated; either way, the words on the list should be written in standard
orthography (their transcriptions will be looked up in the corpus if needed). If the words are not in the
corpus, then only spelling-based neighbourhood density can currently be calculated; again, the words
should be written orthographically.

(d) Whole corpus: Alternatively, the neighbourhood density for every word in the corpus can be calculated.
This is useful, for example, if one wishes to find words that match a particular neighbourhood density. The
density of each word will be added to the corpus itself, as a separate column; in the “query” box, simply
enter the name of that column (the default is “Neighborhood Density”).

3. Tier: Neighbourhood density can be calculated from most of the available tiers in a corpus (e.g., spelling,
transcription, or tiers that represent subsets of entries, such as a vowel or consonant tier). (If neighbourhood
density is being calculated with phonological edit distance as the similarity metric, spelling cannot be used.)
Standard neighbourhood density is calculated using edit distance on transcriptions.

4. Pronunciation variants: If the corpus contains multiple pronunciation variants for lexical items, select what
strategy should be used. For details, see Pronunciation Variants. Note that here, the only choices currently
available are canonical or most-frequent forms.

5. Type vs. token frequency: If the Khorsi algorithm is selected as the string similarity metric, similarity can be
calculated using either type or token frequency, as described in Khorsi (2012) Similarity Metric.

6. Distance / Similarity Threshold: A specific threshold must be set to determine what counts as a “neighbour.”
If either of the edit distance metrics is selected, this should be the maximal distance that is allowed – in stan-
dard calculations of neighbourhood density, this would be 1, signifying a maximum 1-phone change from the
starting word. If the Khorsi algorithm is selected, this should be the minimum similarity score that is required.
Because this is not the standard way of calculating neighbourhood density, we have no recommendations for
what value(s) might be good defaults here; instead, we recommend experimenting with the string similarity al-
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gorithm to determine what kinds of values are common for words that seem to count as neighbours, and working
backward from that.

7. Output file: If this option is left blank, PCT will simply return the actual neighbourhood density for each word
that is calculated (i.e., the number of neighbours of each word). If a file is chosen, then the number will still be
returned, but additionally, a file will be created that lists all of the actual neighbours for each word.

8. Results: Once all options have been selected, click “Calculate neighborhood density.” If this is not the first
calculation, and you want to add the results to a pre-existing results table, select the choice that says “add to
current results table.” Otherwise, select “start new results table.” A dialogue box will open, showing a table of
the results, including the word, its neighbourhood density, the string type from which neighbourhood density
was calculated, what choice was made regarding pronunciation variants, whether type or token frequency was
used (if applicable), the string similarity algorithm that was used, and the threshold value. If the neighbourhood
density for all words in the corpus is being calculated, simply click on the “start new results table” option, and
you will be returned to your corpus, where a new column has been added automatically.

9. Saving results: The results tables can each be saved to tab-delimited .txt files by selecting “Save to file” at the
bottom of the window. Any output files containing actual lists of neighbours are already saved as .txt files in the
location specified (see step 7). If all neighbourhood densities are calculated for a corpus, the corpus itself can be
saved by going to “File” / “Export corpus as text file,” from where it can be reloaded into PCT for use in future
sessions with the neighbourhood densities included.

Here’s an example of neighbourhood density being calculated on transcriptions for the entire example corpus, using
edit distance with a threshold of 1:

The corpus with all words’ densities added:
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An example of calculating all the transcription neighbours for a given word in the IPHOD corpus, and saving the
resulting list of neighbours to an output file:

The on-screen results table, which can be saved to a file itself:
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And the saved output file listing all 45 of the neighbours of cat in the IPHOD corpus:
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An example .txt file containing one word per line, that can be uploaded into PCT so that the neighbourhood density of
each word is calculated:
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The resulting table of neighbourhood densities for each word on the list (in the IPHOD corpus, with standard edit
distance and a threshold of 1):

To return to the function dialogue box with your most recently used selections after any results table has been created,
click on “Reopen function dialog.” Otherwise, the results table can be closed and you will be returned to your corpus
view.

15.4 Implementing the neighbourhood density function on the com-
mand line

In order to perform this analysis on the command line, you must enter a command in the following format into your
Terminal:

pct_neighdens CORPUSFILE ARG2

...where CORPUSFILE is the name of your *.corpus file and ARG2 is either the word whose neighborhood density
you wish to calculate or the name of your word list file (if calculating the neighborhood density of each word). The
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word list file must contain one word (specified using either spelling or transcription) on each line. You may also use
command line options to change various parameters of your neighborhood density calculations. Descriptions of these
arguments can be viewed by running pct_neighdens -h or pct_neighdens -help. The help text from this
command is copied below, augmented with specifications of default values:

Positional arguments:

corpus_file_name
Name of corpus file

query
Name of word to query, or name of file including a list of words

Optional arguments:

-h
--help

Show this help message and exit

-c CONTEXT_TYPE
--context_type CONTEXT_TYPE

How to deal with variable pronunciations. Options are ‘Canonical’, ‘MostFrequent’, ‘SeparatedTokens’, or
‘Weighted’. See documentation for details.

-a ALGORITHM
--algorithm ALGORITHM

The algorithm used to determine distance

-d MAX_DISTANCE
--max_distance MAX_DISTANCE

Maximum edit distance from the queried word to consider a word a neighbor.

-s SEQUENCE_TYPE
--sequence_type SEQUENCE_TYPE

The name of the tier on which to calculate distance

-w COUNT_WHAT
--count_what COUNT_WHAT

If ‘type’, count neighbors in terms of their type frequency. If ‘token’, count neighbors in terms of their token
frequency.

-m
--find_mutation_minpairs

This flag causes the script not to calculate neighborhood density, but rather to find minimal pairs–see documen-
tation.

-o OUTFILE
--outfile OUTFILE

Name of output file.

EXAMPLE 1: If your corpus file is example.corpus (no pronunciation variants) and you want to calculate the neigh-
borhood density of the word ‘nata’ using defaults for all optional arguments, you would run the following command
in your terminal window:

pct_neighdens example.corpus nata

EXAMPLE 2: Suppose you want to calculate the neighborhood distance of a list of words located in the file my-
words.txt . Your corpus file is again example.corpus. You want to use the phonological edit distance metric, and you
wish to count as a neighbor any word with a distance less than 0.75 from the query word. In addition, you want the
script to produce an output file called output.txt . You would need to run the following command:

102 Chapter 15. Neighbourhood density



Phonological CorpusTools Documentation, Release 1.0.0

pct_neighdens example.corpus mywords.txt -a phonological_edit_distance -d 0.75 -o output.txt

EXAMPLE 3: You wish to find a list of the minimal pairs of the word ‘nata’. You would need to run the following
command:

pct_neighdens example.corpus nata -m

15.5 Classes and functions

For further details about the relevant classes and functions in PCT’s source code, please refer to Neighborhood density.
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Frequency of alternation

16.1 About the function

The occurrence of alternations can be used in assessing whether two phonemes in a language are contrastive or al-
lophonic, with alternations promoting the analysis of allophony (e.g., [Silverman2006], [Johnson2010], [Lu2012]),
though it’s clear that not all alternating sounds are allophonic (e.g., the [k]~[s] alternation in electric~electricity).

In general, two phonemes are considered to alternate if they occur in corresponding positions in two related words. For
example, [s]/[S] would be considered an alternation in the words [d@pôEs] and [d@pôES@n] as they occur in corresponding
positions and the words are morphologically related. [Johnson2010] make the point that alternations may be more or
less frequent in a language, and imply that this frequency may affect the influence of the alternations on phonological
relations. As far as we know, however, there is no literature that directly tests this claim or establishes how frequency
of alternation could actually be quantified (though see discussion in [Hall2014b]).

16.2 Method of calculation

In PCT, frequency of alternation [1] is the ratio of the number of words that have an alternation of two phonemes to
the total number of words that contain either phoneme, as in:

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑊𝑜𝑟𝑑𝑠 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠1 𝑎𝑛𝑑 𝑠2
𝑊𝑜𝑟𝑑𝑠 𝑤𝑖𝑡ℎ 𝑠1 + 𝑤𝑜𝑟𝑑𝑠 𝑤𝑖𝑡ℎ 𝑠2

To determine whether two words have an alternation of the targeted phonemes, one word must contain phoneme
1, the other must contain phoneme 2, and some threshold of “relatedness” must be met. In an ideal world, this
would be determined by a combination of orthographic, phonological, and semantic similarity; see discussion in
[Hall2014b]. Within PCT, however, a much more basic relatedness criterion is used: string similarity. This is indeed
what [Khorsi2012] proposes as a measure of morphological relatedness, and though we caution that this is not in
particularly close alignment with the standard linguistic interpretation of morphological relatedness, it is a useful
stand-in for establishing an objective criterion. If both conditions are met, the two words are considered to have an
alternation and are added to the pool of “words with an alternation of s1 and s2.”

It is also possible to require a third condition, namely, that the location of phoneme 1 and phoneme 2 be roughly
phonologically aligned across the two words (e.g., preceded by the same material). Requiring phonological alignment
will make PCT more conservative in terms of what it considers to “count” as alternations. However, the phonological
alignment algorithm is based on [Allen2014] and currently only works with English-type morphology, i.e., a heavy
reliance on prefixes and suffixes rather than any other kinds of morphological alternations. Thus, it should not be used
with non-affixing languages.

Again, we emphasize that we do not believe this to currently be a particularly accurate reflection of morphological
relatedness, so the resulting calculation of frequency of alternation should be treated with extreme caution. We include
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it primarily because it is a straightforward function of string similarity that has been claimed to be relevant, not because
the current instantiation is thought to be particularly valid.

16.3 Calculating frequency of alternation in the GUI

To start the analysis, click on “Analysis” / “Calculate frequency of alternation...” in the main menu, and then follow
these steps:

1. Segments: First, select which pairs of sounds you want the functional load to be calculated for. Do this by
clicking on “Add pair of sounds”; the “Select segment pair” dialogue box will open. The order that the sounds
are selected in is irrelevant; picking [i] first and [u] second will yield the same results as picking [u] first and [i]
second. Once sounds have been selected, click “Add.” Pairs will appear in the “Functional load” dialogue box.
See more about interacting with the sound selection box (including, e.g., the use of features in selecting sounds
and the options for selecting multiple pairs) in Sound Selection.

2. String similarity algorithm: Next, choose which distance / similarity metric to use. Refer to Method of calcu-
lation for more details.

3. Threshold values: If the Khorsi algorithm is selected, enter the minimum similarity value required for two
words to count as being related. Currently the default is -15; this is an arbitrary (and relatively low / non-
conservative) value. We recommend reading [Khorsi2012] and examining the range of values obtained using
the string similarity algorithm before selecting an actual value here. Alternatively, if one of the edit distance
algorithms is selected, you should instead enter a maximum distance value that is allowed for two words to count
as being related. Again, there is a default (6) that is relatively high and non-conservative; an understanding of
edit distances is crucial for applying this threshold in a meaningful way.

4. Tier: The tier from which string similarity is to be calculated can be selected. Generally, one is likely to care
most about full transcriptions, but other tiers (e.g., a vowel tier) can also be selected; in this case, all information
removed from the tier is ignored.

5. Pronunciation variants: If the corpus contains multiple pronunciation variants for lexical items, select what
strategy should be used. For details, see Pronunciation Variants. Note that here, the only choices currently
available are canonical or most-frequent forms.

6. Frequency Type: Next, select which frequency type to use for your similarity metric, either type or token
frequency. This parameter is only available if using the Khorsi similarity metric, which relies on counting the
frequency of occurrence of the sounds in the currently selected corpus; neither edit distance metric involves
frequency.

7. Minimal pairs: Then, select whether you wish to include alternations that occur in minimal pairs. If, for
example, the goal is to populate a list containing all instances where two segments potentially alternate, select
“include minimal pairs.” Alternatively, if one wishes to discard known alternations that are contrastive, select
“ignore minimal pairs.” (E.g., “bat” and “pat” look like a potential “alternation” of [b] and [p] to PCT, because
they are extremely similar except for the sounds in question, which are also phonologically aligned.)

8. Phonological alignment: Choose whether you want to require the phones to be phonologically aligned or not,
as per the above explanation.

9. Corpus size: Calculating the full set of possible alternations for a pair of sounds may be extremely time-
consuming, as all words in the corpus must be compared pairwise. To avoid this problem, a subset of the corpus
can be selected (in which case, we recommend running the calculation several times so as to achieve different
random subsets for comparison). To do so, enter either (1) the number of words you’d like PCT to extract from
the corpus as a subset (e.g., 5000) or (2) a decimal, which will result in that percentage of the corpus being used
as a subset (e.g., 0.05 for 5% of the corpus).

10. Output alternations: You can choose whether you want PCT to output a list of all the words it considers to
be “alternations.” This is useful for determining how accurate the calculation is. If you do want the list to be
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created, enter a file path or select it using the system dialogue box that opens when you click on “Select file
location.” If you do not want such a list, leave this option blank.

An example of selecting the parameters for frequency of alternation, using the sample corpus:

11. Results: Once all options have been selected, click “Calculate frequency of alternation.” If this is not the first
calculation, and you want to add the results to a pre-existing results table, select the choice that says “add to
current results table.” Otherwise, select “start new results table.” A dialogue box will open, showing a table of
the results, including sound 1, sound 2, the total number of words with either sound, and total number of words
with an alternation, the frequency of alternation and information about the specified similarity / distance metric
and selected threshold values, and the selected option with respect to pronunciation variants. To save these
results to a .txt file, click on “Save to file” at the bottom of the table.

An example of the results table:

To return to the function dialogue box with your most recently used selections, click on “Reopen function dialog.”
Otherwise, the results table can be closed and you will be returned to your corpus view.

16.4 Classes and functions

For further details about the relevant classes and functions in PCT’s source code, please refer to Frequency of alterna-
tion.
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CHAPTER 17

Mutual Information

17.1 About the function

Mutual information 1 is a measure of how much dependency there is between two random variables, X and Y. That is,
there is a certain amount of information gained by learning that X is present and also a certain amount of information
gained by learning that Y is present. But knowing that X is present might also tell you something about the likelihood
of Y being present, and vice versa. If X and Y always co-occur, then knowing that one is present already tells you
that the other must also be present. On the other hand, if X and Y are entirely independent, then knowing that one is
present tells you nothing about the likelihood that the other is present.

In phonology, there are two primary ways in which one could interpret X and Y as random variables. In one version,
X and Y are equivalent random variables, each varying over “possible speech sounds in some unit” (where the unit
could be any level of representation, e.g. a word or even a non-meaningful unit such as a bigram). In this case, one
is measuring how much the presence of X anywhere in the defined unit affects the presence of Y in that same unit,
regardless of the order in which X and Y occur, such that the mutual information of (X; Y) is the same as the mutual
information of (Y; X), and furthermore, the pointwise mutual information of any individual value of each variable (X
= a; Y = b) is the same as the pointwise mutual information of (X = b; Y = a). Although his is perhaps the most
intuitive version of mutual information, given that it does give a symmetric measure for “how much information does
the presence of a provide about the presence of b,” we are not currently aware of any work that has attempted to use
this interpretation of MI for phonological purposes.

The other interpretation of MI assumes that X and Y are different random variables, with X being “possible speech
sounds occurring as the first member of a bigram” and Y being “possible speech sounds occurring as the second mem-
ber of a bigram.” This gives a directional interpretation to mutual information, such that, while the mutual information
of (X; Y) is the same as the mutual information of (Y; X), the pointwise mutual information of (X = a; Y = b) is NOT
the same as the pointwise mutual information of (X = b; Y = a), because the possible values for X and Y are different.
(It is still, trivially, the case that the pointwise mutual information of (X = a; Y = b) and (Y = b; X = a) are equal.)

This latter version of mutual information has primarily been used as a measure of co-occurrence restrictions (harmony,
phonotactics, etc.). For example, [Goldsmith2012] use pointwise mutual information as a way of examining Finnish
vowel harmony; see also discussion in [Goldsmith2002]. Mutual information has also been used instead of transitional
probability as a way of finding boundaries between words in running speech, with the idea that bigrams that cross
word boundaries will have, on average, lower values of mutual information than bigrams that are within words (see
[Brent1999], [Rytting2004]). Note, however, that in order for this latter use of mutual information to be useful, one
must be using a corpus based on running text rather than a corpus that is simply a list of individual words and their
token frequencies.

1 The algorithm in PCT calculates what is sometimes referred to as the “pointwise” mutual information of a pair of units X and Y, in contrast
to “mutual information,” which would be the expected average value of the pointwise mutual information of all possible values of X and Y. We
simplify to use “mutual information” throughout.

109



Phonological CorpusTools Documentation, Release 1.0.0

17.2 Method of calculation

Both of the interpretations of mutual information described above are implemented in PCT. We refer to the first one,
in which X and Y are interpreted as equal random variables, varying over “possible speech sounds in a unit,” as word-
internal co-occurrence pointwise mutual information (pMI), because we specifically use the word as the unit in which
to measure pMI. We refer to the second one, in which X and Y are different random variables, over either the first or
second members of bigrams, as ordered pair pMI.

The general formula for pointwise mutual information is given below; it is the binary logarithm of the joint probability
of X = a and Y = b, divided by the product of the individual probabilities that X = a and Y = b.

𝑝𝑀𝐼 = 𝑙𝑜𝑔2( 𝑝(𝑋=𝑎&𝑌=𝑏)
𝑝(𝑋=𝑎)*𝑝(𝑌=𝑏) )

Word-internal co-occurrence pMI: In this version, the joint probability that X = a and Y = b is equal to the probability
that some unit (here, a word) contains both a and b (in any order). Therefore, the pointwise mutual information of the
sounds a and b is equal to the binary logarithm of the probability of some word containing both a and b, divided by
the product of the individual probabilities of a word containing a and a word containing b.

Pointwise mutual information for individual segments:

𝑝𝑀𝐼𝑤𝑜𝑟𝑑−𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑙𝑜𝑔2( 𝑝(𝑎∈𝑊&𝑏∈𝑊 )
𝑝(𝑎∈𝑊 )*𝑝(𝑏∈𝑊 ) )

Ordered pair pMI: In this version, the joint probability that X = a and Y = b is equal to the probability of occurrence of
the sequence ab. Therefore, the pointwise mutual information of a bigram (e.g., ab) is equal to the binary logarithm of
the probability of the bigram divided by the product of the individual segment probabilities, as shown in the formula
below.

Pointwise mutual information for bigrams:

𝑝𝑀𝐼𝑜𝑟𝑑𝑒𝑟𝑒𝑑−𝑝𝑎𝑖𝑟 = 𝑙𝑜𝑔2( 𝑝(𝑎𝑏)
𝑝(𝑎)*𝑝(𝑏) )

For example, given the bigram [a, b], its pointwise mutual information is the binary logarithm of the probability of the
sequence [ab] in the corpus divided by a quantity equal to the probability of [a] times the probability of [b]. Bigram
probabilities are calculated by dividing counts by the total number of bigrams, and unigram probabilities are calculated
equivalently.

Note that pMI can also be expressed in terms of the information content of each of the members of the bigram.
Information is measured as the negative log of the probability of a unit (𝐼(𝑎) = −𝑙𝑜𝑔2 * 𝑝(𝑎)), so the pMI of a bigram
ab is also equal to 𝐼(𝑎) + 𝐼(𝑏)˘𝐼(𝑎𝑏).

Note that in PCT, calculations are not rounded until the final stage, whereas in [Goldsmith2012], rounding was done
at some intermediate stages as well, which may result in slightly different final pMI values being calculated.

17.3 Calculating mutual information in the GUI

To start the analysis, click on “Analysis” / “Calculate mutual information...” in the main menu, and then follow these
steps:

1. Bigram: Click on the “Add bigram” button in the “Mutual Information” dialogue box. A new window will open
with an inventory of all the segments that occur in your corpus. Select the bigram by clicking on one segment
from the “left-hand side” and one segment from the “right-hand side.” Note that the order of the sounds matters
in this function! To add more than one bigram, click “Add and create another” to be automatically returned
to the selection window. Once the last bigram has been selected, simply click “Add” to return to the Mutual
Information dialogue box. All the selected bigrams will appear in a list. To remove one, click on it and select
“Remove selected bigram.”
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2. Tier: Mutual information can be calculated on any available tier. The default is transcription. If a vowel tier
has been created, for example, one could calculate the mutual information between vowels on that tier, ignoring
intervening consonants, to examine harmony effects.

3. Pronunciation variants: If the corpus contains multiple pronunciation variants for lexical items, select what
strategy should be used. For details, see Pronunciation Variants.

4. Type vs. Token Frequency: Next, pick whether you want the calculation to be done on types or tokens,
assuming that token frequencies are available in your corpus. If they are not, this option will not be available.
(Note: if you think your corpus does include token frequencies, but this option seems to be unavailable, see
Required format of corpus on the required format for a corpus.)

5. Domain: Choosing “set domain to word” will change the calculation so that the calculation is for word-internal
co-occurrence pMI. In this case, the order and adjacency of the bigram does not matter; it is simply treated as a
pair of segments that could occur anywhere in a word.

6. Word boundary count: A standard word object in PCT contains word boundaries on both sides of it (e.g.,
[#kæt#] ‘cat’). If words were concatenated in real running speech, however, one would expect to see only one
word boundary between each pair of words (e.g., [#mai#kæt#] ‘my cat’ instead of [#mai##kæt#]). To reproduce
this effect and assume that word boundaries occur only once between words (as is assumed in [Goldsmith2012],
choose “halve word boundary count.” Note that this technically divides the number of boundaries in half and
then adds one, to compensate for the extra “final” boundary at the end of an utterance. (It will make a difference
only for calculations that include a boundary as one member of the pair.)

7. Results: Once all options have been selected, click “Calculate mutual information.” If this is not the first calcu-
lation, and you want to add the results to a pre-existing results table, select the choice that says “add to current
results table.” Otherwise, select “start new results table.” A dialogue box will open, showing a table of the re-
sults, including sound 1, sound 2, the tier used, and the mutual information value. To save these results to a .txt
file, click on “Save to file” at the bottom of the table.

The following image shows the inventory window used for selecting bigrams in the sample corpus:

The selected bigrams appear in the list in the “Mutual Information” dialogue box:
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The resulting mutual information results table:

To return to the function dialogue box with your most recently used selections, click on “Reopen function dialog.”
Otherwise, the results table can be closed and you will be returned to your corpus view.

17.4 Implementing the mutual information function on the command
line

In order to perform this analysis on the command line, you must enter a command in the following format into your
Terminal:

pct_mutualinfo CORPUSFILE [additional arguments]

...where CORPUSFILE is the name of your *.corpus file. If not calculating the mutal informations of all bigrams
(using -l), the query bigram must be specified using -q, as -q QUERY. The bigram QUERY must be in the format
s1,s2 where s1 and s2 are the first and second segments in the bigram. You may also use command line options
to change the sequency type to use for your calculations, or to specify an output file name. Descriptions of these
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arguments can be viewed by running pct_mutualinfo -h or pct_mutualinfo --help. The help text from
this command is copied below, augmented with specifications of default values:

Positional arguments:

corpus_file_name
Name of corpus file

Mandatory argument group (call must have one of these two):

-q QUERY
--query QUERY

Bigram or segment pair, as str separated by comma

-l
--all_pairwise_mis

Flag: calculate MI for all orders of all pairs of segments

Optional arguments:

-h
--help

Show help message and exit

-c CONTEXT_TYPE
--context_type CONTEXT_TYPE

How to deal with variable pronunciations. Options are ‘Canonical’, ‘MostFrequent’, ‘SeparatedTokens’, or
‘Weighted’. See documentation for details.

-s SEQUENCE_TYPE
--sequence_type SEQUENCE_TYPE

The attribute of Words to calculate MI over. Normally, this will be the transcription, but it can also be the
spelling or a user-specified tier.

-o OUTFILE
--outfile OUTFILE

Name of output file

EXAMPLE 1: If your corpus file is example.corpus (no pronunciation variants) and you want to calculate the mutual
information of the bigram ‘si’ using defaults for all optional arguments, you would run the following command in your
terminal window:

pct_mutualinfo example.corpus -q s,i

EXAMPLE 2: Suppose you want to calculate the mutual information of the bigram ‘si’ on the spelling tier. In addition,
you want the script to produce an output file called output.txt. You would need to run the following command:

pct_mutualinfo example.corpus -q s,i -s spelling -o output.txt

EXAMPLE 3: Suppose you want to calculate the mutual information of all bigram types in the corpus. In addition,
you want the script to produce an output file called output.txt. You would need to run the following command:

pct_mutualinfo example.corpus -l -o output.txt

17.5 Classes and functions

For further details about the relevant classes and functions in PCT’s source code, please refer to Mutual information.
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CHAPTER 18

Acoustic Similarity

18.1 About the function

Acoustic similarity analyses quantify the degree to which waveforms of linguistic objects (such as sounds or words)
are similar to each other. The acoustic similarity measures provided here have primarily been used in the study of
phonetic convergence between interacting speakers; convergence is measured as a function of increasing similarity.
These measures are also commonly used in automatic speech and voice recognition systems, where incoming speech
is compared to stored representations. Phonologically, acoustic similarity also has a number of applications. For
example, it has been claimed that sounds that are acoustically distant from each other cannot be allophonically related,
even if they are in complementary distribution (e.g. [Pike1947]; [Janda1999]).

Acoustic similarity alogorithms work on an aggregate scale, quantifying, on average, how similar one group of wave-
forms is to another. Representations have traditionally been in terms of mel-frequency cepstrum coefficents (MFCCs;
[Delvaux2007]; [Mielke2012]), which is used widely for automatic speech recognition, but one recent introduction is
multiple band amplitude envelopes [Lewandowski2012]. Both MFCCs and amplitude envelopes will be described in
more detail in the following sections, and both are available as part of PCT.

The second dimension to consider is the algorithm used to match representations. The most common one is dynamic
time warping (DTW), which uses dynamic programming to calculate the optimal path through a distance matrix
[Sakoe1971], and gives the best alignment of two time series. Because one frame in one series can align to multiple
frames in another series without a significant cost, DTW provides a distance independent of time. The other algorithm
that is used is cross-correlation (see discussion in [Lewandowski2012], which aligns two time series at variable lags.
Taking the max value of the alignment gives a similarity value for the two time series, with higher values corresponding
to higher similarity.

18.2 Method of calculation

18.2.1 Preprocessing

Prior to conversion to MFCCs or amplitude envelopes, the waveform is pre-emphasized to give a flatter spectrum and
correct for the higher drop off in amplitude of higher frequencies due to distance from the mouth.

18.2.2 MFCCs

The calculation of MFCCs in PCT’s function follows the Rastamat [Ellis2005]‘s implementation of HTK-style
MFCCs [HTK] in [Matlab]. Generating MFCCs involves windowing the acoustic waveform and transforming the
windowed signal to the linear frequency domain through a Fourier transform. Following that, a filterbank of triangular
filters is constructed in the mel domain, which gives greater resolution to lower frequencies than higher frequencies.
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Once the filterbank is applied to the spectrum from the Fourier transform, the spectrum is represented as the log of the
power in each of the mel filters. Using this mel spectrum, the mel frequency cepstrum is computed by performing a
discrete cosine transform. This transform returns orthogonal coefficients describing the shape of the spectrum, with
the first coefficent as the average value, the second as the slope of the spectrum, the third as the curvature, and so on,
with each coefficient representing higher order deviations. The first coefficent is discarded, and the next X coefficents
are taken, where X is the number of coefficents specified when calling the function. The number of coefficents must
be one less than the number of filters, as the number of coefficents returned by the discrete cosine transform is equal
to the number of filters in the mel filterbank.

Please note that the MFCCs calculated in PCT follow the HTK standard, and are not the same as those produced by
Praat [PRAAT].

18.2.3 Amplitude envelopes

The calculation of amplitude envelopes follows the Matlab implementation found in [Lewandowski2012]. First, the
signal is filtered into X number of logarithmically spaced bands, where X is specified in the function call, using 4th
order Butterworth filters. For each band, the amplitude envelope is calculated by converting the signal to its analytic
signal through a Hilbert transform. Each envelope is downsampled to 120 Hz.

18.2.4 Dynamic time warping (DTW)

PCT implements a standard DTW algorithm [SakoeChiba, 1971]_ and gives similar results as the dtw package
[Giorgino2009)]_ in [R]. Given two representations, a 2D matrix is constructed where the dimensions are equal to
the number of frames in each representation. The initial values for each cell of the matrix is the Euclidean distance
between the two feature vectors of those frames. The cells are updated so that they equal the local distance plus the
minimum distance of the possible previous cells. At the end, the final cell contains the summed distance of the best
path through the matrix, and this is the minimum distance between two representations.

18.2.5 Cross-correlation

Cross-correlation seeks to align two time series based on corresponding peaks and valleys. From each representation
a time series is extracted for each frame’s feature and this time series is cross-correlated with the respective time
series in the other representation. For instance, the time series for an amplitude envelope’s representation corresponds
to each frequency band, and each frequency band of the first representation is cross-correlated with each respective
frequency band of the second representation. The time series are normalized so that they sum to 1, and so matching
signals receive a cross-correlation value of 1 and completely opposite signals receive a cross-correlation value of 0.
The overall distance between two representations is the inverse of the average cross-correlation values for each band.

18.2.6 Similarity across directories

The algorithm for assessing the similarity of two directories (corresponding to segments) averages the similarity of
each .wav file in the first directory to each .wav file in the second directory.

18.3 Calculating acoustic similarity in the GUI

To start the analysis, click on the “Calculate acoustic similarity...” in the Analysis menu and provide the following
parameters. Note that unlike the other functions, acoustic similarity is not tied directly to any corpus that is loaded
into PCT; sound files are accessed directly through directories on your computer.
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1. Comparison type: There are three kinds of comparisons that can be done in PCT: single-directory, two-
directory, or pairwise.

(a) Single directory: If a single directory is selected (using the “Choose directory...” dialogue box), two types
of results will be returned: (1) each of the pairwise comparisons and (2) an average of all these comparisons
(i.e., a single value).

(b) Two directories: Choose two directories, each corresponding to a set of sounds to be compared. For
example, if one were interested in the similarity of [s] and [S] in Hungarian, one directory would contain
.wav files of individual [s] tokens, and the other directory would contain .wav files of individual [S] tokens.
Every sound file in the first directory will be compared to every sound file in the second directory, and
the acoustic similarity measures that are returned will again be (1) all the pairwise comparisons and (2) an
average of all these comparisons (i.e., a single value).

(c) Pairwise: One can also use a tab-delimied.txt file that lists all of the pairwise comparisons of individual
sound files by listing their full path names. As with a single directory, each pairwise comparison will be
returned separately.

2. Representation: Select whether the sound files should be represented as MFCCs or amplitude envelopes (de-
scribed in more detail above).

3. Distance algorithm: Select whether comparison of sound files should be done using dynamic time warping or
cross-correlation (described in more detail above).

4. Frequency limits: Select a minimum frequency and a maximum frequency to use when generating representa-
tions. The human voice typically doesn’t go below 80 Hz, so that is the default cut off to avoid low-frequency
noise. The maximum frequency has a hard bound of the Nyquist frequency of the sound files, that is, half their
sampling rate. The lowest sampling rate that is typically used for speech is 16,000 Hz, so a cutoff near the
Nyquist (8,000 Hz) is used as the default. The range of human hearing is 20 Hz to 20 kHz, but most energy in
speech tends to fall off after 10 kHz.

5. Frequency resolution: Select the number of filters to be used to divide up the frequency range specified above.
The default for MFCCs is for 26 filters to be constructed, and for amplitude envelopes, 8 filters.

6. Number of coefficients (MFCC only): Select the number of coefficients to be used in MFCC representations.
The default is 12 coefficients, as that is standard in the field. If the number of coefficients is more than the
number of filters minus one, the number of coefficients will be set to the number of filters minus one.

7. Output: Select whether to return results as similarity (inverse distance) or to us ethe default, distance (inverse
similarity). Dynamic time warping natively returns a distance measure which gets inverted to similarity and
cross-correlation natively returns a similarity value which gets inverted to distance.

8. Multiprocessing: As the generation and comparison of representations can be time-intensive, using multipro-
cessing on parts that can be run in parallel can speed the process up overall. In order to make this option
available, the python-acoustic-similarity module must be installed; multiprocessing itself can be enabled by
going to “Options” / “Preferences” / “Processing” (see also §3.9.1).

Here’s an example of the parameter-selection box:
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9. Calculating and saving results: The first time an analysis is run, the option to “Calculate acoustic similarity
(start new results table)” should be selected. This will output the results to a pop-up window that lists the direc-
tories, the representation choice, the matching function, the minimum and maximum frequencies, the number
of filters, the number of coefficients, the raw result, and whether the result is similarity (1) or distance (0). Sub-
sequent analyses can either be added to the current table (as long as it hasn’t been closed between analyses) or
put into a new table. Once a table has been created, click on “Save to file” at the bottom of the table window in
order to open a system dialogue box and choose a directory; the table will be saved as a tab-delimited .txt file.

Here’s an example of the results file:

To return to the function dialogue box with your most recently used selections, click on “Reopen function dialog.”
Otherwise, the results table can be closed and you will be returned to your corpus view.
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18.4 Classes and functions

For further details about the relevant classes and functions in PCT’s source code, please refer to API Reference.
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CHAPTER 19

Citing PCT and the algorithms used therein

Please cite PCT as the following (all authors after K. C. Hall are listed alphabetically):

Hall, Kathleen Currie, Blake Allen, Michael Fry, Scott Mackie, and Michael McAuliffe. (2015). Phonological Cor-
pusTools, Version 1.1. [Computer program]. Available from PCT GitHub page.

If you need to cite a more traditional academic source rather than the software itself, please use:

Mackie, Scott, Kathleen Currie Hall, Blake Allen, Michael McAuliffe, Michael Fry. (2014). Phonological Corpus-
Tools: A free, open-source tool for phonological analysis. Presented at the 14th Conference for Laboratory Phonology,
Tokyo, Japan.

If you are using the IPHOD corpus as distributed with PCT, please also be sure to cite:

Vaden, K. I., Halpin, H. R., Hickok, G. S. (2009). Irvine Phonotactic Online Dictionary, Version 2.0. [Data file].
Available from http://www.iphod.com.

and if you are making use of the SUBTLEX token frequencies as part of the IPHOD corpus, you should cite:

Brysbaert, Marc, & Boris New. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word
frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior
Research Methods 41(4): 977-990.

More generally, the algorithms that are implemented in PCT are taken from published sources. As mentioned in the
introduction, we highly encourage users of PCT to cite the original sources of the algorithms rather than, for example,
saying that “functional load was calculated using PCT” and just citing PCT itself. First, there are multiple parameters
within PCT that can be selected for any given calculation, and these should themselves be specified for maximum
clarity and replicability. Second, credit for the original creation or application of the algorithms should obviously be
given to the proper sources. We have attempted to make this as easy as possible by both giving these sources here in
the user’s manual and also embedding them in each function in the “About” option for each.

Furthermore, if you are the author of a function that is currently implemented in PCT and you disagree with the way
in which it has been implemented, please contact us to let us know! We have done our best to faithfully replicate
published descriptions, but it is obviously possible that we have made errors.

Finally, if you are the author of a function that you would like to see implemented in PCT, please contact us to discuss
the possibility.
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CHAPTER 21

API Reference

21.1 Lexicon classes

lexicon.Attribute(name, att_type[, ...]) Attributes are for collecting summary information about attributes of
lexicon.Corpus(name) Lexicon to store information about Words, such as transcriptions,
lexicon.Inventory([data]) Inventories contain information about a Corpus’ segmental inventory.
lexicon.FeatureMatrix(name, feature_entries) An object that stores feature values for segments
lexicon.Segment(symbol) Class for segment symbols
lexicon.Transcription(seg_list) Transcription object, sequence of symbols
lexicon.Word(**kwargs) An object representing a word in a corpus
lexicon.EnvironmentFilter(middle_segments[, ...]) Filter to use for searching words to generate Environments that match
lexicon.Environment(middle, position[, lhs, rhs]) Specific sequence of segments that was a match for an EnvironmentFilter

21.1.1 Attribute

class corpustools.corpus.classes.lexicon.Attribute(name, att_type, display_name=None,
default_value=None)

Attributes are for collecting summary information about attributes of Words or WordTokens, with different types
of attributes allowing for different behaviour

Parameters name : str

Python-safe name for using getattr and setattr on Words and WordTokens

att_type : str

Either ‘spelling’, ‘tier’, ‘numeric’ or ‘factor’

display_name : str

Human-readable name of the Attribute, defaults to None

default_value : object

Default value for initializing the attribute
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Attributes

name (string) Python-readable name for the Attribute on Word and WordToken objects
dis-
play_name

(string) Human-readable name for the Attribute

de-
fault_value

(object) Default value for the Attribute. The type of default_value is dependent on the attribute
type. Numeric Attributes have a float default value. Factor and Spelling Attributes have a string
default value. Tier Attributes have a Transcription default value.

range (object) Range of the Attribute, type depends on the attribute type. Numeric Attributes have a
tuple of floats for the range for the minimum and maximum. The range for Factor Attributes is a
set of all factor levels. The range for Tier Attributes is the set of segments in that tier across the
corpus. The range for Spelling Attributes is None.

Methods

__init__(name, att_type[, display_name, ...])
guess_type(values[, trans_delimiters]) Guess the attribute type for a sequence of values
sanitize_name(name) Sanitize a display name into a Python-readable attribute name
update_range(value) Update the range of the Attribute with the value specified.

static guess_type(values, trans_delimiters=None)
Guess the attribute type for a sequence of values

Parameters values : list

List of strings to evaluate for the attribute type

trans_delimiters : list, optional

List of delimiters to look for in transcriptions, defaults to ., ;, and ,

Returns str

Attribute type that had the most success in parsing the values specified

static sanitize_name(name)
Sanitize a display name into a Python-readable attribute name

Parameters name : string

Display name to sanitize

Returns str

Sanitized name

update_range(value)
Update the range of the Attribute with the value specified. If the attribute is a Factor, the value is added
to the set of levels. If the attribute is Numeric, the value expands the minimum and maximum values, if
applicable. If the attribute is a Tier, the value (a segment) is added to the set of segments allowed. If the
attribute is Spelling, nothing is done.

Parameters value : object

Value to update range with, the type depends on the attribute type
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21.1.2 Corpus

class corpustools.corpus.classes.lexicon.Corpus(name)
Lexicon to store information about Words, such as transcriptions, spellings and frequencies

Parameters name : string

Name to identify Corpus

Attributes

name (str) Name of the corpus, used only for easy of reference
at-
tributes

(list of Attributes) List of Attributes that Words in the Corpus have

wordlist (dict) Dictionary where every key is a unique string representing a word in a corpus, and each
entry is a Word object

words (list of strings) All the keys for the wordlist of the Corpus
speci-
fier

(FeatureSpecifier) See the FeatureSpecifier object

inven-
tory

(Inventory) Inventory that contains information about segments in the Corpus

Methods

__init__(name)
add_abstract_tier(attribute, spec) Add a abstract tier (currently primarily for generating CV skeletons from tiers).
add_attribute(attribute[, initialize_defaults]) Add an Attribute of any type to the Corpus or replace an existing Attribute.
add_count_attribute(attribute, ...) Add an Numeric Attribute that is a count of a segments in a tier that match a given specification.
add_tier(attribute, spec) Add a Tier Attribute based on the transcription of words as a new Attribute that includes all segments that match the specification.
add_word(word[, allow_duplicates]) Add a word to the Corpus.
check_coverage() Checks the coverage of the specifier (FeatureMatrix) of the Corpus over the
features_to_segments(feature_description) Given a feature description, return the segments in the inventory
find(word[, keyerror, ignore_case]) Search for a Word in the corpus
find_all(spelling) Find all Word objects with the specified spelling
get_features() Get a list of the features used to describe Segments
get_or_create_word(**kwargs) Get a Word object that has the spelling and transcription specified or create that Word, add it to the Corpus and return it.
get_random_subset(size[, new_corpus_name]) Get a new corpus consisting a random selection from the current corpus
iter_sort() Sorts the keys in the corpus dictionary, then yields the
iter_words() Sorts the keys in the corpus dictionary,
key(word)
keys()
random_word() Return a randomly selected Word
remove_attribute(attribute) Remove an Attribute from the Corpus and from all its Word objects.
remove_word(word_key) Remove a Word from the Corpus using its identifier in the Corpus.
segment_to_features(seg) Given a segment, return the features for that segment.
set_feature_matrix(matrix) Set the feature system to be used by the corpus and make sure every word is using it too.
subset(filters) Generate a subset of the corpus based on filters.
update_inventory(transcription) Update the inventory of the Corpus to ensure it contains all

add_abstract_tier(attribute, spec)
Add a abstract tier (currently primarily for generating CV skeletons from tiers).
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Specifiers for abstract tiers should be dictionaries with keys that are the abstract symbol (such as ‘C’ or ‘V’)
and the values are iterables of segments that should count as that abstract symbols (such as all consonants
or all vowels).

Currently only operates on the transcription of words.

Parameters attribute : Attribute

Attribute to add/replace

spec : dict

Mapping for creating abstract tier

add_attribute(attribute, initialize_defaults=False)
Add an Attribute of any type to the Corpus or replace an existing Attribute.

Parameters attribute : Attribute

Attribute to add or replace

initialize_defaults : boolean

If True, words will have this attribute set to the default_value of the attribute,
defaults to False

add_count_attribute(attribute, sequence_type, spec)
Add an Numeric Attribute that is a count of a segments in a tier that match a given specification.

The specification should be either a list of segments or a string of the format ‘+feature1,-feature2’ that
specifies the set of segments.

Parameters attribute : Attribute

Attribute to add or replace

sequence_type : string

Specifies whether to use ‘spelling’, ‘transcription’ or the name of a transcription tier to
use for comparisons

spec : list or str

Specification of what segments should be counted

add_tier(attribute, spec)
Add a Tier Attribute based on the transcription of words as a new Attribute that includes all segments that
match the specification.

The specification should be either a list of segments or a string of the format ‘+feature1,-feature2’ that
specifies the set of segments.

Parameters attribute : Attribute

Attribute to add or replace

spec : list or str

Specification of what segments should be counted

add_word(word, allow_duplicates=True)
Add a word to the Corpus. If allow_duplicates is True, then words with identical spelling can be added.
They are kept sepearate by adding a “silent” number to them which is never displayed to the user. If
allow_duplicates is False, then duplicates are simply ignored.

Parameters word : Word
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Word object to be added

allow_duplicates : bool

If False, duplicate Words with the same spelling as an existing word in the corpus will
not be added

check_coverage()
Checks the coverage of the specifier (FeatureMatrix) of the Corpus over the inventory of the Corpus

Returns list

List of segments in the inventory that are not in the specifier

features_to_segments(feature_description)
Given a feature description, return the segments in the inventory that match that feature description

Feature descriptions should be either lists, such as [’+feature1’, ‘-feature2’] or strings that can be separated
into lists by ‘,’, such as ‘+feature1,-feature2’.

Parameters feature_description : string or list

Feature values that specify the segments, see above for format

Returns list of Segments

Segments that match the feature description

find(word, keyerror=True, ignore_case=False)
Search for a Word in the corpus If keyerror == True, then raise a KeyError if the word is not found If
keyerror == False, then return an EmptyWord if the word is not found

Parameters word : str

String representing the spelling of the word (not transcription)

keyerror : bool

Set whether a KeyError should be raised if a word is not found

Returns Word

Word that matches the spelling specified

Raises KeyError

If keyerror == True and word is not found

find_all(spelling)
Find all Word objects with the specified spelling

Parameters spelling : string

Spelling to look up

Returns list of Words

Words that have the specified spelling

get_features()
Get a list of the features used to describe Segments

Returns list of str

get_or_create_word(**kwargs)
Get a Word object that has the spelling and transcription specified or create that Word, add it to the Corpus
and return it.
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Parameters spelling : string

Spelling to search for

transcription : list

Transcription to search for

Returns Word

Existing or newly created Word with the spelling and transcription specified

get_random_subset(size, new_corpus_name=’randomly_generated’)
Get a new corpus consisting a random selection from the current corpus

Parameters size : int

Size of new corpus

new_corpus_name : str

Returns new_corpus : Corpus

New corpus object with len(new_corpus) == size

iter_sort()
Sorts the keys in the corpus dictionary, then yields the values in that order

Returns generator

Sorted Words in the corpus

iter_words()
Sorts the keys in the corpus dictionary, then yields the values in that order

Returns generator

Sorted Words in the corpus

random_word()
Return a randomly selected Word

Returns Word

Random Word

remove_attribute(attribute)
Remove an Attribute from the Corpus and from all its Word objects.

Parameters attribute : Attribute

Attribute to remove

remove_word(word_key)
Remove a Word from the Corpus using its identifier in the Corpus.

If the identifier is not found, nothing happens.

Parameters word_key : string

Identifier to use to remove the Word

segment_to_features(seg)
Given a segment, return the features for that segment.

Parameters seg : string or Segment

Segment or Segment symbol to look up
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Returns dict

Dictionary with keys as features and values as featue values

set_feature_matrix(matrix)
Set the feature system to be used by the corpus and make sure every word is using it too.

Parameters matrix : FeatureMatrix

New feature system to use in the corpus

subset(filters)
Generate a subset of the corpus based on filters.

Filters for Numeric Attributes should be tuples of an Attribute (of the Corpus), a comparison callable
(__eq__, __neq__, __gt__, __gte__, __lt__, or __lte__) and a value to compare all such
attributes in the Corpus to.

Filters for Factor Attributes should be tuples of an Attribute, and a set of levels for inclusion in the subset.

Other attribute types cannot currently be the basis for filters.

Parameters filters : list of tuples

See above for format

Returns Corpus

Subset of the corpus that matches the filter conditions

update_inventory(transcription)
Update the inventory of the Corpus to ensure it contains all the segments in the given transcription

Parameters transcription : list

Segment symbols to add to the inventory if needed

21.1.3 Inventory

class corpustools.corpus.classes.lexicon.Inventory(data=None)
Inventories contain information about a Corpus’ segmental inventory. In many cases, they are similar to Fea-
tureMatrices, but more tailored to a specific corpus. Where a FeatureMatrix would deal in feature specifications,
inventories will deal primarily in sets of segments.

Parameters data : dict, optional

Mapping from segment symbol to Segment objects
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Attributes

features (list) List of all features used as specifications for segments
possi-
ble_values

(set) Set of values that segments use for features

stresses (dict) Mapping of stress values to segments that bear that stress
places (dict) Mapping from place of articulation labels to sets of segments
manners (dict) Mapping from manner of articulation labels to sets of segments
height (dict) Mapping from vowel height labels to sets of segments
backness (dict) Mapping from vowel backness labels to sets of segments
vowel_feature (str) Feature value (i.e., ‘+voc’) that separates vowels from consonants
voice_feature (str) Feature value (i.e., ‘+voice’) that codes voiced obstruents
diph_feature (str) Feature value (i.e., ‘+diphthong’ or ‘.high’) that separates diphthongs from

monophthongs
rounded_feature (str) Feature value (i.e., ‘+round’) that codes rounded vowels

Methods

__init__([data])
categorize(seg) Categorize a segment into consonant/vowel, place of articulation, manner of articulation, voicing, vowel height, vowel backness, and vowel rounding.
features_to_segments(feature_description) Given a feature description, return the segments in the inventory
find_min_feature_pairs(features[, others]) Find sets of segments that differ only in certain features,
get_redundant_features(features[, others]) Autodetects redundent features, with the ability to subset
items()
keys()
specify(specifier) Specify segments in the inventory using a FeatureMatrix
valid_feature_strings() Get all combinations of possible_values and features
values()

categorize(seg)
Categorize a segment into consonant/vowel, place of articulation, manner of articulation, voicing, vowel
height, vowel backness, and vowel rounding.

For consonants, the category is of the format:

(‘Consonant’, PLACE, MANNER, VOICING)

For vowels, the category is of the format:

(‘Vowel’, HEIGHT, BACKNESS, ROUNDED)

Diphthongs are categorized differently:

(‘Diphthong’, ‘Vowel’)

Parameters seg : Segment

Segment to categorize

Returns tuple or None

Returns categories according to the formats above, if any are unable to be calculated,
returns None in those places. Returns None if a category cannot be found.

features_to_segments(feature_description)
Given a feature description, return the segments in the inventory that match that feature description
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Feature descriptions should be either lists, such as [’+feature1’, ‘-feature2’] or strings that can be separated
into lists by ‘,’, such as ‘+feature1,-feature2’.

Parameters feature_description : string or list

Feature values that specify the segments, see above for format

Returns list of Segments

Segments that match the feature description

find_min_feature_pairs(features, others=None)
Find sets of segments that differ only in certain features, optionally limited by a feature specification

Parameters features : list

List of features (i.e. ‘back’ or ‘round’)

others : list, optional

Feature specification to limit sets

Returns dict

Dictionary with keys that correspond to the values of features and values that are
the set of segments with those feature values

get_redundant_features(features, others=None)
Autodetects redundent features, with the ability to subset the segments

Parameters features : list

List of features to find other features that consistently covary with them

others : list, optional

Feature specification that specifies a subset to look at

Returns list

List of redundant features

specify(specifier)
Specify segments in the inventory using a FeatureMatrix

Parameters specifier : FeatureMatrix

Specifier to use for updating feature specifications

valid_feature_strings()
Get all combinations of possible_values and features

Returns list

List of valid feature strings

21.1.4 FeatureMatrix

class corpustools.corpus.classes.lexicon.FeatureMatrix(name, feature_entries)
An object that stores feature values for segments

Parameters name : str

Name to give the FeatureMatrix

feature_entries : list
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List of dict with one dictionary per segment, requires the key of symbol which identifies
the segment

Attributes

features Get a list of features that are used in this feature system

name (str) An informative identifier for the feature matrix
possi-
ble_values

(set) Set of values used in the FeatureMatrix

default_value (str) Default feature value, usually corresponding to unspecified features
stresses (dict) Mapping of stress values to segments that bear that stress
places (dict) Mapping from place of articulation labels to a feature specification
manners (dict) Mapping from manner of articulation labels to a feature specification
height (dict) Mapping from vowel height labels to a feature specification
backness (dict) Mapping from vowel backness labels to a feature specification
vowel_feature (str) Feature value (i.e., ‘+voc’) that separates vowels from consonants
voice_feature (str) Feature value (i.e., ‘+voice’) that codes voiced obstruents
diph_feature (str) Feature value (i.e., ‘+diphthong’ or ‘.high’) that separates diphthongs from

monophthongs
rounded_feature (str) Feature value (i.e., ‘+round’) that codes rounded vowels

Methods

__init__(name, feature_entries)
add_feature(feature[, default]) Add a feature to the feature system
add_segment(seg, feat_spec) Add a segment with a feature specification to the feature system
categorize(seg) Categorize a segment into consonant/vowel, place of articulation, manner of articulation, voicing, vowel height, vowel backness, and vowel rounding.
features_to_segments(feature_description) Given a feature description, return the segments in the inventory
generate_generic()
generate_generic_hayes()
generate_generic_names()
generate_generic_spe()
seg_to_feat_line(symbol) Get a list of feature values for a given segment in the order
valid_feature_strings() Get all combinations of possible_values and features
validate() Make sure that all segments in the matrix have all the features.

add_feature(feature, default=None)
Add a feature to the feature system

Attributes

fea-
ture

(str) Name of the feature to add to the feature system

de-
fault

(str, optional) If specified, set the value for all segments to this value, otherwise use the
FeatureMatrix’s default_value
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add_segment(seg, feat_spec)
Add a segment with a feature specification to the feature system

Attributes

seg (str) Segment symbol to add to the feature system
feat_spec (dictionary) Dictionary with features as keys and feature values as values

categorize(seg)
Categorize a segment into consonant/vowel, place of articulation, manner of articulation, voicing, vowel
height, vowel backness, and vowel rounding.

For consonants, the category is of the format:

(‘Consonant’, PLACE, MANNER, VOICING)

For vowels, the category is of the format:

(‘Vowel’, HEIGHT, BACKNESS, ROUNDED)

Diphthongs are categorized differently:

(‘Diphthong’, ‘Vowel’)

Parameters seg : Segment

Segment to categorize

Returns tuple or None

Returns categories according to the formats above, if any are unable to be calculated,
returns None in those places. Returns None if a category cannot be found.

features
Get a list of features that are used in this feature system

Returns list

Sorted list of the names of all features in the matrix

features_to_segments(feature_description)
Given a feature description, return the segments in the inventory that match that feature description

Feature descriptions should be either lists, such as [’+feature1’, ‘-feature2’] or strings that can be separated
into lists by ‘,’, such as ‘+feature1,-feature2’.

Parameters feature_description : str, list, or dict

Feature values that specify the segments, see above for format

Returns list of Segments

Segments that match the feature description

seg_to_feat_line(symbol)
Get a list of feature values for a given segment in the order that features are return in get_feature_list

Use for display purposes

Returns list

List of feature values for the symbol, as well as the symbol itself
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Attributes

symbol (str) Segment symbol to look up

segments
Return a list of segment symbols that are specified in the feature system

Returns list

List of all the segments with feature specifications

valid_feature_strings()
Get all combinations of possible_values and features

Returns list

List of valid feature strings

validate()
Make sure that all segments in the matrix have all the features. If not, add an unspecified value for that
feature to them.

21.1.5 Segment

class corpustools.corpus.classes.lexicon.Segment(symbol)
Class for segment symbols

Parameters symbol : str

Segment symbol

Attributes

features (dict) Feature specification for the segment

Methods

__init__(symbol)
feature_match(specification) Return true if segment matches specification, false otherwise.
minimal_difference(other, features) Check if this segment is a minimal feature difference with another
specify(feature_dict) Specify a segment with a new feature specification

feature_match(specification)
Return true if segment matches specification, false otherwise.

Parameters specification : object

Specification can be a single feature value ‘+feature’, a list of feature values
[’+feature1’,’-feature2’], or a dictionary of features and values {‘feature1’: ‘+’, ‘fea-
ture2’: ‘-‘}

Returns bool

True if this segment contains the feature values in the specification

minimal_difference(other, features)
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Check if this segment is a minimal feature difference with another segment (ignoring some features)

Parameters other : Segment

Segment to compare with

features : list

Features that are allowed to vary between the two segments

Returns bool

True if all features other than the specified ones match, False otherwise

specify(feature_dict)
Specify a segment with a new feature specification

Parameters feature_dict : dict

Feature specification

21.1.6 Transcription

class corpustools.corpus.classes.lexicon.Transcription(seg_list)
Transcription object, sequence of symbols

Parameters seg_list : list

List of segments that form the transcription. Elements in the list, can be Segments,
strings, or BaseAnnotations

Attributes

_list (list) List of strings representing segment symbols
stress_pattern:
dict

Dictionary with keys of segment indices and values of the stress for that segment

boundaries (dict) Possible keys of ‘morpheme’ or ‘tone’ that keeps track of where morpheme or tone
boundaries are inserted

Methods

__init__(seg_list)
find(environment) Find instances of an EnvironmentFilter in the Transcription
find_nonmatch(environment) Find all instances of an EnvironmentFilter in the Transcription
match_segments(segments) Returns a matching segments from a list of segments
with_word_boundaries() Return the string of segments with word boundaries surrounding them

find(environment)
Find instances of an EnvironmentFilter in the Transcription

Parameters environment : EnvironmentFilter

EnvironmentFilter to search for

Returns list

List of Environments that fit the EnvironmentFilter
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find_nonmatch(environment)
Find all instances of an EnvironmentFilter in the Transcription that match in the middle segments, but
don’t match on the sides

Parameters environment : EnvironmentFilter

EnvironmentFilter to search for

Returns list

List of Environments that fit the EnvironmentFilter’s middle but not the sides

match_segments(segments)
Returns a matching segments from a list of segments

Parameters segments : list

List of Segments or strings to filter the Transcription

Returns list

List of segments (in their original order) that match the segment parameter

with_word_boundaries()
Return the string of segments with word boundaries surrounding them

Returns list

Transcription with word boundaries

21.1.7 Word

class corpustools.corpus.classes.lexicon.Word(**kwargs)
An object representing a word in a corpus

Information about the attributes are contained in the Corpus’ attributes.

Attributes

spelling (str) A representation of a word that lacks phonological information.
transcription (Transcription) A representation of a word that includes phonological information.
frequency (float) Token frequency in a corpus

Methods

__init__(**kwargs)
add_abstract_tier(tier_name, tier_segments) Add an abstract tier to the Word
add_attribute(tier_name, value) Add an arbitrary attribute to the Word
add_tier(tier_name, tier_segments) Adds a new tier attribute to the Word
remove_attribute(attribute_name) Deletes a tier attribute from a Word
variants([sequence_type]) Get variants and frequencies for a Word

add_abstract_tier(tier_name, tier_segments)
Add an abstract tier to the Word

Parameters tier_name : str
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Attribute name

tier_segments: dict

Dictionary with keys of the abstract segments (i.e., ‘C’ or ‘V’) and values that are sets
of segments

add_attribute(tier_name, value)
Add an arbitrary attribute to the Word

Parameters tier_name : str

Attribute name

value: object

Attribute value

add_tier(tier_name, tier_segments)
Adds a new tier attribute to the Word

Parameters tier_name : str

Name for the new tier

tier_segments: list of segments

Segments that count for inclusion in the tier

remove_attribute(attribute_name)
Deletes a tier attribute from a Word

Parameters attribute_name : str

Name of tier attribute to be deleted.

Notes

If attribute_name is not a valid attribute, this function does nothing. It does not raise an error.

variants(sequence_type=’transcription’)
Get variants and frequencies for a Word

Parameters sequence_type : str, optional

Tier name to get variants

Returns dict

Dictionary with keys of Transcriptions and values of their frequencies

21.1.8 EnvironmentFilter

class corpustools.corpus.classes.lexicon.EnvironmentFilter(middle_segments,
lhs=None, rhs=None)

Filter to use for searching words to generate Environments that match

Parameters middle_segments : set

Set of segments to center environments

lhs : list, optional

List of set of segments on the left of the middle
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rhs : list, optional

List of set of segments on the right of the middle

Methods

__init__(middle_segments[, lhs, rhs])
compile_re_pattern()
is_applicable(sequence) Check whether the Environment filter is applicable to the sequence
lhs_count() Get the number of elements on the left hand side
rhs_count() Get the number of elements on the right hand side
set_lhs(lhs)
set_rhs(rhs)

is_applicable(sequence)
Check whether the Environment filter is applicable to the sequence (i.e., the sequence must be greater or
equal in length to the EnvironmentFilter)

Parameters sequence : list

Sequence to check applicability

Returns bool

True if the sequence is equal length or longer than the EnvironmentFilter

lhs_count()
Get the number of elements on the left hand side

Returns int

Length of the left hand side

rhs_count()
Get the number of elements on the right hand side

Returns int

Length of the right hand side

21.1.9 Environment

class corpustools.corpus.classes.lexicon.Environment(middle, position, lhs=None,
rhs=None)

Specific sequence of segments that was a match for an EnvironmentFilter

Parameters middle : str

Middle segment

position : int

Position of the middle segment in the word (to differentiate between repetitions of an
environment in the same word

lhs : list, optional

Segments to the left of the middle segment

rhs : list, optional
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Segments to the right of the middle segment

Methods

__init__(middle, position[, lhs, rhs])

21.2 Speech corpus classes

spontaneous.Discourse(**kwargs) Discourse objects are collections of linear text with word tokens
spontaneous.Speaker(name, **kwargs) Speaker objects contain information about the producers of WordTokens
spontaneous.SpontaneousSpeechCorpus(name, ...) SpontaneousSpeechCorpus objects a collection of Discourse objects and Corpus objects for frequency information.
spontaneous.WordToken(**kwargs) WordToken objects are individual productions of Words

21.2.1 Discourse

class corpustools.corpus.classes.spontaneous.Discourse(**kwargs)
Discourse objects are collections of linear text with word tokens

Parameters name : str

Identifier for the Discourse

speaker : Speaker

Speaker producing the tokens/text (defaults to an empty Speaker)

Attributes

at-
tributes

(list of Attributes) The Discourse object tracks all of the attributes used by its WordToken objects

words (dict of WordTokens) The keys are the beginning times of the WordTokens (or their place in a text
if it’s not a speech discourse) and the values are the WordTokens

Methods

__init__(**kwargs)
add_attribute(attribute[, initialize_defaults]) Add an Attribute of any type to the Discourse or replace an existing Attribute.
add_word(wordtoken) Adds a WordToken to the Discourse
create_lexicon() Create a Corpus object from the Discourse
find_wordtype(wordtype) Look up all WordTokens that are instances of a Word
keys() Returns a sorted list of keys for looking up WordTokens

add_attribute(attribute, initialize_defaults=False)
Add an Attribute of any type to the Discourse or replace an existing Attribute.

Parameters attribute : Attribute

Attribute to add or replace
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initialize_defaults : bool

If True, word tokens will have this attribute set to the default_value of the attribute,
defaults to False

add_word(wordtoken)
Adds a WordToken to the Discourse

Parameters wordtoken : WordToken

WordToken to be added

create_lexicon()
Create a Corpus object from the Discourse

Returns Corpus

Corpus with spelling and transcription from previous Corpus and token frequency from
the Discourse

find_wordtype(wordtype)
Look up all WordTokens that are instances of a Word

Parameters wordtype : Word

Word to look up

Returns list of WordTokens

List of the given Word’s WordTokens in this Discourse

has_audio
Checks whether the Discourse is associated with a .wav file

Returns bool

True if a .wav file is associated and if that file exists, False otherwise

keys()
Returns a sorted list of keys for looking up WordTokens

Returns list

List of begin times or indices of WordTokens in the Discourse

21.2.2 Speaker

class corpustools.corpus.classes.spontaneous.Speaker(name, **kwargs)
Speaker objects contain information about the producers of WordTokens or Discourses

Parameters name : string

Name to identify the Speaker

Attributes

name (string) Name of Speaker
gender (string) Gender of Speaker
age (int or string) Age of Speaker
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Methods

__init__(name, **kwargs)

21.2.3 SpontaneousSpeechCorpus

class corpustools.corpus.classes.spontaneous.SpontaneousSpeechCorpus(name, di-
rectory)

SpontaneousSpeechCorpus objects a collection of Discourse objects and Corpus objects for frequency informa-
tion.

Parameters name : str

Name to identify the SpontaneousSpeechCorpus

directory : str

Directory associated with the SpontaneousSpeechCorpus

Attributes

lexicon (Corpus) Corpus object with token frequencies from its Discourses
discourses (dict) Discourses of the SpontaneousSpeechCorpus indexed by the names of the Discourses

Methods

__init__(name, directory)
add_discourse(discourse) Add a discourse to the SpontaneousSpeechCorpus

add_discourse(discourse)
Add a discourse to the SpontaneousSpeechCorpus

Parameters discourse : Discourse

Discourse to be added

21.2.4 WordToken

class corpustools.corpus.classes.spontaneous.WordToken(**kwargs)
WordToken objects are individual productions of Words

Parameters word : Word

Word that the WordToken is associated with

transcription : iterable of str

Transcription for the WordToken (can be different than the transcription of the Word
type). Defaults to None if not specified

spelling : str

Spelling for the WordToken (can be different than the spelling of the Word type). De-
faults to None if not specified
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begin : float or int

Beginning of the WordToken (can be specified as either in seconds of time or in position
from the beginning of the Discourse)

end : float or int

End of the WordToken (can be specified as either in seconds of time or in position from
the beginning of the Discourse)

previous_token : WordToken

The preceding WordToken in the Discourse, defaults to None if not specified

following_token : WordToken

The following WordToken in the Discourse, defaults to None if not specified

discourse : Discourse

Parent Discourse object that the WordToken belongs to

speaker : Speaker

The Speaker that produced the token

Attributes

transcrip-
tion

(Transcription) The WordToken’s transcription, or the word type’s transcription if the
WordToken’s transcription is None

spelling (str) The WordToken’s spelling, or the word type’s spelling if the WordToken’s spelling is
None

previ-
ous_token

(WordToken) The previous WordToken in the Discourse

follow-
ing_token

(WordToken) The following WordToken in the Discourse

duration (float) The duration of the WordToken

Methods

__init__(**kwargs)
add_attribute(tier_name, default_value)

21.2.5 Corpus context managers

contextmanagers.BaseCorpusContext(corpus, ...) Abstract Corpus context class that all other contexts inherit from.
contextmanagers.CanonicalVariantContext(...) Corpus context that uses canonical forms for transcriptions and tiers
contextmanagers.MostFrequentVariantContext(...) Corpus context that uses the most frequent pronunciation variants
contextmanagers.SeparatedTokensVariantContext(...) Corpus context that treats pronunciation variants as separate types
contextmanagers.WeightedVariantContext(...) Corpus context that weights frequency of pronunciation variants by the
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BaseCorpusContext

class corpustools.contextmanagers.BaseCorpusContext(corpus, sequence_type,
type_or_token, attribute=None,
frequency_threshold=0)

Abstract Corpus context class that all other contexts inherit from.

Parameters corpus : Corpus

Corpus to form context from

sequence_type : str

Sequence type to evaluate algorithms on (i.e., ‘transcription’)

type_or_token : str

The type of frequency to use for calculations

attribute : Attribute, optional

Attribute to save results to for calculations involving all words in the Corpus

frequency_threshold: float, optional

If specified, ignore words below this token frequency

Methods

__init__(corpus, sequence_type, type_or_token)
get_frequency_base([gramsize, halve_edges, ...]) Generate (and cache) frequencies for each segment in the Corpus.
get_phone_probs([gramsize, probability, ...]) Generate (and cache) phonotactic probabilities for segments in the Corpus.

get_frequency_base(gramsize=1, halve_edges=False, probability=False)
Generate (and cache) frequencies for each segment in the Corpus.

Parameters halve_edges : boolean

If True, word boundary symbols (‘#’) will only be counted once per word, rather than
twice. Defaults to False.

gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency, defaults to False

Returns dict

Keys are segments (or sequences of segments) and values are their frequency in the
Corpus

get_phone_probs(gramsize=1, probability=True, preserve_position=True, log_count=True)
Generate (and cache) phonotactic probabilities for segments in the Corpus.

Parameters gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean
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If True, frequency counts will be normalized by total frequency, defaults to False

preserve_position : boolean

If True, segments will in different positions in the transcription will not be collapsed,
defaults to True

log_count : boolean

If True, token frequencies will be logrithmically-transformed prior to being summed

Returns dict

Keys are segments (or sequences of segments) and values are their phonotactic proba-
bility in the Corpus

CanonicalVariantContext

class corpustools.contextmanagers.CanonicalVariantContext(corpus, sequence_type,
type_or_token, at-
tribute=None, fre-
quency_threshold=0)

Corpus context that uses canonical forms for transcriptions and tiers

See the documentation of BaseCorpusContext for additional information

Methods

__init__(corpus, sequence_type, type_or_token)
get_frequency_base([gramsize, halve_edges, ...]) Generate (and cache) frequencies for each segment in the Corpus.
get_phone_probs([gramsize, probability, ...]) Generate (and cache) phonotactic probabilities for segments in the Corpus.

get_frequency_base(gramsize=1, halve_edges=False, probability=False)
Generate (and cache) frequencies for each segment in the Corpus.

Parameters halve_edges : boolean

If True, word boundary symbols (‘#’) will only be counted once per word, rather than
twice. Defaults to False.

gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency, defaults to False

Returns dict

Keys are segments (or sequences of segments) and values are their frequency in the
Corpus

get_phone_probs(gramsize=1, probability=True, preserve_position=True, log_count=True)
Generate (and cache) phonotactic probabilities for segments in the Corpus.

Parameters gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean
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If True, frequency counts will be normalized by total frequency, defaults to False

preserve_position : boolean

If True, segments will in different positions in the transcription will not be collapsed,
defaults to True

log_count : boolean

If True, token frequencies will be logrithmically-transformed prior to being summed

Returns dict

Keys are segments (or sequences of segments) and values are their phonotactic proba-
bility in the Corpus

MostFrequentVariantContext

class corpustools.contextmanagers.MostFrequentVariantContext(corpus, se-
quence_type,
type_or_token, at-
tribute=None, fre-
quency_threshold=0)

Corpus context that uses the most frequent pronunciation variants for transcriptions and tiers

See the documentation of BaseCorpusContext for additional information

Methods

__init__(corpus, sequence_type, type_or_token)
get_frequency_base([gramsize, halve_edges, ...]) Generate (and cache) frequencies for each segment in the Corpus.
get_phone_probs([gramsize, probability, ...]) Generate (and cache) phonotactic probabilities for segments in the Corpus.

get_frequency_base(gramsize=1, halve_edges=False, probability=False)
Generate (and cache) frequencies for each segment in the Corpus.

Parameters halve_edges : boolean

If True, word boundary symbols (‘#’) will only be counted once per word, rather than
twice. Defaults to False.

gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency, defaults to False

Returns dict

Keys are segments (or sequences of segments) and values are their frequency in the
Corpus

get_phone_probs(gramsize=1, probability=True, preserve_position=True, log_count=True)
Generate (and cache) phonotactic probabilities for segments in the Corpus.

Parameters gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)
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probability : boolean

If True, frequency counts will be normalized by total frequency, defaults to False

preserve_position : boolean

If True, segments will in different positions in the transcription will not be collapsed,
defaults to True

log_count : boolean

If True, token frequencies will be logrithmically-transformed prior to being summed

Returns dict

Keys are segments (or sequences of segments) and values are their phonotactic proba-
bility in the Corpus

SeparatedTokensVariantContext

class corpustools.contextmanagers.SeparatedTokensVariantContext(corpus, se-
quence_type,
type_or_token, at-
tribute=None, fre-
quency_threshold=0)

Corpus context that treats pronunciation variants as separate types for transcriptions and tiers

See the documentation of BaseCorpusContext for additional information

Methods

__init__(corpus, sequence_type, type_or_token)
get_frequency_base([gramsize, halve_edges, ...]) Generate (and cache) frequencies for each segment in the Corpus.
get_phone_probs([gramsize, probability, ...]) Generate (and cache) phonotactic probabilities for segments in the Corpus.

get_frequency_base(gramsize=1, halve_edges=False, probability=False)
Generate (and cache) frequencies for each segment in the Corpus.

Parameters halve_edges : boolean

If True, word boundary symbols (‘#’) will only be counted once per word, rather than
twice. Defaults to False.

gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency, defaults to False

Returns dict

Keys are segments (or sequences of segments) and values are their frequency in the
Corpus

get_phone_probs(gramsize=1, probability=True, preserve_position=True, log_count=True)
Generate (and cache) phonotactic probabilities for segments in the Corpus.

Parameters gramsize : integer
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Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency, defaults to False

preserve_position : boolean

If True, segments will in different positions in the transcription will not be collapsed,
defaults to True

log_count : boolean

If True, token frequencies will be logrithmically-transformed prior to being summed

Returns dict

Keys are segments (or sequences of segments) and values are their phonotactic proba-
bility in the Corpus

WeightedVariantContext

class corpustools.contextmanagers.WeightedVariantContext(corpus, sequence_type,
type_or_token, at-
tribute=None, fre-
quency_threshold=0)

Corpus context that weights frequency of pronunciation variants by the number of variants or the token fre-
quency for transcriptions and tiers

See the documentation of BaseCorpusContext for additional information

Methods

__init__(corpus, sequence_type, type_or_token)
get_frequency_base([gramsize, halve_edges, ...]) Generate (and cache) frequencies for each segment in the Corpus.
get_phone_probs([gramsize, probability, ...]) Generate (and cache) phonotactic probabilities for segments in the Corpus.

get_frequency_base(gramsize=1, halve_edges=False, probability=False)
Generate (and cache) frequencies for each segment in the Corpus.

Parameters halve_edges : boolean

If True, word boundary symbols (‘#’) will only be counted once per word, rather than
twice. Defaults to False.

gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency, defaults to False

Returns dict

Keys are segments (or sequences of segments) and values are their frequency in the
Corpus

get_phone_probs(gramsize=1, probability=True, preserve_position=True, log_count=True)
Generate (and cache) phonotactic probabilities for segments in the Corpus.
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Parameters gramsize : integer

Size of n-gram to use for getting frequency, defaults to 1 (unigram)

probability : boolean

If True, frequency counts will be normalized by total frequency, defaults to False

preserve_position : boolean

If True, segments will in different positions in the transcription will not be collapsed,
defaults to True

log_count : boolean

If True, token frequencies will be logrithmically-transformed prior to being summed

Returns dict

Keys are segments (or sequences of segments) and values are their phonotactic proba-
bility in the Corpus

21.2.6 Corpus IO functions

21.3 Corpus binaries

binary.download_binary(name, path[, call_back]) Download a binary file of example corpora and feature matrices.
binary.load_binary(path) Unpickle a binary file
binary.save_binary(obj, path) Pickle a Corpus or FeatureMatrix object for later loading

21.3.1 download_binary

corpustools.corpus.io.binary.download_binary(name, path, call_back=None)
Download a binary file of example corpora and feature matrices.

Names of available corpora: ‘example’ and ‘iphod’

Names of available feature matrices: ‘ipa2spe’, ‘ipa2hayes’, ‘celex2spe’, ‘celex2hayes’, ‘arpabet2spe’, ‘arpa-
bet2hayes’, ‘cpa2spe’, ‘cpa2hayes’, ‘disc2spe’, ‘disc2hayes’, ‘klatt2spe’, ‘klatt2hayes’, ‘sampa2spe’, and
‘sampa2hayes’

Parameters name : str

Identifier of file to download

path : str

Full path for where to save downloaded file

call_back : callable

Function that can handle strings (text updates of progress), tuples of two integers (0,
total number of steps) and an integer for updating progress out of the total set by a tuple

Returns bool

True if file was successfully saved to the path specified, False otherwise
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21.3.2 load_binary

corpustools.corpus.io.binary.load_binary(path)
Unpickle a binary file

Parameters path : str

Full path of binary file to load

Returns Object

Object generated from the text file

21.3.3 save_binary

corpustools.corpus.io.binary.save_binary(obj, path)
Pickle a Corpus or FeatureMatrix object for later loading

Parameters obj : Corpus or FeatureMatrix

Object to save

path : str

Full path for where to save object

21.4 Loading from CSV

csv.load_corpus_csv(corpus_name, path, delimiter) Load a corpus from a column-delimited text file
csv.load_feature_matrix_csv(name, path, ...) Load a FeatureMatrix from a column-delimited text file

21.4.1 load_corpus_csv

corpustools.corpus.io.csv.load_corpus_csv(corpus_name, path, delimiter, annota-
tion_types=None, feature_system_path=None,
stop_check=None, call_back=None)

Load a corpus from a column-delimited text file

Parameters corpus_name : str

Informative identifier to refer to corpus

path : str

Full path to text file

delimiter : str

Character to use for spliting lines into columns

annotation_types : list of AnnotationType, optional

List of AnnotationType specifying how to parse text files

feature_system_path : str

Full path to pickled FeatureMatrix to use with the Corpus

stop_check : callable, optional
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Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

Returns Corpus

Corpus object generated from the text file

21.4.2 load_feature_matrix_csv

corpustools.corpus.io.csv.load_feature_matrix_csv(name, path, delim-
iter, stop_check=None,
call_back=None)

Load a FeatureMatrix from a column-delimited text file

Parameters name : str

Informative identifier to refer to feature system

path : str

Full path to text file

delimiter : str

Character to use for spliting lines into columns

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

Returns FeatureMatrix

FeatureMatrix generated from the text file

21.5 Export to CSV

csv.export_corpus_csv(corpus, path[, ...]) Save a corpus as a column-delimited text file
csv.export_feature_matrix_csv(...[, delimiter]) Save a FeatureMatrix as a column-delimited text file

21.5.1 export_corpus_csv

corpustools.corpus.io.csv.export_corpus_csv(corpus, path, delimiter=’,
‘, trans_delimiter=’.’, vari-
ant_behavior=None)

Save a corpus as a column-delimited text file

Parameters corpus : Corpus

Corpus to save to text file

path : str

Full path to write text file
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delimiter : str

Character to mark boundaries between columns. Defaults to ‘,’

trans_delimiter : str

Character to mark boundaries in transcriptions. Defaults to ‘.’

variant_behavior : str, optional

How to treat variants, ‘token’ will have a line for each variant, ‘column’ will have a
single column for all variants for a word, and the default will not include variants in the
output

21.5.2 export_feature_matrix_csv

corpustools.corpus.io.csv.export_feature_matrix_csv(feature_matrix, path, delim-
iter=’, ‘)

Save a FeatureMatrix as a column-delimited text file

Parameters feature_matrix : FeatureMatrix

FeatureMatrix to save to text file

path : str

Full path to write text file

delimiter : str

Character to mark boundaries between columns. Defaults to ‘,’

21.6 TextGrids

textgrid.inspect_discourse_textgrid
textgrid.load_discourse_textgrid
textgrid.load_directory_textgrid

21.7 Running text

text_spelling.inspect_discourse_spelling(path) Generate a list of AnnotationTypes for a specified text file for parsing
text_spelling.load_discourse_spelling(...[, ...]) Load a discourse from a text file containing running text of
text_spelling.load_directory_spelling(...[, ...]) Loads a directory of orthographic texts
text_spelling.export_discourse_spelling(...) Export an orthography discourse to a text file
text_transcription.inspect_discourse_transcription(path) Generate a list of AnnotationTypes for a specified text file for parsing
text_transcription.load_discourse_transcription(...) Load a discourse from a text file containing running transcribed text
text_transcription.load_directory_transcription(...) Loads a directory of transcribed texts.
text_transcription.export_discourse_transcription(...) Export an transcribed discourse to a text file
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21.7.1 inspect_discourse_spelling

corpustools.corpus.io.text_spelling.inspect_discourse_spelling(path, sup-
port_corpus_path=None)

Generate a list of AnnotationTypes for a specified text file for parsing it as an orthographic text

Parameters path : str

Full path to text file

support_corpus_path : str, optional

Full path to a corpus to look up transcriptions from spellings in the text

Returns list of AnnotationTypes

Autodetected AnnotationTypes for the text file

21.7.2 load_discourse_spelling

corpustools.corpus.io.text_spelling.load_discourse_spelling(corpus_name,
path, annota-
tion_types=None,
lexicon=None, sup-
port_corpus_path=None,
ignore_case=False,
stop_check=None,
call_back=None)

Load a discourse from a text file containing running text of orthography

Parameters corpus_name : str

Informative identifier to refer to corpus

path : str

Full path to text file

annotation_types : list of AnnotationType, optional

List of AnnotationType specifying how to parse text files

lexicon : Corpus, optional

Corpus to store Discourse word information

support_corpus_path : str, optional

Full path to a corpus to look up transcriptions from spellings in the text

ignore_case : bool, optional

Specify whether to ignore case when using spellings in the text to look up transcriptions

stop_check : callable, optional

Callable that returns a boolean for whether to exit before finishing full calculation

call_back : callable, optional

Function that can handle strings (text updates of progress), tuples of two integers (0,
total number of steps) and an integer for updating progress out of the total set by a tuple

Returns Discourse
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Discourse object generated from the text file

21.7.3 load_directory_spelling

corpustools.corpus.io.text_spelling.load_directory_spelling(corpus_name,
path, annota-
tion_types=None,
sup-
port_corpus_path=None,
ignore_case=False,
stop_check=None,
call_back=None)

Loads a directory of orthographic texts

Parameters corpus_name : str

Name of corpus

path : str

Path to directory of text files

annotation_types : list of AnnotationType, optional

List of AnnotationType specifying how to parse text files

support_corpus_path : str, optional

File path of corpus binary to load transcriptions from

ignore_case : bool, optional

Specifies whether lookups in the support corpus should ignore case

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

Returns SpontaneousSpeechCorpus

Corpus containing Discourses corresponding to the text files

21.7.4 export_discourse_spelling

corpustools.corpus.io.text_spelling.export_discourse_spelling(discourse,
path, sin-
gle_line=False)

Export an orthography discourse to a text file

Parameters discourse : Discourse

Discourse object to export

path : str

Path to export to

single_line : bool, optional
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Flag to enforce all text to be on a single line, defaults to False. If False, lines are 10
words long.

21.7.5 inspect_discourse_transcription

corpustools.corpus.io.text_transcription.inspect_discourse_transcription(path)
Generate a list of AnnotationTypes for a specified text file for parsing it as a transcribed text

Parameters path : str

Full path to text file

Returns list of AnnotationTypes

Autodetected AnnotationTypes for the text file

21.7.6 load_discourse_transcription

corpustools.corpus.io.text_transcription.load_discourse_transcription(corpus_name,
path,
an-
nota-
tion_types=None,
lexi-
con=None,
fea-
ture_system_path=None,
stop_check=None,
call_back=None)

Load a discourse from a text file containing running transcribed text

Parameters corpus_name : str

Informative identifier to refer to corpus

path : str

Full path to text file

annotation_types : list of AnnotationType, optional

List of AnnotationType specifying how to parse text files

lexicon : Corpus, optional

Corpus to store Discourse word information

feature_system_path : str, optional

Full path to pickled FeatureMatrix to use with the Corpus

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the loading

Returns Discourse

Discourse object generated from the text file
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21.7.7 load_directory_transcription

corpustools.corpus.io.text_transcription.load_directory_transcription(corpus_name,
path,
an-
nota-
tion_types=None,
fea-
ture_system_path=None,
stop_check=None,
call_back=None)

Loads a directory of transcribed texts.

Parameters corpus_name : str

Name of corpus

path : str

Path to directory of text files

annotation_types : list of AnnotationType, optional

List of AnnotationType specifying how to parse text files

feature_system_path : str, optional

File path of FeatureMatrix binary to specify segments

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the loading

Returns SpontaneousSpeechCorpus

Corpus containing Discourses corresponding to the text files

21.7.8 export_discourse_transcription

corpustools.corpus.io.text_transcription.export_discourse_transcription(discourse,
path,
trans_delim=’.’,
sin-
gle_line=False)

Export an transcribed discourse to a text file

Parameters discourse : Discourse

Discourse object to export

path : str

Path to export to

trans_delim : str, optional

Delimiter for segments, defaults to .

single_line : bool, optional
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Flag to enforce all text to be on a single line, defaults to False. If False, lines are 10
words long.

21.8 Interlinear gloss text

text_ilg.inspect_discourse_ilg(path[, number]) Generate a list of AnnotationTypes for a specified text file for parsing
text_ilg.load_discourse_ilg(corpus_name, ...) Load a discourse from a text file containing interlinear glosses
text_ilg.load_directory_ilg(corpus_name, ...) Loads a directory of interlinear gloss text files
text_ilg.export_discourse_ilg(discourse, path) Export a discourse to an interlinear gloss text file, with a maximal

21.8.1 inspect_discourse_ilg

corpustools.corpus.io.text_ilg.inspect_discourse_ilg(path, number=None)
Generate a list of AnnotationTypes for a specified text file for parsing it as an interlinear gloss text file

Parameters path : str

Full path to text file

number : int, optional

Number of lines per gloss, if not supplied, it is auto-detected

Returns list of AnnotationTypes

Autodetected AnnotationTypes for the text file

21.8.2 load_discourse_ilg

corpustools.corpus.io.text_ilg.load_discourse_ilg(corpus_name, path, annota-
tion_types, lexicon=None,
feature_system_path=None,
stop_check=None,
call_back=None)

Load a discourse from a text file containing interlinear glosses

Parameters corpus_name : str

Informative identifier to refer to corpus

path : str

Full path to text file

annotation_types : list of AnnotationType

List of AnnotationType specifying how to parse the glosses. Can be generated through
inspect_discourse_ilg.

lexicon : Corpus, optional

Corpus to store Discourse word information

feature_system_path : str

Full path to pickled FeatureMatrix to use with the Corpus

stop_check : callable or None
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Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the loading

Returns Discourse

Discourse object generated from the text file

21.8.3 load_directory_ilg

corpustools.corpus.io.text_ilg.load_directory_ilg(corpus_name, path, an-
notation_types, fea-
ture_system_path=None,
stop_check=None,
call_back=None)

Loads a directory of interlinear gloss text files

Parameters corpus_name : str

Name of corpus

path : str

Path to directory of text files

annotation_types : list of AnnotationType

List of AnnotationType specifying how to parse the glosses. Can be generated through
inspect_discourse_ilg.

feature_system_path : str, optional

File path of FeatureMatrix binary to specify segments

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the loading

Returns SpontaneousSpeechCorpus

Corpus containing Discourses corresponding to the text files

21.8.4 export_discourse_ilg

corpustools.corpus.io.text_ilg.export_discourse_ilg(discourse, path,
trans_delim=’.’)

Export a discourse to an interlinear gloss text file, with a maximal line size of 10 words

Parameters discourse : Discourse

Discourse object to export

path : str

Path to export to

trans_delim : str, optional

Delimiter for segments, defaults to .
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21.9 Other standards

multiple_files.inspect_discourse_multiple_files(...) Generate a list of AnnotationTypes for a specified dialect
multiple_files.load_discourse_multiple_files(...) Load a discourse from a text file containing interlinear glosses
multiple_files.load_directory_multiple_files(...) Loads a directory of corpus standard files (separated into words files

21.9.1 inspect_discourse_multiple_files

corpustools.corpus.io.multiple_files.inspect_discourse_multiple_files(word_path,
di-
alect)

Generate a list of AnnotationTypes for a specified dialect

Parameters word_path : str

Full path to text file

dialect : str

Either ‘buckeye’ or ‘timit’

Returns list of AnnotationTypes

Autodetected AnnotationTypes for the dialect

21.9.2 load_discourse_multiple_files

corpustools.corpus.io.multiple_files.load_discourse_multiple_files(corpus_name,
word_path,
phone_path,
dialect,
annota-
tion_types=None,
lexi-
con=None,
fea-
ture_system_path=None,
stop_check=None,
call_back=None)

Load a discourse from a text file containing interlinear glosses

Parameters corpus_name : str

Informative identifier to refer to corpus

word_path : str

Full path to words text file

phone_path : str

Full path to phones text file

dialect : str

One of ‘buckeye’ or ‘timit’

annotation_types : list of AnnotationType, optional
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List of AnnotationType specifying how to parse the glosses. Auto-generated based on
dialect.

lexicon : Corpus, optional

Corpus to store Discourse word information

feature_system_path : str

Full path to pickled FeatureMatrix to use with the Corpus

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the loading

Returns Discourse

Discourse object generated from the text file

21.9.3 load_directory_multiple_files

corpustools.corpus.io.multiple_files.load_directory_multiple_files(corpus_name,
path, di-
alect,
annota-
tion_types=None,
fea-
ture_system_path=None,
stop_check=None,
call_back=None)

Loads a directory of corpus standard files (separated into words files and phones files)

Parameters corpus_name : str

Name of corpus

path : str

Path to directory of text files

dialect : str

One of ‘buckeye’ or ‘timit’

annotation_types : list of AnnotationType, optional

List of AnnotationType specifying how to parse the glosses. Auto-generated based on
dialect.

feature_system_path : str, optional

File path of FeatureMatrix binary to specify segments

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the loading

Returns SpontaneousSpeechCorpus
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Corpus containing Discourses corresponding to the text files

21.9.4 Analysis functions

21.10 Frequency of alternation

freq_of_alt.calc_freq_of_alt(corpus_context, ...) Returns a double that is a measure of the frequency of

21.10.1 calc_freq_of_alt

corpustools.freqalt.freq_of_alt.calc_freq_of_alt(corpus_context, seg1,
seg2, algorithm, out-
put_filename=None, min_rel=None,
max_rel=None, phono_align=False,
min_pairs_okay=False,
from_gui=False, stop_check=None,
call_back=None)

Returns a double that is a measure of the frequency of alternation of two sounds in a given corpus

Parameters corpus_context : CorpusContext

Context manager for a corpus

seg1: char

A sound segment, e.g. ‘s’, ‘t’

seg2: char

A sound segment

algorithm: string

The string similarity algorithm

max_rel: double

Filters out all words that are higher than max_rel from a relatedness measure

min_rel: double

Filters out all words that are lower than min_rel from a relatedness measure

phono_align: boolean (1 or 0), optional

1 means ‘only count alternations that are likely phonologically aligned,’ defaults to not
force phonological alignment

min_pairs_okay: bool, optional

True means allow minimal pairs (e.g. in English, ‘s’ and ‘t’ do not alternate in minimal
pairs, so allowing minimal pairs may skew results)

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function
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Returns double

The frequency of alternation of two sounds in a given corpus

21.11 Functional load

functional_load.minpair_fl(corpus_context, ...) Calculate the functional load of the contrast between two segments as a count of minimal pairs.
functional_load.deltah_fl(corpus_context, ...) Calculate the functional load of the contrast between between two segments as the decrease in corpus entropy caused by a merger.
functional_load.relative_minpair_fl(...[, ...]) Calculate the average functional load of the contrasts between a segment and all other segments, as a count of minimal pairs.
functional_load.relative_deltah_fl(...[, ...]) Calculate the average functional load of the contrasts between a segment and all other segments, as the decrease in corpus entropy caused by a merger.

21.11.1 minpair_fl

corpustools.funcload.functional_load.minpair_fl(corpus_context, segment_pairs,
relative_count=True, distin-
guish_homophones=False, environ-
ment_filter=None, stop_check=None,
call_back=None)

Calculate the functional load of the contrast between two segments as a count of minimal pairs.

Begin by creating a representation of each transcription that has collapsed all segment pairs (subject to the
environment filter) and creating a dict with these segment-merged representations as keys, with lists of their
respective words as values. Minimal pairs are then each pair of words within the list of words with the same
segment-merged representation.

Parameters corpus_context : CorpusContext

Context manager for a corpus

segment_pairs : list of length-2 tuples of str

The pairs of segments to be conflated.

relative_count : bool, optional

If True, divide the number of minimal pairs by the total count by the total number of
words that contain either of the two segments.

distinguish_homophones : bool, optional

If False, then you’ll count sock~shock (sock=clothing) and sock~shock (sock=punch)
as just one minimal pair; but if True, you’ll overcount alternative spellings of the same
word, e.g. axel~actual and axle~actual. False is the value used by Wedel et al.

environment_filter : EnvironmentFilter

Allows the user to restrict the neutralization process to segments in particular segmental
contexts

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

Returns tuple(int or float, list)
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Tuple of: 0. if relative_count‘==False, an int of the raw number of minimal pairs; if
‘relative_count‘==True, a float of that count divided by the total number of words in
the corpus that include either ‘s1 or s2; and 1. list of minimal pairs.

21.11.2 deltah_fl

corpustools.funcload.functional_load.deltah_fl(corpus_context, segment_pairs, environ-
ment_filter=None, stop_check=None,
call_back=None)

Calculate the functional load of the contrast between between two segments as the decrease in corpus entropy
caused by a merger.

Parameters corpus_context : CorpusContext

Context manager for a corpus

segment_pairs : list of length-2 tuples of str

The pairs of segments to be conflated.

environment_filter : EnvironmentFilter

Allows the user to restrict the neutralization process to segments in particular segmental
contexts

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

Returns float

The difference between a) the entropy of the choice among non-homophonous words
in the corpus before a merger of s1 and s2 and b) the entropy of that choice after the
merger.

21.11.3 relative_minpair_fl

corpustools.funcload.functional_load.relative_minpair_fl(corpus_context,
segment, rela-
tive_count=True, distin-
guish_homophones=False,
output_filename=None,
environ-
ment_filter=None,
stop_check=None,
call_back=None)

Calculate the average functional load of the contrasts between a segment and all other segments, as a count of
minimal pairs.

Parameters corpus_context : CorpusContext

Context manager for a corpus

segment : str

The target segment.
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relative_count : bool, optional

If True, divide the number of minimal pairs by the total count by the total number of
words that contain either of the two segments.

distinguish_homophones : bool, optional

If False, then you’ll count sock~shock (sock=clothing) and sock~shock (sock=punch)
as just one minimal pair; but if True, you’ll overcount alternative spellings of the same
word, e.g. axel~actual and axle~actual. False is the value used by Wedel et al.

environment_filter : EnvironmentFilter

Allows the user to restrict the neutralization process to segments in particular segmental
contexts

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

Returns int or float

If relative_count‘==False, returns an int of the raw number of minimal pairs. If ‘rela-
tive_count‘==True, returns a float of that count divided by the total number of words in
the corpus that include either ‘s1 or s2.

21.11.4 relative_deltah_fl

corpustools.funcload.functional_load.relative_deltah_fl(corpus_context, segment,
environment_filter=None,
stop_check=None,
call_back=None)

Calculate the average functional load of the contrasts between a segment and all other segments, as the decrease
in corpus entropy caused by a merger.

Parameters corpus_context : CorpusContext

Context manager for a corpus

segment : str

The target segment.

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

Returns float

The difference between a) the entropy of the choice among non-homophonous words
in the corpus before a merger of s1 and s2 and b) the entropy of that choice after the
merger.
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21.12 Kullback-Leibler divergence

kl.KullbackLeibler(corpus_context, seg1, ...) Calculates KL distances between two Phoneme objects in some context, either the left or right-hand side.

21.12.1 KullbackLeibler

corpustools.kl.kl.KullbackLeibler(corpus_context, seg1, seg2, side, outfile=None,
stop_check=False, call_back=False)

Calculates KL distances between two Phoneme objects in some context, either the left or right-hand side. Seg-
ments with identical distributions (ie. seg1==seg2) have a KL of zero. Segments with similar distributions
therefore have low numbers, so high numbers indicate possible allophones.

Parameters corpus_context : CorpusContext

Context manager for a corpus

seg1 : str

First segment

seg2 : str

Second segment

side : str

One of ‘right’, ‘left’ or ‘both’

outfile : str

Full path to save output

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the function

21.13 Mutual information

mutual_information.pointwise_mi(...[, ...]) Calculate the mutual information for a bigram.

21.13.1 pointwise_mi

corpustools.mutualinfo.mutual_information.pointwise_mi(corpus_context, query,
halve_edges=False,
in_word=False,
stop_check=None,
call_back=None)

Calculate the mutual information for a bigram.

Parameters corpus_context : CorpusContext

Context manager for a corpus
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query : tuple

Tuple of two strings, each a segment/letter

halve_edges : bool

Flag whether to only count word boundaries once per word rather than twice, defaults
to False

in_word : bool

Flag to calculate non-local, non-ordered mutual information, defaults to False

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the function

Returns float

Mutual information of the bigram

21.14 Neighborhood density

neighborhood_density.neighborhood_density(...) Calculate the neighborhood density of a particular word in the corpus.
neighborhood_density.find_mutation_minpairs(...) Find all minimal pairs of the query word based only on segment

21.14.1 neighborhood_density

corpustools.neighdens.neighborhood_density.neighborhood_density(corpus_context,
query, algo-
rithm=’edit_distance’,
max_distance=1,
stop_check=None,
call_back=None)

Calculate the neighborhood density of a particular word in the corpus.

Parameters corpus_context : CorpusContext

Context manager for a corpus

query : Word

The word whose neighborhood density to calculate.

algorithm : str

The algorithm used to determine distance

max_distance : float, optional

Maximum edit distance from the queried word to consider a word a neighbor.

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

21.14. Neighborhood density 167



Phonological CorpusTools Documentation, Release 1.0.0

Optional function to supply progress information during the function

Returns tuple(int, set)

Tuple of the number of neighbors and the set of neighbor Words.

21.14.2 find_mutation_minpairs

corpustools.neighdens.neighborhood_density.find_mutation_minpairs(corpus_context,
query,
stop_check=None,
call_back=None)

Find all minimal pairs of the query word based only on segment mutations (not deletions/insertions)

Parameters corpus_context : CorpusContext

Context manager for a corpus

query : Word

The word whose minimal pairs to find

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the function

Returns list

The found minimal pairs for the queried word

21.15 Phonotactic probability

phonotactic_probability.phonotactic_probability_vitevitch(...) Calculate the phonotactic_probability of a particular word using

21.15.1 phonotactic_probability_vitevitch

corpustools.phonoprob.phonotactic_probability.phonotactic_probability_vitevitch(corpus_context,
query,
prob-
a-
bil-
ity_type=’unigram’,
stop_check=None,
call_back=None)

Calculate the phonotactic_probability of a particular word using the Vitevitch & Luce algorithm

Parameters corpus_context : CorpusContext

Context manager for a corpus

query : Word

The word whose neighborhood density to calculate.

probability_type : str
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Either ‘unigram’ or ‘bigram’ probability

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the function

Returns float

Phonotactic probability of the word

21.16 Predictability of distribution

pred_of_dist.calc_prod_all_envs(...[, ...]) Main function for calculating predictability of distribution for two segments over a corpus, regardless of environment.
pred_of_dist.calc_prod(corpus_context, envs) Main function for calculating predictability of distribution for two segments over specified environments in a corpus.

21.16.1 calc_prod_all_envs

corpustools.prod.pred_of_dist.calc_prod_all_envs(corpus_context, seg1, seg2,
all_info=False, stop_check=None,
call_back=None)

Main function for calculating predictability of distribution for two segments over a corpus, regardless of envi-
ronment.

Parameters corpus_context : CorpusContext

Context manager for a corpus

seg1 : str

The first segment

seg2 : str

The second segment

all_info : bool

If true, all the intermediate numbers for calculating predictability of distribution will be
returned. If false, only the final entropy will be returned. Defaults to False.

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

Returns float or list

A list of [entropy, frequency of environment, frequency of seg1, frequency of seg2] if
all_info is True, or just entropy if all_info is False.
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21.16.2 calc_prod

corpustools.prod.pred_of_dist.calc_prod(corpus_context, envs, strict=True, all_info=False,
stop_check=None, call_back=None)

Main function for calculating predictability of distribution for two segments over specified environments in a
corpus.

Parameters corpus_context : CorpusContext

Context manager for a corpus

envs : list of EnvironmentFilter

List of EnvironmentFilter objects that specify environments

strict : bool

If true, exceptions will be raised for non-exhausive environments and non-unique envi-
ronments. If false, only warnings will be shown. Defaults to True.

all_info : bool

If true, all the intermediate numbers for calculating predictability of distribution will be
returned. If false, only the final entropy will be returned. Defaults to False.

stop_check : callable, optional

Optional function to check whether to gracefully terminate early

call_back : callable, optional

Optional function to supply progress information during the function

Returns dict

Keys are the environments specified and values are either a list of [entropy, frequency of
environment, frequency of seg1, frequency of seg2] if all_info is True, or just entropy if
all_info is False.

21.17 Symbol similarity

string_similarity.string_similarity(...) This function computes similarity of pairs of words across a corpus.

21.17.1 string_similarity

corpustools.symbolsim.string_similarity.string_similarity(corpus_context, query,
algorithm, **kwargs)

This function computes similarity of pairs of words across a corpus.

Parameters corpus_context : CorpusContext

Context manager for a corpus

query: string, tuple, or list of tuples

If this is a string, every word in the corpus will be compared to it, if this is a tuple with
two strings, those words will be compared to each other, if this is a list of tuples, each
tuple’s strings will be compared to each other.

algorithm: string
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The algorithm of string similarity to be used, currently supports ‘khorsi’,
‘edit_distance’, and ‘phono_edit_distance’

max_rel: double

Filters out all words that are higher than max_rel from a relatedness measure

min_rel: double

Filters out all words that are lower than min_rel from a relatedness measure

stop_check : callable or None

Optional function to check whether to gracefully terminate early

call_back : callable or None

Optional function to supply progress information during the function

Returns list of tuples:

The first two elements of the tuple are the words that were compared and the final
element is their relatedness score

edit_distance.edit_distance(word1, word2, ...) Returns the Levenshtein edit distance between a string from two words word1 and word2, code drawn from http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python.

21.17.2 edit_distance

corpustools.symbolsim.edit_distance.edit_distance(word1, word2, sequence_type,
max_distance=None)

Returns the Levenshtein edit distance between a string from two words word1 and word2, code drawn from
http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python. The number is
the number of operations needed to transform word1 into word2, three operations are possible: insert, delete,
substitute

Parameters word1: Word

the first word object to be compared

word2: Word

the second word object to be compared

string_type : string

String specifying what attribute of the Word objects to compare, can be “spelling”,
“transcription” or a tier

Returns int:

the edit distance between two words

khorsi.khorsi(word1, word2, freq_base, ...) Calculate the string similarity of two words given a set of

21.17.3 khorsi

corpustools.symbolsim.khorsi.khorsi(word1, word2, freq_base, sequence_type,
max_distance=None)

Calculate the string similarity of two words given a set of characters and their frequencies in a corpus based on
Khorsi (2012)

Parameters word1: Word
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First Word object to compare

word2: Word

Second Word object to compare

freq_base: dictionary

a dictionary where each segment is mapped to its frequency of occurrence in a corpus

sequence_type: string

The type of segments to be used (‘spelling’ = Roman letters, ‘transcription’ = IPA sym-
bols)

Returns float

A number representing the relatedness of two words based on Khorsi (2012)

phono_edit_distance.phono_edit_distance(...) Returns an analogue to Levenshtein edit distance but uses

21.17.4 phono_edit_distance

corpustools.symbolsim.phono_edit_distance.phono_edit_distance(word1, word2, se-
quence_type, fea-
tures)

Returns an analogue to Levenshtein edit distance but uses phonological features instead of characters

Parameters word1: Word

Word object containing transcription tiers which will be compared to another word con-
taining transcription tiers

word2: Word

The other word containing transcription tiers to which word1 will be compared

sequence_type: string

Name of the sequence type (transcription or a tier) to use for comparisons

features: FeatureMatrix

FeatureMatrix that contains all the segments in both transcriptions to be compared

Returns float

the phonological edit distance between two words
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CHAPTER 22

Release Notes

22.1 CorpusTools 1.0.1 Release Notes

This is primarily a bugfix release in the 1.0.x series

22.1.1 New features

• Implemented the ability to check for updates to PCT from the executable versions through the help menu of the
main window

22.1.2 Functional load

• Fixed a bug in functional load calculations that undercounted the number of minimal pairs found if homophones
were present

22.1.3 Corpora

• Numeric filters for subsetting corpora should be working as intended now

22.1.4 TextGrid support

• Improved importing of TextGrids by allowing users to specify what the labels for orthography and transcription
tiers are

• Fixed a bug in TextGrid loading where the last segment from the previous word’s transcription was duplicated
in the following word’s transcription

• Fixed a bug where loading TextGrids resulted in an empty segment inventory

22.1.5 GUI

• Improved error messages

• Fixed a bug that blocked subsetting a corpus

• Fix for running text window not getting cleared when switching corpora
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• Segments should now correctly default to a grid layout when the inventory is displayed and the feature system
is missing some Hayes- or SPE-like features

22.2 CorpusTools 1.1.0 Release Notes

This is a major version release for Phonological CorpusTools.

22.2.1 Importing corpora

• Importing corpora functionality in the GUI received a large overhaul

• All types of corpora are imported through a single dialog

• PCT should autodetect many settings based on selected files or directories

• Autodetected settings can be edited and refined by the user

• Basic logging support saves parsing details entered by the user (i.e., multicharacter segments)

• Numbers in transcriptions can be parsed as stress, tone, or as a normal character (note that tone and stress are
currently not supported in functions or phonological search)

22.2.2 Pronunciation variants

• All algorithms that analyze segments support four strategies for dealing with pronunciation variants: canonical
forms, most frequent variants, separated tokens as types, and tokens weighted by their relative frequenies

• Algorithms that analyze words support two strategies for pronunciation variants: canonical forms and most
frequent variants

• Exporting corpora can now export pronunciation variants (and their frequencies)

22.2.3 Functional load

• Added support for finding the average functional load of single segments

22.2.4 Phonotactic probability

• Fixed an issue where calculating biphone probabilities on single segment words would cause errors; now assigns
a probability of 0 to those words

22.2.5 Kullback-Leibler divergence

• Added options to bring KL divergence in line with the other functions

• Added command line script for calculating KL divergence
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22.2.6 GUI

• Added a dialog to the “View/change feature system” dialog to edit the categorization of segments into a coherent
segment chart via features

• Features can be used as input to the analysis functions, i.e. functional load of voice in the corpus (segements
that are +voice compared to segments that are -voice)

Segment selection

• Segment selection has been redone

• Segments can be selected via the inventory

• Features can be typed into the filter field, which will highlight segments that will be included with that feature
selection

• Once a feature specification has been entered, that segment set can be locked in

Environments

• Environment creation has been revamped

• Users can select a set of center segments

• Right hand and left hand can be added, with multiple sets of segments on each side

Known issues

• Help pages for the Mac binary require internet connection to view, due to issues including .html files in the .app
binary

22.2. CorpusTools 1.1.0 Release Notes 175
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Indices and tables

• genindex

• modindex

• search
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