

 Navigation

 	
 index

 	
 next |

 	Phonological CorpusTools 1.0.0 documentation

Welcome to Phonological CorpusTools’s documentation!

Contents:

	Introduction
	General Background

	Code and interfaces

	Downloading and installing
	Windows Executable

	Mac Executable

	Linux / Fallback instructions

	Loading in corpora
	Using a built-in corpus

	Using a custom corpus

	Creating a corpus from running text

	Creating a spontaneous speech corpus

	Creating a corpus file on the command line

	Summary information about a corpus

	Subsetting a corpus

	Saving and exporting a corpus or feature file

	Setting preferences and options

	Working with transcriptions and feature systems
	Required format of a feature file

	Downloadable transcription and feature choices

	Using a custom feature system

	Applying / editing feature systems

	Creating new tiers in the corpus

	Adding, editing, and removing words, columns, and tiers

	Phonological Search

	Phonotactic Probability
	About the function

	Method of calculation

	Implementing the phonotactic probability function in the GUI

	Functional Load
	About the function

	Method of calculation

	Implementing the functional load function in the GUI

	Implementing the functional load function on the command line

	Predictability of Distribution
	About the function

	Method of calculation

	Implementing the predictability of distribution function in the GUI

	Kullback-Leibler Divergence
	About the function

	Method of calculation

	Implementing the Kullback-Leibler Divergence function in the GUI

	String similarity and neighbourhood density
	About the functions

	Method of calculation: String similarity

	Implementing the string similarity function in the GUI

	String similarity and neighbourhood density
	About the functions

	Method of calculation: Neighbourhood density

	Implementing the neighbourhood density function in the GUI

	Implementing the neighbourhood density function on the command line

	Frequency of alternation
	About the function

	Method of calculation

	Implementing the frequency of alternation function in the GUI

	Mutual Information
	About the function

	Method of calculation

	Implementing the mutual information function in the GUI

	Implementing the mutual information function on the command line

	Acoustic Similarity
	About the function

	Method of calculation

	Implementing the acoustic similarity function in the GUI

	Citing PCT and the algorithms used therein

	References

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Introduction

General Background

Phonological CorpusTools (PCT) is a freely available open-source tool
for doing phonological analysis on transcribed corpora.
For the latest information, please refer to the PCT website [http://kchall.github.io/CorpusTools/]. PCT is intended to be an
analysis aid for researchers who are specifically interested in
investigating the relationships that may hold between individual
sounds in a language. There is an ever-increasing interest in
exploring the roles of frequency and usage in understanding
phonological phenomena (e.g., [Bybee2001], [Ernestus2011], [Frisch2011]),
but many corpora and existing corpus-analysis software tools are focused
on dialogue- and sentence-level analysis, and/or the computational skills
needed to efficiently handle large corpora can be daunting to learn.

PCT is designed with the phonologist in mind and has an easy-to-use
graphical user interface that requires no programming knowledge, though
it can also be used with a command-line interface,1 and all of the original
code is freely available for those who would like access to the source.
It specifically includes the following capabilities:

	Summary descriptions of a corpus, including type and token frequency of
individual segments in user-defined environments;

	Calculation of the phonotactic probability of a word, given the other
words that exist in the corpus (cf. [Vitevitch2004]);

	Calculation of functional load of individual pairs of sounds,
defined at either the segment or feature level (cf. [Hockett1966];
[Surendran2003]; [Wedel2013]);

	Calculation of the extent to which any pair of sounds is predictably
distributed given a set of environments that they can occur in, as a
measure of phonological contrastiveness (cf. [Hall2009], [Hall2012]; [Hall2013a]);

	Calculation of the Kullback-Leibler divergence between the distributions
of two sounds, again as a measure of phonological contrastiveness
(cf. [Peperkamp2006]);

	Calculation of the extent to which pairs of words are similar to each
other using either orthographic or phonetic transcription,
and calculation of neighbourhood density (cf. [Frisch2004], [Khorsi2012];
[Greenberg1964]; [Luce1998]; [Yao2011]);

	Calculation of the frequency with which two sounds alternate with each other,
given a measure of morphological relatedness (cf. [Silverman 2006]_,
[Johnson2010], [Lu2012]);

	Calculation of the mutual information between pairs of segments in the corpus
(cf. [Brent1999]; [Goldsmith2012]); and

	Calculation of the acoustic similarity between sounds or words,
derived from sound files, based on alignment of MFCCs (e.g., [Mielke2012])
or of logarithmically spaced amplitude envelopes (cf. [Lewandowski2012]).

The software can make use of pre-existing freely available corpora
(e.g., the IPHOD corpus; [IPHOD]), which are included with the
system, or a user may upload his or her own corpus in either of two formats.
First, lexical lists with transcription and token frequency information can be
directly uploaded; such a list is what is deemed a “corpus” by PCT. Second,
raw running text (orthographically and/or phonetically transcribed) can be
uploaded and turned into lexical lists in columnar format (corpora) for
subsequent analysis. Raw sound files accompanied by Praat TextGrids
[PRAAT] may also be uploaded for analyses of acoustic
similarity. Orthographic corpora can have their transcriptions “looked up”
in a pre-existing transcribed corpus of the same language. Limited support
is currently also available for spontaneous speech corpora, where, for example,
a user can create a corpus from TextGrids and include information about ngram
word combinations.

Phonological analysis can be done using built-in feature charts based on
Chomsky & Halle [SPE] or Hayes [Hayes2009], or a user may create his or her
own specifications by either modifying these charts or uploading a new chart.
Feature specifications can be used to pull out separate “tiers” of segments for
analysis (e.g., consonants vs. vowels, all nasal elements, tonal contours, etc.).
PCT comes with IPA transcription installed, with characters mapped to the two feature
systems mentioned above. Again, users may create their own transcription-to-feature
mappings by modifying the existing ones or uploading a new transcription-to-feature
mapping file, and several alternative transcription-to-feature mapping files are
available for download.

Analysis can be done using type or token frequency, if token frequency is
available in the corpus. All analyses are presented both on screen and
saved to plain .txt files in user-specfied locations.

The following sections walk through the specifics of downloading, installing,
and using the various components of Phonological CorpusTools.
We will do our best to keep the software up to date and to answer any questions
you might have about it; questions, comments, and suggestions should be sent to
Kathleen Currie Hall.

Version 1.0 differs from the original release version (0.15, July 2014)
primarily in its user interface; we switched the GUI from TK to QT and
tried to reorganize the utility menus to be somewhat more intuitive.
For example, the original release version had all segment inventory views
in alphabetical order; segments are now arranged as closely as possible to
standard IPA chart layouts (based on their featural interpretations).
Additionally, we have added greater search and edit functions as well as
some additional analysis tools (phonotactic probability, mutual information,
neighbourhood density), and a greater ability to work with running text /
spontaneous speech corpora.

Code and interfaces

PCT is written in Python 3.4, and users are welcome to add on other
functionality as needed. The software works on any platform that supports
Python (Windows, Mac, Linux). All code is available on its SourceForge page [http://sourceforge.net/projects/phonologicalcorpustools]; the details for
getting access are given in Downloading and installing. The GitHub repository [https://github.com/kchall/CorpusTools/] for PCT is also
public and open source.

There is both a graphical user interface (GUI) and a command-line interface
for PCT. In the following sections, we generally discuss interface-independent
aspects of some functionality first, and then detail how to implement it in
both the GUI and the command line. All functions are available in the GUI;
many, but not all, are currently available in the command line due to
complications in entering in phonological transcriptions that match a
given corpus in a command-line interface.

The command-line interface is accessed using command line scripts that are
installed on your machine along with the core PCT GUI.

NOTE: If you did not install PCT on your computer but are instead running
the GUI through a binary file (executable), then the command line scripts
are not installed on your computer either. In order to run them, you will
need to download the PCT source code and then find the scripts within the
command_line subdirectory. These can then be run as scripts in Python 3.

The procedure for running command-line analysis scripts is essentially the
same for any analysis. First, open a Terminal window (on Mac OS X or Linux)
or a CygWin window (on Windows, can be downloaded here [https://www.cygwin.com/]).
Using the “cd” command, navigate to the directory containing your corpus file.
If the analysis you want to perform requires any additional input files, then
they must also be in this directory. (Instead of running the script from the
relevant file directory, you may also run scripts from any working directory as
long as you specify the full path to any files.) You then type the analysis
command into the Terminal and press enter/return to run the analysis. The first
(positional) argument after the name of the analysis script is always the name
of the corpus file.

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Downloading and installing

PCT is currently available in beta form for Mac, PC, and Linux machines.
It can be downloaded from SourceForge [http://sourceforge.net/projects/phonologicalcorpustools/]
using the following steps. Note that there are several dependencies that are
pre-requisites before PCT can function properly. For Mac and Windows machines,
we have created executable files that bundle most of the dependencies and the
PCT software itself into a single package. Using these is the easiest /
fastest way to get PCT up and running on your machine.

	Go to the PCT SourceForge page [http://sourceforge.net/projects/phonologicalcorpustools/].

	Click on the “Files” tab.

	Click on the link with the highest number (= most recent version).
As of February 2015, that is 1.0.

Windows Executable

	NOTE: This method requires that you are running a 64-bit version of windows.
You can check this in Control Panel -> System and Security -> System.

	Click on “win64.”

	Download the file called “corpustools-1.0.0-amd64.msi” (or similar,
for a more recent version), by clicking or right-clicking on the link.
This is an installer program.

	Run the downloaded installer program by double-clicking on it, wherever
it has been saved locally.

	PCT should now be available from your “Start” menu under “Programs.”

	If you run into trouble, try the “Fallback” instructions in below.

Mac Executable

	Click on “macosx.”

	Download the file called “pct.zip” by clicking or ctrl-clicking on
the link. This is a zipped file containing the PCT application.

	Unzip the downloaded file from its local location (double-clicking
it should automatically open your local software for unzipping files,
e.g., StuffIt Expander or Archive Utility).

	Unzipping the file will give you access to the file “pct.app.” Double
click on this file to start PCT. You can drag the application to
your toolbar like any other application.

	If you run into trouble, try the “Fallback” instructions in below.

Linux / Fallback instructions

	Dependencies: You’ll first need to make sure all of the following
are installed. The third and fourth ones (NumPy and SciPy) are
needed only for the Acoustic Similarity functionality to work.

	Python 3.3 or higher [https://www.python.org/downloads/release/python-341/]

	NumPy [http://www.numpy.org/]

	SciPy [http://www.scipy.org/]

	(NB: If you are on Windows and can’t successfully use the acoustic
similarity module after installing NumPy and SciPy from the above sources,
you may want to try installing them from precompiled binaries [http://www.lfd.uci.edu/~gohlke/pythonlibs/].)

	Get the source code for PCT. Click on either the .zip or the .gz file
on the PCT SourceForge page [http://sourceforge.net/projects/phonologicalcorpustools/],
to download the zipped or tarball version of the code, depending
on your preference.

	After expanding the file, you will find a file called setup.py
in the top level directory. Run it in one of the following ways:

	Double-click it. If this doesn’t work, access the file properties
and ensure that you have permission to run the file; if not,
give them to yourself. In Windows, this may require that you
open the file in Administrator mode (also accessible through
file properties). If your computer opens the .py file in a text
editor rather than running it, you can access the file properties
to set Python 3.x as the default program to use with run .py files.
If the file is opened in IDLE (a Python editor), you can use the
“Run” button in the IDLE interface to run the script instead.

	Open a terminal window and run the file. In Linux or Mac OS X,
there should be a Terminal application pre-installed. In Windows,
you may need to install Cygwin [https://www.cygwin.com/]. Once
the terminal window is open, nagivate to the top level CorpusTools
folder—the one that has setup.py in it. (Use the command ‘cd’
to navigate your filesystem; Google “terminal change directory” for
further instructions.) Once in the correct directory, run this
command: python3 setup.py install. You may lack proper
permissions to run this file, in which case on Linux or Mac OS X
you can instead run sudo python3 setup.py install. If Python 3.x
is the only version of Python on your system, it may be possible or
necessary to use the command python rather than python3.

	Phonological CorpusTools should now be installed! Run it from a
terminal window using the command pct. You can also open a
“Run” dialogue and use the command pct there. In Windows, the
Run tool is usually found in All Programs -> Accessories.

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Loading in corpora

In order to use the analysis functions in PCT, you’ll first need to open
up a corpus. There are four possible ways of doing this: first, you can
use a built-in corpus (a small, entirely invented sample corpus or the
Irvine Phonotactic Online Dictionary of English [IPHOD];
second, you can use a corpus that is independently stored on your local
computer; third, you can create a new corpus from text; and fourth, you can
import a spontaneous speech corpus (e.g. from Praat TextGrids or from your
own local copy of a corpus such as the Buckeye corpus [BUCKEYE]
or TIMIT corpus [TIMIT]. Each of these will be discussed
in turn. The basic structure of a corpus, however, is a list of words
with other possible information about each: e.g., its transcription,
its frequency of occurrence, its lexical category, its syllable structure,
etc. These are in columnar format; e.g., loaded from a CSV or
tab-delimited text file.

Using a built-in corpus

To use a built-in corpus, simply go to the “Corpus” menu and select
“Load corpus...” from the list, which will open the “Load corpus” dialogue box.

The first time you want to use a built-in corpus, you’ll need to download it
(from a Dropbox link accessed by PCT internally); you must therefore be
connected to the internet to complete this step. To do so, click on
“Download example corpora” from the right-hand menu. This will allow
you to download either the Example corpus and/or the IPHOD corpus
[IPHOD]. Note that the version of the IPHOD corpus that is
contained here has been altered from the freely downloadable version [http://www.iphod.com/], in that it (1) does not have the derived columns and
(2) has been re-formatted as a .corpus file for easy reading by PCT.
It also contains only the following information: word, transcription,
and token frequency (from the SUBTLEX corpus [SUBTLEX]).
Please note that if you use the IPHOD corpus, you should use the following
citation (see more on citing corpora and functions of PCT in Citing PCT and the algorithms used therein):

Vaden, K. I., Halpin, H. R., Hickok, G. S. (2009). Irvine Phonotactic Online
Dictionary, Version 2.0. [Data file]. Available from http://www.iphod.com/.

After the corpus has been downloaded, it appears in the lefthand side of
the “Load Corpus” dialogue box. Simply select the corpus and click on
“Load selected corpus” at the bottom of the dialogue box. Once these
corpora have been downloaded once, you don’t have to do so again; they
will be saved automatically to your local system unless and until you
delete them. On subsequent loadings of the PCT software, you will still
see these corpora listed in the lefthand side of the “Load Corpus” dialogue
box, as in the following diagram:

[image: _images/loadcorpus.png]
The example corpus and the included version of the IPHOD corpus include
phonetic transcriptions in IPA, and are by default interpreted either
using the feature system of [Mielke2012], which in turn is based on
SPE features [SPE] [this is the default for the example corpus], or using
the feature system suggested by [Hayes2009] [this is the default
for the IPHOD corpus]. These systems are fully functional for doing subsequent
analyses. Note, however, that this is a built-in functionality of these
particular corpora, and does not allow you to use SPE or Hayes features
with other corpora. To use SPE features with other corpora, or to change
the feature system associated with a built-in corpus, you’ll need to
download the actual feature files, as described in
Working with transcriptions and feature systems. Features can be used
for defining classes of sounds (e.g., creating separate tiers for
different types of segments) and for defining environments (e.g., the
environments in which segments might occur, for use in calculating their
predictability of distribution).

The corpus may take several seconds to load, but will eventually appear;
the following is the example corpus:

[image: _images/loadexample.png]
Note that the name of the corpus and the current feature system are shown
at the bottom right-hand corner of the screen for easy reference. Summary information about a corpus
gives more detail on how to find out summary information about your
corpus. Typing a word or part-word in the “search” box takes you to each
successive occurrence of that word in the corpus (hit “return” once to see
the first instance; hit “return” again to see the second, etc.). Note that the
“search” box searches only the “Spelling” column of the corpus. To do a
phonological search, please use the “Phonological search” function under
the “Corpus” menu (see detailed discussion in Phonological Search).

Using a custom corpus

It is also possible to use a custom corpus, i.e., any corpus that is in
the appropriate format (see Required format of corpus) and stored independently on your
computer. Before doing so, it may be helpful to first load the appropriate
feature system into PCT, so that the transcriptions in your corpus can be
interpreted; detailed instructions for doing this are given in Working with transcriptions and feature systems. It is also
possible to load the feature system after you’ve loaded the corpus.

To use a custom corpus, click on “Corpus” / “Load corpus...” and then
choose “Load corpus from pre-formatted text file.” Then, enter the path
for the corpus or select it using “Choose file...” and navigating to it
from a system dialogue box. Enter a name for the corpus and indicate what
the delimiter type is; the default is a comma (,); enter t
if the file is tab-delimited. Any symbol can be used; PCT will simply break
elements at that symbol, so whatever symbol is used should be used only to
delimit columns within the corpus. Finally, if there is a column in the corpus
that shows phonetic transcription, choose which feature system you would like
to use. As noted above, in order for there to be feature systems to choose from,
you must first have loaded them into PCT (Working with transcriptions and feature systems).

Clicking “OK” in the “Load new corpus” dialogue box returns you to the
“Load corpus” dialogue box, and you will see that the new corpus has been
added to your list of available corpora. Select this new corpus and choose
“Load selected corpus” to open it in PCT.

Required format of corpus

In order to use your own corpus, it must have certain properties.
First, it should be some plain text file (e.g., .txt, .csv); it cannot,
for example, be a .doc or .pdf file. The file should be set up in columns
(e.g., imported from a spreadsheet) and be delimited with some uniform character
(tab, comma, backslash, etc.). The names of most columns of information
can be anything you like, but the column representing common spelling of
the word should be called “spelling”; that with transcription should be
called “transcription”; and that with token frequency should be called
“frequency.” All algorithms for doing corpus analysis will assume these
column names. If, for example, you were using a corpus that had different
frequency columns for total frequency vs. the frequency of occurrence of
the word in its lowercase form (cf. the SUBTLEX corpus), then whichever
column is to be used for token frequency calculations should simply be
labelled “frequency.”

Creating a corpus from running text

It is also possible to have PCT create a corpus for you from running text,
either in orthographic or transcribed form. If the text is orthographic,
of course, then segmental / phonological analysis won’t be possible, but
if the text is itself transcribed, then all subsequent analysis functions
are available.1 As with pre-existing corpora, it may be helpful to first
load the relevant feature system into PCT, so that the transcriptions in
your text can be interpreted; detailed instructions for doing this are given
in Working with transcriptions and feature systems (note that the corpus can be loaded in without featural interpretation,
and features added later).

To create a corpus from text, click on “Corpus” / “Load corpus...” and
then select either “Create corpus from running text (orthography)” or
“Create corpus from running text (transcription).”

	File selection: Select the name of the plain .txt file by entering the
path directly or choosing the file using a system dialogue box,
by clicking on “Choose file....”

	Name of corpus: Indicate what the name of the corpus should be; PCT
will default to the name of the original .txt file.

	Word delimiter: Enter the character used to delimit words in the
corpus (e.g., a space).

	Punctuation: If there is punctuation in the text, indicate which
elements should be ignored. Ignoring punctuation allows PCT to
compile an accurate count of unique words; for example, the words
“example” and “example,” should be treated as two tokens of the same
word, ignoring the comma at the end of the second one. Punctuation
can be included, however; this might be desirable in a case where a
punctuation symbol is being used within the transcription system
(e.g., [!] used for a retroflex click).

	Corpus for transcriptions: If the corpus is an orthographic one, but
you have a separate corpus that includes both orthographic and trancribed
representations of the words, you can have PCT automatically look up all
of the transcribed words in the separate corpus (e.g., you’re uploading a
new transcribed corpus of English, but want to look up the transcriptions
in IPHOD). Select the other corpus from the dropdown menu; if you haven’t
loaded the corpus into PCT already, this option is not available. Indicate
using the check box whether case (capitalization) should be ignored (e.g.,
if your corpus contains the name “Bud,” PCT will look for an exact
match, “Bud,” unless case is ignored, in which case, the common noun
“bud” will be accepted as a pronunciation source).

	Transcription and feature selection: If the corpus is a transcribed one,
you can select the transcription and featural system, if these systems
have already been loaded into PCT (see also discussion in Working with transcriptions and feature systems). You can
also indicate what the delimiter is for units of transcription (if
there is such a delimiter). See the note below for details.

	A note about complex transcriptions: There is no way for PCT to know
automatically when a single sound is represented by a sequence of
multiple characters – e.g., that the digraphs [aɪ], [th], [xw], [p’],
[tʃ], and [iː] are intended to represent single sounds rather than
sequences of two sounds. There are currently three possible ways of
ensuring that characters are interpreted correctly:
	One-to-one transcriptions: The first way is to use a transcription
system with a one-to-one correspondence between sounds and symbols,
such as DISC. If you need to create a novel transcription system in
order to accomplish this (e.g., using [A] to represent [aɪ] and [2]
to represent [th], etc.), you may certainly do so; it is then necessary
to create a novel feature file so that PCT can interpret your symbols
using known features. See detailed instructions on how to do this in
Downloadable transcription and feature choices. The word tide in American English might then be transcribed as
[2Ad]. This is a relatively easy solution to implement by using
find-and-replace in a text editing software, though it does result
in less easily human-readable transcriptions.

	Delimited transcriptions: The second way is to use a standard
transcription system, such as IPA, but to delimit every unitary
sound with a consistent mark that is not otherwise used in the
transcription system (e.g., a period). Thus the word tide in
American English might be transcribed in IPA as [.th.aɪ.d.], with
periods around every sound that is to be treated as a single unit.
When creating the corpus, PCT will give you the option of specifying
what the character is. PCT will then read in all elements between
delimiting characters as members of a single “segment” object, which
can be looked up in a standard feature file (either an included one
or a user-defined one; see Using a custom feature system). This solution makes it easy to
read transcribed words, but can be more labour-intensive to implement
without knowledge of more sophisticated searching options (e.g.,
using regular expressions or other text manipulation coding) to
automatically insert delimiters in the appropriate places given a
list of complex segments. A first pass can be done using, e.g.,
commands to find “aɪ” and replace it with “.aɪ.” – but delimiters
will also have to be added between the remaining single characters,
without interrupting the digraphs.

	Constructed digraphs: The third option is to tell PCT what the set of
digraphs is in your corpus manually, and then to have PCT automatically
identify these when it creates the corpus. In the “Create corpus from
running text (transcription)” dialogue box, there is an option to
“Construct a digraph.” Once you have entered the path name of the
file you are creating the corpus from, PCT will scan it for single
characters and present these to you as options for constructing digraphs
from. For example, in the following box, all of the single characters
in a Gitksan text file are presented, and can be selected sequentially
to create the appropriate digraphs. This method is somewhat more
labour-intensive in terms of knowing ahead of time what all the
digraphs are and being able to list them, but ensures that all
such occurrences are found in the text file. Note, however, that
if there’s a distinction to be made between a sequence of characters
and a digraph (e.g., [tʃ] as a sequence in great ship vs. as an
affricate in grey chip), this method will be unable to make that
distinction; all instances will be treated as digraphs.

[image: _images/digraph.png]

	Create corpus: Once the options have been selected, click on
“Create corpus.” The columns created are: individual lexical items
(words), their raw token frequency in the corpus, and their relative
token frequency (raw token frequency / total tokens in the corpus).

	Use the corpus: Once the corpus has been created, it also now appears
in your list of corpora in the “Load corpus” dialogue box. Simply
select it and choose “Load selected corpus” to open it for use in PCT.

	Save the corpus: The corpus itself will automatically be saved for use
on subsequent re-openings of PCT, without needing to be created again.
It can be exported as a .txt file and saved to a location of your choosing,
however, for use in spreadsheets or with other software. Once the corpus
has been created and loaded, simply go to “Corpus” / “Export corpus as
text file...” to save it using a system dialogue box.

The following shows an example of a transcribed Gitksan story transformed
into a (small!) corpus (with grateful acknowledgement to Barbara Sennott
and the UBC Gitksan language research group, headed by Lisa Matthewson &
Henry Davis, for granting permission to use this text):

	The original transcribed story:

[image: _images/gitksanoriginal.png]

	The transcription delimited with periods to show unitary characters:

[image: _images/gitksandelimited.png]
3. The dialogue box for creating the corpus from text. Note that hyphens
and equal signs, which delimit morphological boundaries in the original,
have been ignored during the read-in. A space is entered into the word
delimiter box (not visible here). The period is selected as the transcription
delimiter. A feature system called gitksan2hayes_delimited, which maps the
delimited transcription system used in this example to the features given
in [Hayes2009], has already been loaded into PCT (see Using a custom feature system), and so is selected here.

[image: _images/corpustranscribed.png]
Alternatively, the same corpus could be read in without being hand-delimited,
by constructing digraphs within the load corpus dialogue box, as follows:

[image: _images/corpustranscribed_digraphs.png]

	The resulting corpus, ready for subsequent analysis:

[image: _images/gitksanloaded.png]
The corpus appears on the left, in the familiar columnar format. The
original text of the corpus appears at the right. Right-clicking on
a word in the corpus list gives you the option to “Find all tokens”
in the running text; these words will be highlighted. Similarly,
right-clicking a word in the running text gives you the option to
“Look up word,” which will highlight the word’s entry in the corpus list.

Creating a spontaneous speech corpus

Currently, only limited functionality is available for spontaneous speech
corpora, but this is a top priority for our next version. We provide an
interface for importing the TIMIT corpus
[TIMIT] or Buckeye corpus [BUCKEYE], if you have independently
downloaded their corpus files. We currently provide preliminary
capabilities to create a corpus by reading in the text from a set of Praat TextGrids.

Working with your own TextGrids

Textgrids are automatically inspected for two kinds of tiers, words and
phones. Word tiers are ones that have some variation of “word” in them,
either plural or singular, and with any case (i.e. “Word,” “word,” and
“WORD” would all be detected). Phone tiers are ones that have a variant
of “phone,” “segment,” “transcription,” or “seg” in them. All Point Tiers
are ignored. All other interval tiers are included as word token attributes
(e.g., if there’s a tier called “Speech style” and an interval named
“casual” extends around the word token, the word token will have an
attribute for “Speech style” with the value “casual”). If there are
multiple speakers in a text gird, PCT expects word and phone tiers for
each speaker, such as “Speaker 1 – word” and “Speaker 2 - word.”

To create a spontaneous speech corpus from TextGrids, first ensure that
your TextGrids are all located in a single directory and have the above
properties. Click on “File” / “Load corpus...” / “Import spontaneous
speech corpus.” Select the directory where your TextGrids are located,
and choose “TextGrid” as the Corpus file set up option.

Here is an example of creating a corpus based on three .TextGrid files
from the Corpus of Spontaneous Japanese [CSJ].

[image: _images/importspontaneous.png]
Once the TextGrids have been processed, they appear in a window such as
the following. The regular corpus view is in the centre, with frequency
counts aggregated over the entire set of speakers / TextGrids. Note that
the transcription column may be blank for many words; this is because in
spontaneous speech, the citation / spelled words often have multiple
different transcribed forms in the corpus itself. To see these various
transcriptions, right-click on any word in the corpus and select “List
pronunciation variants.” A new dialogue box will pop up that shows the
individual pronunciation variants that occur in the corpus for that word,
along with their token frequencies.

[image: _images/pronunciationvariant.png]
In this example, each TextGrid is interpreted as belonging to a different
speaker, and these individual speakers are listed on the left. Clicking
on one of the speakers shows the transcript of that speaker’s speech in
a box on the right. This is not a corpus, but rather a sequential
listing of each word that was extracted, along with the transcription
and the timestamp of the beginning of that word in the TextGrid.
Right-clicking on a word in this list will give you the option to
look up the word’s summary entry in the corpus. Right-clicking a word
in the overall corpus will give you the option to “Find all tokens” of
that word in the transcriptions, where they will simply be highlighted.

[image: _images/spontaneouscorpus.png]

Creating a corpus file on the command line

In order to create a corpus file on the command line, you must enter a
command in the following format into your Terminal:

pct_corpus TEXTFILE FEATUREFILE

...where TEXTFILE is the name of your input text file and FEATUREFILE
is the name of your feature file. You may specify file names using
just the file name itself (plus extension) if your current working
directory contains the files; alternatively, you can specify the full
path to these files. Please do not mix short and full paths. You may also
use command line options to change the column delimiter character or
segment delimiter character from their defaults (‘t’ and ‘’,
respectively). Descriptions of these arguments can be viewed by
running pct_corpus -h or pct_corpus --help. The help text from
this command is copied below, augmented with specifications of default values:

Positional arguments:

	
-h

	
--help

	Show this help message and exit

	
-d DELIMITER

	
--delimiter DELIMITER

	Character delimiting columns in input file, defaults to \t

	
-t TRANS_DELIMITER

	
--trans_delimiter TRANS_DELIMITER

	Character delimiting segments in input file, defaults to the empty string

EXAMPLE:

If your pre-formatted text file is called mytext.txt and your features
are hayes.feature, and if mytext.txt uses ; as column delimiters and .
as segment delimiters, to create a corpus file, you would need to run
the following command:

pct_corpus mytext.txt hayes.feature -d ; -t .

Summary information about a corpus

Phonological CorpusTools allows you to get summary information about
your corpus at any time. To do so, go to “Corpus” / “Summary.”

	General information: At the top of the “Corpus summary” dialogue box,
you’ll see the name of the corpus, the feature system currently being
used, and the number of words (entries) in the corpus.

	Inventory: Under the “Inventory” tab, there will generally be three
sections, “Consonants,” “Vowels,” and “Other.” (Note that this assumes
there is an interpretable feature system being used; if not, then all
elements in the inventory will be shown together.) Clicking the box
next to “Consonants” will show you the current set of consonants,
roughly arranged according to the IPA chart. Similarly, clicking the
box next to “Vowels” will show you the current set of consonants,
roughly arranged according to the IPA chart. Any other symbols
(e.g., the symbol for a word boundary, #) will be shown under “Other.”
	Segments: Clicking on any individual segment in the inventory will
display its type and token frequency in the corpus, both in terms
of the raw number of occurrences and the percentage of occurrences.

	Columns: Under the “Columns” tab, you can get information about each
of the columns in your corpus (including any that you have added as
tiers or other columns; see Adding, editing, and removing words, columns, and tiers). The column labels are listed in
the drop-down menu. Selecting any column will show you its type
(spelling, tier, numeric, factor) and other available information.
Tier columns (based on transcriptions) will indicate which segments
are included in the tier. Numeric columns will indicate the range of
values contained.

Once you are finished examining the summary information, click “Done” to exit.

Subsetting a corpus

It is possible to subset a corpus, creating new corpora that have only
a portion of the original corpus. For example, one might want to create
a subset of a corpus that contains only words with a frequency greater
than 1, or contains only words of a particular part of speech or that
are spoken by a particular talker (if such information is available).
The new subsetted corpus will be saved and made available to open in
PCT as simply a new corpus.

To create a subset, click on “File” / “Generate a corpus subset” and follow these steps:

	Name: Enter the name for your new corpus. The default is to use the
name of the current corpus, followed by “_subset,” but a more informative
name (e.g., “Gitksan_nouns”) may be useful.

	Filters: Click on “Add filter” to add a filter that will be used to
subset the corpus. You can filter based on any numeric or factor tier
/ column that is part of your corpus. For a numeric column (e.g., frequency),
you can specify that you want words that have values that are equal to,
greater than, less than, greater than or equal to, less than or equal to,
or not equal to any given value. For a factor column (e.g. an abstract CV
skeleton tier), you can add as many or as few levels of the factor as you like.

	Multiple filters: After a filter has been created, you can choose to
“Add” it or “Add and create another” filter. The filters are
cumulative; i.e., having two filters will mean that the subset
corpus will contain items that pass through BOTH filters (rather
than, say, either filter, or having two subsets, one for each filter).

	Create subset: Once all filters have been selected, click on “Create
subset corpus.” You will be returned to your current corpus view,
but the subsetted corpus is available if you then go to “File” /
“Load corpus...” – it will automatically be added to your list of
available corpora. Note that the subset corpus will automatically
contain any additional tiers that were created in your original
corpus before subsetting.

Saving and exporting a corpus or feature file

If “Auto-save” is on (which is the default; see Preferences), most changes
to your corpus (adding words, tiers, etc.) will be saved automatically
and will be available the next time you load the corpus in PCT. Some
changes are not automatically saved (removing or editing word entries),
even if Auto-save is on, to prevent inadvertant loss of information.
If you have made changes that have not been automatically saved, and
then quit PCT, you will receive a warning message indicating that there
are unsaved changes. At that point, you may either choose “Don’t save”
(and therefore lose any such changes), “Save” (to save the changes in
its current state, to be used the next time it is loaded into PCT), or
“Cancel” (and return to the corpus view). It is also possible to export
the corpus as a text file (.txt), which can be opened in other software,
by selecting “File” / “Export corpus as text file” and entering the
file name and location and the column and transcription delimiters.
Similarly, the feature system can also be exported to a .txt file by
selecting “File” / “Export feature system as text file” and selecting
the file name and location and the column delimiter. See more about
the utility of doing so in Working with transcriptions and feature systems.

Setting preferences and options

Preferences

There are several preferences that can be set in PCT. These can be
selected by going to “Options” / “Preferences....” The following are available:

	Storage:
	File location: By default, PCT will save corpus, feature, and
result files to your local “Documents” directory, which should
exist under the default settings on most computers. When saving
a particular output file, you can generally specify the particular
storage location as you are saving. However, it is also possible
to change the default storage location by changing the file path
in this dialogue box. You may enter the path name directly, or
select it from a system window by selecting “Choose directory...”.

	Auto-save: By default, PCT will automatically save changes to a
corpus (e.g., if you have updated a feature system, added a
tier, etc.). De-select this option if you prefer to manually
save such changes (PCT will prompt you before closing without
saving). Changes to word entries (removing or editing a word)
are NOT auto-saved and should be saved manually if you want them
to be saved; again, PCT will prompt you to save in these cases
before exiting. Once Auto-save is deselected, PCT will remember
that this is your preference for the next time you open the software -
it will not automatically get turned back on.

	Display: By default, PCT will display three decimal places in on-screen
results tables (e.g., when calculating predictability of distribution or
string similarity, etc.). The number of displayed decimal places can
be globally changed here. Note that regardless of the number specified
here, PCT will save results to files using all of the decimal places
it has calculated.

	Processing: Some calculations consume rather a lot of computational
resources and can be made faster by using multiprocessing. To allow
PCT to use multiprocessing on multiple cores when that is possible,
select this option and indicate how many cores should be used (enter
0 to have PCT automatically use the ¾ of the number of cores available
on your machine).

Help and warnings

When using PCT, hovering over a dialogue box within a function will
automatically reveal quick ToolTips that give brief information about
the various aspects of the function. These can be turned on or off by
going to “Options” / “Show tooltips.”

PCT will also issue certain warnings if various parameters aren’t met.
It is possible to turn warning messages off by going to “Options” /
“Show warnings.”

Copying and pasting

It is possible to highlight the cells in any table view (a corpus, a
results window, etc.) and copy / paste a tab-delimited string version
of the data into another program (e.g., a spreadsheet or text editor)
using your standard copy & paste keyboard commands (i.e., Ctrl-C and
Ctrl-V on a PC; Command-C and Command-V on a Mac).

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Working with transcriptions and feature systems

In order to do phonological analysis, PCT needs to know what segments
exist in a corpus, and what features are assigned to each segment.
There are a variety of built-in transcription systems and feature
systems available, but users can also define their own for custom
use. Transcription and feature systems are essentially packaged
together as .txt files in the form of a spreadsheet, where particular
transcription symbols are mapped to a set of features (described below
in Required format of a feature file). In general, however, feature systems (i.e., files containing
transcriptions and their features) must be explicitly loaded into PCT
before they are available for use. Thus, it makes sense to start by
loading in at least one such system before attempting to work with corpora.

Required format of a feature file

As mentioned above, transcription and feature systems are packaged
together as .txt files in the form of a delimited spreadsheet. The
first column in the file lists all the transcription symbols that
are to be recognized. Note that this column must be labeled with
the name “symbol” in order for PCT to correctly read in the file.
Every symbol used in the corpus needs to be in this column. Subsequent
columns list individual features that are to be used. Each cell in a
row gives either a + or – for each feature, indicating what value the
initial symbol in that row has for that feature; a 0 or n can also be
used, to indicate that a particular feature is not defined for a given
segment (0 is the default in the built-in hayes system; n is the default
in the built-in spe system). The following shows an example; keep in mind
that this is in fact a tab-delimited .txt file, but the names in the
first row are longer than any of the values in subsequent rows, so the
alignment is visually misleading. For example, the first row containing
symbols contains the symbol [p], which is designated as [-syllabic],
[+consonantal], [-sonorant], [-continuant], etc., although the column
names aren’t aligned with the feature values visually.

[image: _images/featurefile.png]

Downloadable transcription and feature choices

Currently, the built-in transcription systems that are recognized are
IPA, ARPABET (used for the [CMU] dictionary), XSAMPA, CELEX, DISC, and
Klatt. These transcription systems can be associated with either the
features as laid out in [Mielke2012], which in turn are based on [SPE],
or as laid out in [Hayes2009] [1]. Each of these
transcription-to-feature mappings is laid out as above in a .txt file that
can be downloaded from within PCT. The former system is called “spe” for
short within PCT, while the latter is called “hayes.”

To download one of these systems, click on “Corpus” /
“Manage feature systems...” and follow these steps:

	Download: Click on “Download feature systems” to open up the relevant dialogue box.

	Transcription: Select which of the transcription systems you want
(IPA, ARPABET, XSAMPA, CELEX, DISC, Klatt).

	Feature system: Select which set of features you would like to map
the transcription symbols to (SPE or Hayes).

	Saving: Click “OK” to have PCT load in the selected feature file
(you must be connected to the internet to have this functionality).
The newly downloaded feature file will now appear in your “Manage
feature systems” dialogue box, and is available for all subsequent
use of PCT unless and until you delete it (done by selecting the
system and clicking “Remove selected feature system”). Click “Done”
to return to the regular corpus analysis window.

The example below shows the selection of the CELEX transcription system,
interpreted using Hayes features.

[image: _images/downloadfeature.png]
See Applying / editing feature systems for more information about applying / editing feature systems in
conjunction with corpora.

Using a custom feature system

In addition to using one of the built-in feature systems, you can design
your own transcription-to-feature mapping, of the format specific in Required format of a feature file.

Loading a custom feature system

Once you have a feature file in the required format (see Required format of a feature file
and Modifying an existing feature system’s text file),
go to “Corpus” / “Manage feature systems...” to load it in. Select
“Create feature system from text file” and the “Import feature system”
dialogue box will open.

	File selection: Specify the file by entering its directory path or
by selecting it using the “Choose file...” button.

	Transcription system: Indicate which transcription system this is a
feature file for. (For example, you can create a new feature file for
existing IPA transcriptions.) If this is a brand-new system for PCT,
i.e., a new transcription system being associated with features, then
select “Custom” from the dropdown menu. Then, enter a name for the
transcription system in the box.

	Feature system: Indicate which feature system is being used (e.g.,
is this a case of assigning existing SPE features to a new transcription
system?). If this is a brand-new set of features, then select “Custom”
from the dropdown menu. Then, enter a name for the feature system in the box.

Note: For both existing transcription and feature systems, you still
need to include both the transcriptions and the features in the .txt
file itself; you can simply indicate here in PCT that these transcriptions
and / or features are identical to ones that are already extant in the
system, so that they can be used / interpreted consistently. The name
of the transcription / feature system file in PCT will conventionally
be transcription2features (e.g., ipa2hayes for IPA symbols interpreted
using Hayes features), so it’s useful to be consistent about what the names are.

	Delimiter: Indicate what the column delimiter in the custom file is.
The default, tab, is indicated by ‘t.’

Click “OK,” and the feature system should now appear in your “Available
feature systems” window. Click “Done.” See Applying / editing feature systems for more information about
applying the feature system to corpora. The image below shows the dialogue
box used to load in the custom, tab-delimited feature file for interpreting
the custom “gitksan” transcription system using Hayes features.

[image: _images/loadfeature.png]

Modifying an existing feature system’s text file

A custom system can be created from scratch, following the format
described in Required format of a feature file. It is probably easier, however, to create a new
system by modifying an existing system’s file. While this can be done
to a certain extent within PCT itself (see Applying / editing feature systems), large-scale changes
are best done in separate text-editing software. To do so, you’ll need
to start with an existing file, which can be obtained in one of two ways:

	Through PCT: Download one of the built-in feature systems (Downloadable transcription and feature choices) and
apply it to your corpus (Applying / editing feature systems). Then go to “File” / “Export feature
system as text file...” and save the file locally.

	Online: You can directly download .txt files with the currently
available feature systems from the PCT SourceForge page [http://sourceforge.net/projects/phonologicalcorpustools/], under
“Files.” One advantage to this method is that there may be additional
feature files that are created as .txt files and made available online
before they are packaged into the next release of the downloadable software itself.

Once you have the file, open it in whatever software you prefer (e.g.,
TextEdit, OpenOffice, etc.); it may be easiest to import it into a
spreadsheet reader (e.g., Excel, Calc, etc.) in terms of legibility.
You can then add new symbols to the first column, feature specifications
in the subsequent columns, new feature names, etc., etc. Remember that
the name of the first column must always be “symbol” in order for PCT to
read the file. Save the new file as a CSV or tab-delimited .txt file,
and load it following the instructions in Loading a custom feature system.

Applying / editing feature systems

Once a feature system has been loaded into PCT (Downloadable transcription and feature choices, Using a custom feature system), it is
available for use with a corpus. To do so, first load in a corpus (Loading in corpora);
if you are using a custom corpus or creating a corpus from text, you can
select the feature system you want to use during the loading. Once a
corpus has been loaded (with or without a feature system), you can edit
the system by clicking on “Features” / “View / change feature system....”
The following options are shown:

	View system: At the top of the “Edit feature system” dialogue box,
you’ll see the current transcription and feature system being used,
assuming one has been selected. The first column shows the individual
symbols; subsequent columns give the feature specifications for each
symbol. Clicking on the name of any column sorts the entire set by the
values for that feature; clicking again flips the sort order based on
that same column.

	Change transcription and feature systems: If there is no feature system
already specified, or if you would like to change the transcription or
feature system, use the dropdown menus under “Change feature systems” to
select from your currently available systems. If no system is available,
or the system you want to use is not available, go back to Downloadable transcription and feature choices or Using a custom feature system
to learn how to load feature systems in to PCT. Be sure to click on “Save
changes to this corpus’s feature system” after selecting a new feature
system in order to actually apply it to the corpus.

	Modify the feature system: You can modify the current feature system
directly within PCT. There are three options. Be sure to click on
“Save changes to this corpus’s feature system” after adding a new
segment or feature, or editing the feature specifications of a segment,
in order to actually apply the changes to the corpus:
	Add segment: To add a new segment and its associated feature values
to the current feature system, click on “Add segment.” A new dialogue
box will open up, with a space to input the symbol and dropdown
menus for all of the features expected in the current system.
You can also specify that all features should be set to a particular
value, and then change / edit individual features as needed.
Simply fill in all the values and click “OK”; the symbol and
features will be added to the feature system.

	Edit segment: To change the feature specifications of an existing segment,
click on the row containing that segment and then on “Edit Segment.”
Then use the resulting dialogue box to change the feature specifications.

	Add feature: To add an additional feature to the current system,
click on “Add feature.” Enter the name of the feature in the dialogue
box, select the default value that all segments will have for this
feature, and hit “OK.” The feature will be added to all the segments
in the corpus, with the default value. To change the value of the
feature for each segment, simply click on the segment and then use
the “Edit segment” functionality described above; the new feature
will automatically be added to the dialogue box for each segment.

	Corpus inventory coverage: There are two tools built in to help you
check the coverage in your corpus.
	Extraneous symbols: The built-in feature systems are fairly
extensive, and may include symbols for sounds that do not occur
in your corpus. Click on “Hide all segments not used by corpus”
to remove such segments from the viewing window. (This does NOT
remove them from the feature system itself; it just de-clutters
your view of the system.) To revert back to the full system,
simply click on “Show full feature system.”

	Corpus coverage: It’s possible that there are symbols used in
your corpus that are not covered in whatever feature system you
have selected. To find out, click on “Check corpus inventory
coverage.” A new window will appear that either confirms that
all symbols in the corpus are mapped onto features, or lists
the symbols that are currently lacking. If there are symbols
that are missing, you’ll need to add them before doing phonological
analysis on the corpus. You can do so in two ways: (1) adding them
within the PCT interface, following the instructions under “Modify
the feature system,” immediately below; or (2) changing the feature
system itself by editing the .txt file and reloading it (more
information given in Modifying an existing feature system’s text file).

	Display options: The standard view (shown below) is to display the
segments and features as a matrix. One can also select “tree” view,
which allows one to see a list of the segments included in the
transcription system, organized by phonetic characteristics (but
currently without all of their feature specifications).

Creating new tiers in the corpus

It is possible to have PCT extract a tier of segments from the
transcribed words in your corpus, based on any segment, feature, or
set of features that are defined for your corpus. For example, it is
easy to extract separate tiers for consonants and vowels. This extraction
is particularly useful if, for example, one is interested in looking at
an analysis of predictability of distribution where the conditioning
contexts are non-adjacent segments; the extraction of a tier allows
otherwise non-adjacent segments to be adjacent to each other on the
selected tier. For example, one could examine the possibility of vowel
height harmony in language X by extracting the vowels from all words and
then calculating the extent to which high / low vowels are predictably
distributed in high / low vowel contexts. (See also Adding a column for information
on how to add a column to a corpus, which contains any kind of user-specified
information, and Adding a “count” column for information on how to add a count column to a
corpus, which contains counts of specific elements within each entry in the corpus.)

To create a new tier for a corpus that is currently open, click on the
“Corpus” menu and select either “Add tier...” or “Add abstract tier...”;
the “create tier” dialogue box opens. An “abstract” tier is a tier that is
not based directly on the transcriptins themselves, but rather abstracts
to a higher level. As of January 2015, the only abstract tier available is
a CV skeleton tier. Before creating the tier, you can “preview” the tier
as in the following example; this shows what segments PCT thinks are
consonants and vowels in the current corpus.

[image: _images/cvtier.png]
The example corpus after an abstract CV tier has been added:

[image: _images/examplecvtier.png]
To create a less abstract tier, i.e., one that is just an extraction of
all transcription symbols in the corpus that have some particular feature
value, use the following instructions after choosing “Corpus” / “Add tier...”:

	Name: Enter a short-hand name for the tier, which will appear as the
column header in your corpus. For example, “vowels” or “consonants” or “nasals.”

	Basis for creating tier: You can create the tier using natural classes
if you base the tier on features; you can also create “unnatural” tiers
that are simply extractions of any set of user-defined segments.

	Segments: If creating the tier on segments, you’ll see all the segments
in your corpus in a preview window arranged roughly along the lines of a
standard IPA chart. Select as many of these as you want. The image below
shows an example of creating a tier to contain all the non-mid vowels in
the example corpus:

[image: _images/createtier.png]

	Features: If you’re creating the tier based on features, you’ll see
the list of all available features in your corpus on the left. Select a
feature that will be used to define the tier. To define the tier based
on positive values for that feature, select “Add [+feature].” To define
the tier based on negative values, select “Add [-feature].” For example,
to define a vowel tier, one might select the [voc] feature from the SPE
feature set, and then add positive values, as shown below. The selected
feature will appear in the right-hand menu. To add additional features,
repeat this step. For example, one could define a sibilant tier in the
SPE system by selecting [+cor] and [+strid]. The features available will
be based on whatever feature system has been selected as part of the
corpus; see Downloadable transcription and feature choices for information on selecting or defining different
features for the segments in the corpus.

[image: _images/createtierfeatures.png]

	Preview: To see which segments the currently selected feature values
will extract, select “Preview tier.” This will show both the set of
segments included by the selected feature values, as well as the
segments that are excluded (to help verify that the selection is as
expected). A vowel tier based on [+voc] in the example corpus is
previewed below:

[image: _images/tierpreview.png]

	Removing a feature: To remove a selected feature, click on that
feature in the “Selected features” menu and then choose “Remove feature.”

	Finalizing the tier: To create the tier and return to the corpus,
click on “Create tier.” It may take a moment to process the entire
corpus, but a new column should be added to the corpus that shows the
segments matching these feature selections for every word in the corpus.

	Saving the tier: The tier can be saved along with the corpus for future
use by selecting “Corpus” / “Save corpus” from the menu items (this will
be done automatically if auto-save is on; see Preferences). It is also possible
to export the corpus as a text file (.txt), which can be opened in other
software, by selecting “File” / “Export corpus as text file.”

	Removing a tier: To delete a tier that has been created, simply click on
“Corpus” / “Remove tier or column...” and select the tier you want to
remove; then click “Remove.” You can also right-click on the column name
and select “Remove column.” Note that only tiers that have been added
through PCT can be removed; tiers that are inherent in loaded corpora
cannot be removed in PCT. You can, of course, export the corpus
itself to a text file, remove the column manually, and then re-load
the changed corpus. To remove all the added tiers, leaving only the
inherent (“essential”) tiers in the corpus, select “Remove all non-essential
columns.” PCT will list which columns are non-essential and verify that
you want to remove them before the removal is permanent. The “essential”
columns for most corpora are “Spelling,” “Transcription,” and “Frequency.”

The following shows an example of the a vowel tier added to the example
corpus using the SPE feature system:

[image: _images/examplevoweltier.png]

Adding, editing, and removing words, columns, and tiers

Adding a column

In addition to the ability to add tiers based on information already in
the corpus, as described above in Creating new tiers in the corpus, it is also possible to add a
column containing any other user-specified information to a corpus (see
also Adding a “count” column to find out how to add a column based on counts of elements
within each corpus entry). For example, one could add a “Part of Speech”
column and indicate what the lexical category of each entry in the corpus
is. Note that as a general proposition, it is probably easier to add
such information in a spreadsheet before importing the corpus to PCT,
where sorting and batch updates are easier, but we include this functionality
in a basic form in case it is useful.

To add a column, go to “Corpus” / “Add column...” and do the following:

	Name: Enter the name of the new column.

	Type of column: Indicate what type of information the column will
contain. The choices are “Spelling,” “Numeric,” and “Factor.” A
spelling column will have values that are written out as strings
of characters, with each entry taken to be a unique string. A numeric
column will have numeric values, upon with mathematical operations
can be performed. A factor column will have values that can contain
characters or numbers, but are limited in number, as in the levels
of a categorical variable. This is useful when, for example, the
column encodes categorical information such as part of speech, with
each entry in the corpus belonging to one of a limited set of categories
such as “Noun,” “Verb,” and “Preposition.”

	Default value: A default value for the column can be entered if desired,
such that every entry in the corpus receives that value in the new column.
Individual entries can subsequently be edited to reflect its actual
value (see Editing a word).

Click “Add column” to return to the corpus and see the new column,
with its default values.

Adding a “count” column

In addition to adding columns that contain any kind of user-specified
information (Adding a column), and tiers that contain phonological information
based on the entries themselves (Creating new tiers in the corpus), one can also add “Count”
columns, which contain information about the number of occurrences of
a feature or segment in each entry in a corpus. For example, one could
add a column that lists, for each entry, the number of round vowels
that are contained in that entry. To add a count column, go to “Corpus”
/ “Add count column...” and then do the following:

	Name: Enter the name of the new column.

	Tier: Specify what tier the count column should refer to in order to
determine the counts (e.g., transcription or a derived tier such as
a vowel tier).

	Segment selection: Choose to count things based on either segments or
features. If segments are counted, select the segment or segments from
the inventory (click on “Consonants” and / or “Vowels” to reveal which
segments are available in the inventory). If features are selected,
click on each feature and then the value of that feature that should be used.

Click “Add count column” to return to the corpus and see the new column,
with its count values automatically filled in.

Removing a tier or column

To delete a tier or column that has been created, simply click on
“Corpus” / “Remove tier or column...” and select the tier you want to
remove; then click “Remove.” Note that only tiers that have been added
through PCT can be removed; tiers that are inherent in loaded corpora
cannot be removed in PCT. You can, of course, export the corpus itself
to a text file, remove the column manually, and then re-load the changed
corpus. To remove all the added tiers, leaving only the inherent
(“essential”) tiers in the corpus, select “Remove all non-essential
columns.” PCT will list which columns are non-essential and verify that
you want to remove them before the removal is permanent. The “essential”
columns for most corpora are “Spelling,” “Transcription,” and “Frequency.”

Adding a word

As a general proposition, we don’t recommend using PCT as a database
manager. It is designed to facilitate analyses of pre-existing corpora
rather than to be an interface for creating corpora. That said, it is
occasionally useful to be able to add a word to a pre-existing corpus in
PCT. Note that this function will actually add the word to the corpus
(and, if auto-save is on, the word will be saved automatically in future
iterations of the corpus). If you simply need to add a word temporarily,
e.g., to calculate the neighbourhood density of a hypothetical word given
the current corpus, you can also add a word in the relevant function’s
dialogue box, without adding the word permanently to the corpus.

To do add the word globally, howveer, go to “Corpus” / “Add new word...”
and do the following:

	Spelling: Type in the orthographic representation of the new word.

	Transcription: To add in the phonetic transcription of the new word,
it is best to use the provided inventory. While it is possible to type
directly in to the transcription box, using the provided inventory will
ensure that all characters are understood by PCT to correspond to existing
characters in the corpus (with their concomitant featural interpretation).
Click on “Show inventory” and then choose to show “Consonants,” “Vowels,”
and/or other. (If there is no featural interpretation of your inventory,
you will simply see a list of all the available segments, but they will
not be classifed by major category.) Clicking on the individual segments
will add them to the transcription. The selections will remain even
when the sub-inventories are hidden; we allow for showing / hiding
the inventories to ensure that all relevant buttons on the dialogue
box are available, even on small computer screens. Note that you do
NOT need to include word boundaries at the beginning and end of the
word, even when the boundary symbol is included as a member of the
inventory; these will be assumed automatically by PCT.

	Frequency: Enter the token frequency of this word.

	Other: If there are other tiers or columns in your corpus, you can
also enter the relevant values for those columns in the dialogue box.
For tiers that are defined via features, the values should be
automatically populated as you enter the transcription. E.g., if you
have a vowel tier, and add the word [pim.ku] to your corpus by selecting
the relevant segments from the inventory, the vowel tier should
automatically fill in the entry as [i.u].

Once all values are filled in, select “Create word” to return to the
corpus with the word added. If auto-save is not on, you can save this
new version of the corpus for future use by going to “File” / “Save corpus.”
If you have added a word and the corpus has NOT been saved (either manually
or through Auto-save) afterward, and then try to quit PCT, it will warn
you that you have unsaved changes and ask that you verify that you want
to quit without saving them.

Removing a word

To remove a word from the corpus, select it in the corpus view and
right-click (ctrl-click on a Mac) on it. Choose “Remove word” from the
menu. Regardless of whether warnings are turned on or not (see Help and warnings),
PCT will verify that you want to remove the word before commiting the
change. Word removal is not auto-saved with a corpus, even if “Auto-save”
is turned on (see Preferences); if you want to save the new version of the
corpus with the word removed, you should explicitly go to “File” /
“Save corpus.” If you have removed a word and NOT manually saved the
corpus afterward, and then try to quit PCT, it will again warn you that
you have unsaved changes and ask that you verify that you want to quit.

Editing a word

To edit a word in the corpus, right-click on the word’s entry and chooser
“Edit word details,” or double-click the word’s entry in the corpus.
A dialogue box opens that shows the word’s spelling, transcription,
frequency, and any other information that is included in the corpus.
Most of these entries can be edited manually, though a few, such as
tiers that are dependent on a word’s transcription, cannot themselves
be directly edited. To edit such a derived tier, edit the transcription
of the word; the derived tier will update automatically as the new
transcription is provided.

Hiding / showing non-transcribed items

When working with a corpus, it is possible to hide all entries that do
not have a transcription (if any such entries exist). To do this,
right-click anywhere in the corpus itself and select “Hide non-transcribed
items.” To reveal them again, right-click anywhere in the corpus itself
and select “Show non-transcribed items.”

Phonological Search

PCT allows you to do searches for various strings, defined by segments or
features. The search returns two types of information: one, a general count
of the number of entries that fit the search description, and two, the
actual list of all the words in the corpus that contain the specified
string. To conduct a search, choose “Corpus” / “Phonological search...”
and do the following:

	Basis for search: Select either segments or features to search for.

	Segment-based search selection: If segments are chosen as the basis of
the search, you will see the segmental inventory of your corpus. Select
a segment that you want to search for.

	Feature-based search selection: If features are chosen as the basis of
the search, you will see the features associated with your corpus.
Select the feature and then the value of that feature that you want
to search for; it will automatically be added to the list. Multiple
features can be selected (e.g., [-voice, -continuant] if one wants to
search for voiceless stops).

	Environments: Click on “Environments” to add one or more environments
that you want to search for that contain the specified segment. Both
the left- and right-hand side of the environment can be specified,
and each can be specified using either segments (automatically populated
by your corpus’ inventory) or features (automatically populated by the
feature system associated with the corpus). After selecting an environment
by clicking on the relevant segments or features, click on “Add” if it
is the last environment you want to add, or “Add and create another”
if you want to add additional environments.

An example of adding environments (in this case, the environment “word-initial,
before a vowel”):

[image: _images/phonosearchenvironment.png]

	Tier: Select the tier on which phonological search should be performed.
The default would be the transcription tier, so that phonological
environments are defined locally. But, for example, if a vowel tier
is selected, then one could search for the occurrence of, e.g., [i]
before mid vowels on that tier (hence ignoring intervening consonants).

An example of the phonological search window, set up to search for
voiceless stops word-initially before vowels and between [a] vowels,
on the transcription tier:

[image: _images/phonosearchenvironment2.png]
6. Results: Once all selections have been made, click on “Calculate
phonological search.” If there is not already an existing results table,
or you want to start a new once, choose the “Start new results table”
option. If you want to add the results to a pre-existing table, choose
the “Add to current results table” option. The results appear in a new
dialogue box that first shows the summary results, i.e., a list that
contains the segment that was searched for, each environment that was
searched for, the total count of words that contain that segment in that
environment, and the total token frequency for those words (note that
these are the frequencies of the WORDS containing the specified environments,
so if for example, a particular word contains multiple instances of the same
environment, this is NOT reflected in the counts). The individual words in
the corpus that match the search criteria can be shown by clicking on “Show
individual results” at the bottom of the screen; this opens a new dialogue
box in which each word in the corpus that matches the search criteria is
listed, including the transcription of the word, the segment that was found
that matches the search criteria, and which environment that segment
occurred in in that word. Note that the results can be sorted by any of
the columns by clicking on that column’s name (e.g., to get all the words
that contained the [a_a] environment together, simply click on the “Environment”
label at the top of that column). To return to the summary results, click on
“Show summary results.” Each set of results can be saved to a .txt file by
clicking “Save to file” at the bottom of the relevant results window. To
return to the search selection dialogue box, click on “Reopen function dialogue.”
Otherwise, when finished, click on “Close window” to return to the corpus.

An example of the summary results window for the above phonological search:

[image: _images/phonosearchsummary.png]
And the individual results from the same search, sorted by environment:

[image: _images/phonosearchindividual.png]

	[1]	Note that the original [Hayes2009] system does not include
diphthongs. We have included featural interpretations for common
English diphthongs using two additional features, [diphthong] and
[front-diphthong]. The former has a [+] value for all diphthongs, a
[-] value for all vowels that are not diphthongs, and a [0] value for
non-vowels. The latter references the end point of a diphthong; [aɪ],
[eɪ], and [ɔɪ] are [+front-diphthong], [aʊ] and [oʊ] are [-front-diphthong].
All other segments are left unspecified for this feature. Other vowel
features for diphthongs are specified based on the first element of
the diphthong; e.g., all of [aɪ], [eɪ], [ɔɪ], [aʊ], and [oʊ] are
[-high]; of these five, only [aɪ] and [aʊ] are [+low]; only [eɪ]
is [+front]; only [oʊ] and [ɔɪ] are [+back]; only [oʊ] and [ɔɪ] are [+round].

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Phonotactic Probability

About the function

Phonotactic probability refers to the likelihood of a given set of segments
occurring in a given order for a given corpus of transcriptions. For instance,
blick is a phonotactically probable nonword in English, but bnick is
phonotactically improbable. Words as well as nonwords can be assessed for
their phonotactic probability, and this measure has been used in behavioural
research ([Vitevitch1999] and others). In particular, the phonotactic
probability of words has been correlated with their ability to be segmented,
acquired, processed, and produced; see especially the discussion in [Vitevitch2004]
for extensive references.

Method of calculation

One method for computing the phonotactic probability uses average unigram
or bigram positional probabilities across a word ([Vitevitch2004];
their online calculator for this function is available here [http://www.people.ku.edu/~mvitevit/PhonoProbHome.html]).
For a word like blick in English, the unigram average would include the
probability of /b/ occurring in the first position of a word, the
probability of /l/ in the second position, the probability of /ɪ/
occuring in the third position, and the probability of /k/ occurring
in the fourth position of a word. Each positional probability is
calculated by summing the log token frequency of words containing that
segment in that position divided by the sum of the log token frequency
of all words that have that position in their transcription. The bigram
average is calculated in an equivalent way, except that sequences of two
segments and their positions are used instead of single segments. So for
blick that would be /bl/, /lɪ/, /ɪk/ as the included poisitional probabilities.
As with all n-gram based approaches, bigrams are preferable to unigrams.
In the example of blick versus bnick, unigrams wouldn’t likely capture
the intuitive difference in phonotactic probability, since the probability
of /n/ and /l/ in the second position isn’t necessarily radically different.
Using bigrams, however, would capture that the probability of /bl/ versus /bn/
in the first position is radically different.

There are other ways of calculating phonotactic probability that don’t
have the strict left-to-right positional assumptions that the Vitevitch
& Luce algorithm has, such as the constraint-based method in BLICK by
Bruce Hayes (Windows executable available here [http://www.linguistics.ucla.edu/people/hayes/BLICK/], Python package
available here [https://pypi.python.org/pypi/python-BLICK/0.2.12]
with source code available at <https://github.com/mmcauliffe/python-BLICK/>_).
However, such algorithms require training on a specific language, and
the constraints are not computed from transcribed corpora in as
straightforward a manner as the probabilities used in the Vitevitch &
Luce algorithm. Therefore, PCT currently supports only the Vitevitch &
Luce style algorithm.

Implementing the phonotactic probability function in the GUI

To start the analysis, click on “Analysis” / “Calculate phonotactic probability...”
in the main menu, and then follow these steps:

	Phonotactic probability algorithm: Currently the only offered algorithm
is the Vitevitch & Luce algorithm, described above.

	Query type: Phonotactic probability can be calculated for one of three
types of inputs:
	One word: The phonotactic probability of a single word can be calculated
by entering that word’s orthographic representation in the query box.

	One word/nonword not in the corpus: The phonotactic probability can
be calculated on a word that is not itself in the corpus, but using
the probabilities derived from the corpus. These words are distinct
from the corpus and won’t be added to it, nor will their creation
affect any future calculations. See Adding a word for information on how
to more permanently add a new word to the corpus. Words can be
created through the dialogue opened by pressing the button:
	Spelling: Enter the spelling for your new word / nonword using
the regular input keyboard on your computer. The spelling is
how the word will be referenced in the results table, but won’t
affect the calculation of phonotactic probability.

	Transcription: To add in the phonetic transcription of the new
word, it is best to use the provided inventory. While it is
possible to type directly in to the transcription box, using
the provided inventory will ensure that all characters are
understood by PCT to correspond to existing characters in the
corpus (with their concomitant featural interpretation). Click
on “Show inventory” and then choose to show “Consonants,” “Vowels,”
and/or other. (If there is no featural interpretation of your
inventory, you will simply see a list of all the available
segments, but they will not be classifed by major category.)
Clicking on the individual segments will add them to the
transcription. The selections will remain even when the
sub-inventories are hidden; we allow for showing / hiding
the inventories to ensure that all relevant buttons on the
dialogue box are available, even on small computer screens.
Note that you do NOT need to include word boundaries at the
beginning and end of the word, even when the boundary symbol
is included as a member of the inventory; these will be assumed
automatically by PCT.

	Frequency: This can be left at the default. Note that entering
a value will NOT affect the calculation; there is no particular
need to enter anything here (it is an artifact of using the same
dialogue box here as in the “Add Word” function described in Adding a word).

	Create word: To finish and return to the “Phonotactic probability”
dialogue box, click on “Create word.”

	List of words: If there is a specific list of words for which
phonotactic probability is to be calculated (e.g., the stimuli list
for an experiment), that list can be saved as a .txt file with one
word per line and uploaded into PCT for analysis. If words in the
list are not in the corpus, you can still calculate their phonotactic
probability by entering in the spelling of the word and the transcription
of the word in a single line delimited by a tab. The transcription
should be delimited by periods.

	Whole corpus: Alternatively, the phonotactic probability for every
current word in the corpus can be calculated. The phonotactic
probability of each word will be added to the corpus itself, as
a separate column; in the “query” box, simply enter the name of
that column (the default is “Phonotactic probability”).

	Tier: Phonotactic probability can be calculated from transcription
tiers in a corpus (e.g., transcription or tiers that represent subsets
of entries, such as a vowel or consonant tier).

	Type vs. token frequency: Specify whether phonotactic probabilities
should be based on word type frequency or token frequency. The
original Vitevitch & Luce algorithm uses token frequency. Token frequency
will use the log frequency when calculating probabilities.

	Probability type: Specify whether to use biphone positional
probabilities or single segment positional probabilities. Defaults to biphone.

	Results: Once all options have been selected, click “Calculate
phonotactic probability.” If this is not the first calculation, and
you want to add the results to a pre-existing results table, select
the choice that says “add to current results table.” Otherwise, select
“start new results table.” A dialogue box will open, showing a table of
the results, including the word, its phonotactic probability, the
transcription tier from which phonotactic probability was calculated,
whether type or token frequency was used, whether the algorithm used
unigram or bigram probabilities, and the phonotactic probability algorithm
that was used. If the phonotactic probability for all words in the corpus
is being calculated, simply click on the “start new results table” option,
and you will be returned to your corpus, where a new column has been added
automatically.

	Saving results: The results tables can each be saved to tab-delimited .txt
files by selecting “Save to file” at the bottom of the window. If all
phonotactic probabilities are calculated for a corpus, the corpus
itself can be saved by going to “File” / “Export corpus as text file,”
from where it can be reloaded into PCT for use in future sessions with
the phonotactic probabilities included.

An example of the “Phonotactic Probability” dialogue box for calculating
the probability of the non-word “pidger” [pɪdʒɚ] using unigram position
probabilities (using the IPHOD corpus):

[image: _images/phonoprobdialog.png]
[image: _images/phonoprobresults.png]
To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Functional Load

About the function

Functional load is a measure of the “work” that any particular contrast
does in a language, as compared to other contrasts (e.g., [Hockett1955],
[Hockett1966]; [Kucera1963]; [King1967]; [Surendran2003]). Two contrasts
in a language, such as [d] / [t] vs. [ð] / [θ] in English, may have very
different functional loads. The difference between [d] and [t] is used to
distinguish between many different lexical items, so it has a high
functional load; there are, on the other hand, very few lexical items
that hinge on the distinction between [ð] and [θ], so its functional
load is much lower. One of the primary claims about functional load is
that it is related to sounds’ propensity to merge over time, with pairs
of sounds that have higher functional loads being less likely to merge
than pairs of sounds with lower functional loads (e.g., [Wedel2013], [Todd2012]).
The average functional load of a particular sound has also been claimed to
affect its likelihood of being used as an epenthetic vowel [Hume2013].
Functional load has also been illustrated to affect the perceived
similarity of sounds [Hall2014a].

Method of calculation

There are two primary ways of calculating functional load that are
provided as part of the PCT package. One is based on the change of
entropy in a system upon merger of a segment pair or set of segment
pairs (cf. [Surendran2003]); the other is based on simply
counting up the number of minimal pairs (differing in only the target
segment pair or pairs) that occur in the corpus.

Change in entropy

The calculation based on change in entropy is described in detail in
[Surendran2003]. Entropy is an Information-Theoretic measure of the
amount of uncertainty in a system [Shannon1949], and is
calculated using the formula in (1); it will also be used for the
calculation of predictability of distribution (see Method of calculation). For every
symbol i in some inventory (e.g., every phoneme in the phoneme inventory,
or every word in the lexicon), one multiplies the probability of i by
the \(log_{2}\) of the probability of i; the entropy is the sum of the products
for all symbols in the inventory.

Entropy:

\(H = -\sum_{i \in N} p_{i} * log_{2}(p_{i})\)

The functional load of any pair of sounds in the system, then, can be
calculated by first calculating the entropy of the system at some level
of structure (e.g., words, syllables) with all sounds included, then
merging the pair of sounds in question and re-calculating the entropy
of the new system. That is, the functional load is the amount of
uncertainty (entropy) that is lost by the merger. If the pair has a
functional load of 0, then nothing has changed when the two are merged,
and \(H_{1}\) will equal \(H_{2}\). If the pair has a non-zero functional load, then
the total inventory has become smaller through the conflating of pairs
of symbols that were distinguished only through the given pair of sounds.

Functional load as change in entropy:

\(\Delta H = H_{1} - H_{2}\)

Consider a toy example, in which the following corpus is assumed (note
that, generally speaking, there is no “type frequency” column in a PCT
corpus, as it is assumed that each row in the corpus represents 1 type;
it is included here for clarity):

Consider a toy example, in which the following corpus is assumed
(note that, generally speaking, there is no “type frequency” column
in a PCT corpus, as it is assumed that each row in the corpus represents
1 type; it is included here for clarity):

	Word
	Original
	Under [h] / [ŋ] merger
	Under [t] / [d] merger

	Trans.
	Type
Freq.
	Token
Freq.
	Trans.
	Type
Freq.
	Token
Freq.
	Trans.
	Type
Freq.
	Token
Freq.

	hot
	[hɑt]
	1
	2
	[Xɑt]
	1
	2
	[hɑX]
	1
	2

	song
	[sɑŋ]
	1
	4
	[sɑX]
	1
	4
	[sɑŋ]
	1
	4

	hat
	[hæt]
	1
	1
	[Xæt]
	1
	1
	[hæX]
	1
	1

	sing
	[sɪŋ]
	1
	6
	[sɪX]
	1
	6
	[sɪŋ]
	1
	6

	tot
	[tɑt]
	1
	3
	[tɑt]
	1
	3
	[XɑX]
	1
	8

	dot
	[dɑt]
	1
	5
	[dɑt]
	1
	5
	[XɑX]

	hip
	[hɪp]
	1
	2
	[Xɪp]
	1
	2
	[hɪp]
	1
	2

	hid
	[hɪd]
	1
	7
	[Xɪd]
	1
	7
	[hɪX]
	1
	7

	team
	[tim]
	1
	5
	[tim]
	1
	5
	[Xim]
	1
	10

	deem
	[dim]
	1
	5
	[dim]
	1
	5
	[Xim]

	toot
	[tut]
	1
	9
	[tut]
	1
	9
	[XuX]
	1
	11

	dude
	[dud]
	1
	2
	[dud]
	1
	2
	[XuX]

	hiss
	[hɪs]
	1
	3
	[Xɪs]
	1
	3
	[hɪs]
	1
	3

	his
	[hɪz]
	1
	5
	[Xɪz]
	1
	5
	[hɪz]
	1
	5

	sizzle
	[sɪzəl]
	1
	4
	[sɪzəl]
	1
	4
	[sɪzəl]
	1
	4

	dizzy
	[dɪzi]
	1
	3
	[dɪzi]
	1
	3
	[Xɪzi]
	1
	7

	tizzy
	[tɪzi]
	1
	4
	[tɪzi]
	1
	4
	[Xɪzi]

	Total
	17
	70
	
	17
	70
	
	13
	70

The starting entropy, assuming word types as the relative unit of
structure and counting, is:

\(H_{1 - types} = -[(\frac{1}{17} log_{2}(\frac{1}{17}))
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))\\
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))\\
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))
+ (\frac{1}{17} log_{2}(\frac{1}{17})) + (\frac{1}{17} log_{2}(\frac{1}{17}))]
=4.087\)

The starting entropy, assuming word tokens, is:

\(H_{1 - tokens} = -[(\frac{2}{70} log_{2}(\frac{2}{70}))
+ (\frac{4}{70} log_{2}(\frac{4}{70})) + (\frac{1}{70} log_{2}(\frac{1}{70}))
+ (\frac{6}{70} log_{2}(\frac{6}{70})) + (\frac{3}{70} log_{2}(\frac{3}{70}))\\
+ (\frac{5}{70} log_{2}(\frac{5}{70})) + (\frac{2}{70} log_{2}(\frac{2}{70}))
+ (\frac{7}{70} log_{2}(\frac{7}{70})) + (\frac{5}{70} log_{2}(\frac{5}{70}))
+ (\frac{5}{70} log_{2}(\frac{5}{70})) + (\frac{9}{70} log_{2}(\frac{9}{70}))\\
+ (\frac{2}{70} log_{2}(\frac{2}{70})) + (\frac{3}{70} log_{2}(\frac{3}{70}))
+ (\frac{5}{70} log_{2}(\frac{5}{70})) + (\frac{4}{70} log_{2}(\frac{4}{70}))
+ (\frac{3}{70} log_{2}(\frac{3}{70})) + (\frac{4}{70} log_{2}(\frac{4}{70}))]
= 3.924\)

Upon merger of [h] and [ŋ], there is no change in the number of unique words;
there are still 17 unique words with all their same token frequencies.
Thus, the entropy after an [h] / [ŋ] merger will be the same as it was
before the merger. The functional load, then would be 0, as the pre-merger
and post-merger entropies are identical.

Upon merger of [t] and [d], on the other hand, four pairs of words have
been collapsed. E.g., the difference between team and deem no longer
exists; there is now just one word, [Xim], where [X] represents the
result of the merger. Thus, there are only 13 unique words, and while
the total token frequency count remains the same, at 70, those 70 occurrences
are divided among only 13 unique words instead of 17.

Thus, the entropy after a [t] / [d] merger, assuming word types, is:

\(H_{1 - types} = -[(\frac{1}{13} log_{2}(\frac{1}{13}))
+ (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))
+ (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))\\
+ (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))
+ (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))
+ (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))\\
+ (\frac{1}{13} log_{2}(\frac{1}{13})) + (\frac{1}{13} log_{2}(\frac{1}{13}))]
= 3.700\)

And the entropy after a [t] / [d] merger, assuming word tokens, is:

\(H_{1 - tokens} = -[(\frac{2}{70} log_{2}(\frac{2}{70}))
+ (\frac{4}{70} log_{2}(\frac{4}{70})) + (\frac{1}{70} log_{2}(\frac{1}{70}))
+ (\frac{6}{70} log_{2}(\frac{6}{70})) + (\frac{8}{70} log_{2}(\frac{8}{70}))\\
+ (\frac{2}{70} log_{2}(\frac{2}{70})) + (\frac{7}{70} log_{2}(\frac{7}{70}))
+ (\frac{10}{70} log_{2}(\frac{10}{70})) + (\frac{11}{70} log_{2}(\frac{11}{70}))
+ (\frac{3}{70} log_{2}(\frac{3}{70})) + (\frac{5}{70} log_{2}(\frac{5}{70}))\\
+ (\frac{4}{70} log_{2}(\frac{4}{70})) + (\frac{7}{70} log_{2}(\frac{7}{70}))]
= 3.466\)

\(\Delta H = H_{1-types} - H_{2-types} = 4.087– 3.700 = 0.387\)

And the functional load of [t] / [d] based on word tokens is:

\(\Delta H = H_{1-tokens} - H_{2-tokens} = 3.924– 3.466 = 0.458\)

(Relative) Minimal Pair Counts

The second means of calculating functional load that is included in PCT
is a straight count of minimal pairs, which can be relativized to the
number of words in the corpus that are potential minimal pairs—i.e. the
number of words in the corpus with at least one of the target segments.

In the above example, the number of minimal pairs that hinge on [h] vs.
[ŋ] is of course 0, so the functional load of [h] / [ŋ] is 0. The number
of minimal pairs that hinge on [t] / [d] is 3, and the number of words
with either [t] or [d] is 11; the functional load as a relativized minimal
pair count would therefore be 3/11 = 0.273. Note that here, a relatively
loose definition of minimal pair is used; specifically, two words are
considered to be a minimal pair hinging on sounds A and B if, upon merger
of A and B into a single symbol X, the words are identical. Thus, toot and
dude are considered a minimal pair on this definition, because they both
become [XuX] upon merger of [t] and [d].

The resulting calculations of functional load are thus quite similar
between the two measures, but the units are entirely different.
Functional load based on change in entropy is measured in bits,
while functional load based on relativized minimal pair counts is
simply a percentage. Also note that functional load based on minimal
pairs is only based on type frequency; the frequency of the usage of
the words is not used as a weighting factor, the way it can be under
the calculation of functional load as change in entropy.

Implementing the functional load function in the GUI

As with most analysis functions, a corpus must first be loaded (see Loading in corpora).
Once a corpus is loaded, use the following steps.

	Getting started: Choose “Analysis” / “Calculate functional load...”
from the top menu bar.

	Sound selection: First, select which two sounds you want the functional
load to be calculated for. Do this by clicking on “Add pair of sounds”;
the “Select segment pair” dialogue box will open. The segment choices that
are available will automatically correspond to all of the unique
transcribed characters in your corpus. The order of the sounds is
irrelevant; picking [i] first and [u] second will yield the same
results as picking [u] first and [i] second. Once a pair of sounds
has been selected, click “Add.” They will appear in the “Functional
load” dialogue box. Multiple pairs of sounds can be selected and
added to the list for calculation simultaneously. To do this without
going back to the “Functional Load” dialogue box first, click “Add
and create another.” When multiple pairs are selected, they can be
treated in two different ways, listed under “Options” on the right-hand
side of the “Functional Load” dialogue box under “Multiple segment
pair behaviour”:
	All segment pairs together: This option allows for the calculation
of the functional load of featural contrasts. E.g., if the pairs [e]/[i]
and [o]/[u] are chosen, PCT will calculate the functional load from
both pairs at the same time. This option is useful for investigating
the functional load of featural contrasts: e.g., if the above pairs
are the ONLY pairs of sounds in the corpus that differ by exactly the
single feature [high], then this option will allow you to calculate
the functional load of the [high] contrast. Note that the results
table will list “[e], [o]” as “sound 1” and “[i], [u]” as “sound 2”
in this scenario, to remind you that you are getting a single functional
load value. Note too that this does not collapse all four sounds to a
single sound (which would erroneously also neutralize [e]/[o], [e]/[u],
[i]/[o], [i]/[u]), but rather collapses each pair of segments and only
then checks for any minimal pairs or drop in entropy.

	Each segment pair individually: This option cycles through the list
of pairs and gives the functional load of each pair individually
from the corpus. E.g., if the pairs [e]/[i] and [o]/[u] are chosen,
you will get results showing first the functional load of [e]/[i]
in the corpus and then the functional load of [o]/[u] in the corpus,
independently.

	Functional load algorithm: Select which of the two methods of calculation
you want to use—i.e., minimal pairs or change in entropy.
(See discussion above for details of each.)

	Tier: Select which tier the functional load should be calculated from.
The default is the “transcription” tier, i.e., looking at the entire
word transcriptions. If another tier has been created (see Creating new tiers in the corpus),
functional load can be calculated on the basis of that tier. For example,
if a vowel tier has been created, then “minimal pairs” will be entries
that are identical except for one entry in the vowels only, entirely
independently of consonants. Thus, the words [mapotik] and [ʃɹaɡefli]
would be treated as a minimal pair, given that their vowel-tier
representations are [aoi] and [aei].

	Minimum frequency: It is possible to set a minimum token frequency
for words in the corpus in order to be included in the calculation.
This allows easy exclusion of rare words; for example, if one were
calculating the functional load of [s] vs. [ʃ] in English and didn’t
set a minimum frequency, words such as santy (vs. shanty) might be
included, which might not be a particularly accurate reflection of
the phonological knowledge of speakers. To include all words in the
corpus, regardless of their token frequency, set the the minimum frequency to 0.

	Additional parameters for minimal pairs: If minimal pairs serve as the
means of calculation, there are two additional parameters can be set.
	Raw vs. relative count: First, PCT can report only the raw count of
minimal pairs that hinge on the contrast in the corpus, if you just
want to know the scope of the contrast. On the other hand, the
default is to relativize the raw count to the corpus size, by
dividing the raw number by the number of lexical entries that
include at least one instance of any of the target segments.

	Include vs. ignore homophones: Second, PCT can either include
homophones or ignore them. For example, if the corpus includes
separate entries for the words sock (n.), sock (v.), shock (n.),
and shock (v.), this would count as four minimal pairs if homophones
are included, but only one if homophones are ignored. The default is
to ignore homophones.

	Additional parameters for change in entropy: If you are calculating
functional load using change in entropy, one additional parameter can be set.
	Type or token frequency: As described in Change in entropy, entropy can be
calculated using either type or token frequencies. This option
determines which to use.

Here is an example of selecting [m] and [n], with functional load to be
calculated on the basis of minimal pairs, only including words with a
token frequency of at least 1, from the built-in example corpus:

[image: _images/funtionalloaddialog.png]

	Results table: Once all parameters have been set, click one of the two
“Calculate functional load” buttons. If this is the first calculation,
the option to “start new results table” should be selected. For subsequent
calculations, the calculation can be added to the already started table,
for direct comparison, or a new table can be started. [Note that if a
table is closed, new calculations will not be added to the previously
open table; a new table must be started.] Either way, the results table
will have the following columns, with one row per calculation: segment 1,
segment 2, which tier was used, which measurement method was selected,
the resulting functional load, what the minimum frequency was, and for
calculations using minimal pairs, whether the count is absolute or
relative and whether homophones were ignored or not. (For calculations
using change in entropy, “N/A” values are entered into the latter two columns.)

	Saving results: Once a results table has been generated for at least
one pair, the table can be saved by clicking on “Save to file” at the
bottom of the table to open a system dialogue box and save the results
at a user-designated location.

[image: _images/funtionalloadresults.png]
(Note that in the above screen shot, not all columns are visible;
they are visible only by scrolling over to the right, due to constraints
on the window size. All columns would be saved to the results file.)

To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

Implementing the functional load function on the command line

In order to perform this analysis on the command line, you must enter
a command in the following format into your Terminal:

pct_funcload CORPUSFILE ARG2

...where CORPUSFILE is the name of your *.corpus file and ARG2 is either
the transcription character(s) of a single segment (if calculating relative
functional load) or the name of your segment pair(s) file (if calculating a
single functional load value). The segment pairs file must list the pairs
of segments whose functional load you wish to calculate, with each pair
separated by a tab (t) and one pair on each line. You may also use
command line options to change various parameters of your functional
load calculations. Descriptions of these arguments can be viewed by
running pct_funcload –h or pct_funcload --help. The help text from
this command is copied below, augmented with specifications of default values:

Positional arguments:

	
corpus_file_name

	Name of corpus file

	
pairs_file_name_or_segment

	Name of file with segment pairs (or target segment if relative fl is True)

Optional arguments:

	
-h

	
--help

	Show help message and exit

	
-a ALGORITHM

	
--algorithm ALGORITHM

	Algorithm to use for calculating functional load:
“minpair” for minimal pair count or “deltah” for change in entropy.
Defaults to minpair.

	
-f FREQUENCY_CUTOFF

	
--frequency_cutoff FREQUENCY_CUTOFF

	Minimum frequency of words to consider as possible minimal pairs or
contributing to lexicon entropy.

	
-d DISTINGUISH_HOMOPHONES

	
--distinguish_homophones DISTINGUISH_HOMOPHONES

	For minimal pair FL: if False, then you’ll count sock~shock
(sock=clothing) and sock~shock (sock=punch) as just one minimal
pair; but if True, you’ll overcount alternative spellings of the
same word, e.g. axel~actual and axle~actual. False is the value
used by Wedel et al.

	
-t TYPE_OR_TOKEN

	
--type_or_token TYPE_OR_TOKEN

	For change in entropy FL: specifies whether entropy is based on type
or token frequency.

	
-e RELATIVE_FL

	
--relative_fl RELATIVE_FL

	If True, calculate the relative FL of a single segment by averaging
across the functional loads of it and all other segments.

	
-s SEQUENCE_TYPE

	
--sequence_type SEQUENCE_TYPE

	The attribute of Words to calculate FL over. Normally this will be
the transcription, but it can also be the spelling or a user-specified tier.

	
-o OUTFILE

	
--outfile OUTFILE

	Name of output file

EXAMPLE 1: If your corpus file is example.corpus and you want to
calculate the minimal pair functional load of the segments [m] and [n]
using defaults for all optional arguments, you first need to create a
text file that contains the text “mtn” (where t is a tab; no quotes
in the file). Let us call this file pairs.txt. You would then run the
following command in your terminal window:

pct_funcload example.corpus pairs.txt

EXAMPLE 2: Suppose you want to calculate the relative (average) functional
load of the segment [m]. Your corpus file is again example.corpus. You
want to use the change in entropy measure of functional load rather than
the minimal pairs measure, and you also want to use type frequency
instead of (the default value of) token frequency. In addition, you want
the script to produce an output file called output.txt. You would need
to run the following command:

pct_funcload example.corpus m -a deltah -t type -o output.txt

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Predictability of Distribution

About the function

Predictability of distribution is one of the common methods of determining
whether or not two sounds in a language are contrastive or allophonic.
The traditional assumption is that two sounds that are predictably
distributed (i.e., in complementary distribution) are allophonic, and
that any deviation from complete predictability of distribution means
that the two sounds are contrastive. [Hall2009], [Hall2012] proposes a way of
quantifying predictability of distribution in a gradient fashion, using
the information-theoretic quantity of entropy (uncertainty), which is
also used for calculating functional load (see Method of calculation), which can be used
to document the degree to which sounds are contrastive in a language.
This has been shown to be useful in, e.g., documenting sound changes
[Hall2013b], understanding the choice of epenthetic vowel in a languages
[Hume2013], modeling intra-speaker variability (Thakur 2011),
gaining insight into synchronic phonological patterns (Hall & Hall 2013),
and understanding the influence of phonological relations on perception
([Hall2009], [Hall2014a]). See also the related measure of
Kullback-Leibler divergence (Kullback-Leibler Divergence), which is used in [Peperkamp2006]
and applied to acquisition; it is also a measure of the degree to which
environments overlap, but the method of calculation differs (especially
in terms of environment selection).

It should be noted that predictability of distribution and functional
load are not the same thing, despite the fact that both give a measure
of phonological contrast using entropy. Two sounds could be entirely
unpredictably distributed (perfectly contrastive), and still have either
a low or high functional load, depending on how often that contrast is
actually used in distinguishing lexical items. Indeed, for any degree of
predictability of distribution, the functional load may be either high or
low, with the exception of the case where both are 0. That is, if two
sounds are entirely predictably distributed, and so have an entropy of
0 in terms of distribution, then by definition they cannot be used to
distinguish between any words in the language, and so their functional
load, measured in terms of change in entropy upon merger, would also be 0.

Method of calculation

As mentioned above, predictability of distribution is calculated using
the same entropy formula as above, repeated here below, but with different
inputs.

Entropy:

\(H = -\sum_{i \in N} p_{i} * log_{2}(p_{i})\)

Because predictability of distribution is determined between exactly two
sounds, i will have only two values, that is, each of the two sounds.
Because of this limitation to two sounds, entropy will range in these
situations between 0 and 1. An entropy of 0 means that there is 0
uncertainty about which of the two sounds will occur; i.e., they are
perfectly predictably distributed (commonly associated with being
allophonic). This will happen when one of the two sounds has a probability
of 1 and the other has a probability of 0. On the other hand, an entropy
of 1 means that there is complete uncertainty about which of the two
sounds will occur; i.e., they are in perfectly overlapping distribution
(what might be termed “perfect” contrast). This will happen when each
of the two sounds has a probability of 0.5.

Predictability of distribution can be calculated both within an individual
environment and across all environments in the language; these two
calculations are discussed in turn.

Predictability of Distribution in a Single Environment

For any particular environment (e.g., word-initially; between vowels;
before a [+ATR] vowel with any number of intervening consonants; etc.),
one can calculate the probability that each of two sounds can occur.
This probability can be calculated using either types or tokens, just
as was the case with functional load. Consider the following toy data,
which is again repeated from the examples of functional load, though
just the original distribution of sounds.

	Word
	Original

	Trans.
	Type
Freq.
	Token
Freq.

	hot
	[hɑt]
	1
	2

	song
	[sɑŋ]
	1
	4

	hat
	[hæt]
	1
	1

	sing
	[sɪŋ]
	1
	6

	tot
	[tɑt]
	1
	3

	dot
	[dɑt]
	1
	5

	hip
	[hɪp]
	1
	2

	hid
	[hɪd]
	1
	7

	team
	[tim]
	1
	5

	deem
	[dim]
	1
	5

	toot
	[tut]
	1
	9

	dude
	[dud]
	1
	2

	hiss
	[hɪs]
	1
	3

	his
	[hɪz]
	1
	5

	sizzle
	[sɪzəl]
	1
	4

	dizzy
	[dɪzi]
	1
	3

	tizzy
	[tɪzi]
	1
	4

	Total
	17
	70

Consider the distribution of [h] and [ŋ], word-initially. In this
environment, [h] occurs in 6 separate words, with a total token frequency
of 20. [ŋ] occurs in 0 words, with, of course, a token frequency of 0.
The probability of [h] occurring in this position as compared to [ŋ],
then, is 6/6 based on types, or 20/20 based on tokens. The entropy of
this pair of sounds in this context, then, is:

\(H_{types/tokens} = -[1 log_{2}(1) + 0 log_{2} (0)] = 0\)

Similar results would obtain for [h] and [ŋ] in word-final position,
except of course that it’s [ŋ] and not [h] that can appear in this environment.

For [t] and [d] word-initially, [t] occurs 4 words in this environment,
with a total token frequency of 21, and [d] also occurs in 4 words,
with a total token frequency of 15. Thus, the probability of [t] in
this environment is 4/8, counting types, or 21/36, counting tokens, and
the probability of [d] in this environment is 4/8, counting types, or
15/36, counting tokens. The entropy of this pair of sounds is therefore:

\(H_{types} = -[(\frac{4}{8} log_{2}(\frac{4}{8}))
+ (\frac{4}{8} log_{2}(\frac{4}{8}))] = 1\)

\(H_{types} = -[(\frac{21}{36} log_{2}(\frac{21}{36}))
+ (\frac{15}{36} log_{2}(\frac{15}{36}))] = 0.98\)

In terms of what environment(s) are interesting to examine, that is of
course up to individual researchers. As mentioned in the preface to Predictability of Distribution,
these functions are just tools. It would be just as possible to calculate
the entropy of [t] and [d] in word-initial environments before [ɑ],
separately from word-initial environments before [u]. Or one could
calculate the entropy of [t] and [d] that occur anywhere in a word
before a bilabial nasal...etc., etc. The choice of environment should
be phonologically informed, using all of the resources that have
traditionally been used to identify conditioning environments of interest.
See also the caveats in the following section that apply when one is
calculating systemic entropy across multiple environments.

Predictability of Distribution across All Environments (Systemic Entropy)

While there are times in which knowing the predictability of distribution
within a particular environment is helpful, it is generally the case that
phonologists are more interested in the relationship between the two
sounds as a whole, across all environments. This is achieved by
calculating the weighted average entropy across all environments in which
at least one of the two sounds occurs.

As with single environments, of course, the selection of environments
for the systemic measure need to be phonologically informed. There are
two further caveats that need to be made about environment selection when
multiple environments are to be considered, however: (1) exhaustivity and
(2) uniqueness.

With regard to exhausitivity: In order to calculate the total
predictability of distribution of a pair of sounds in a language, one
must be careful to include all possible environments in which at least
one of the sounds occurs. That is, the total list of environments needs
to encompass all words in the corpus that contain either of the two
sounds; otherwise, the measure will obviously be incomplete. For example,
one would not want to consider just word-initial and word-medial positions
for [h] and [ŋ]; although the answer would in fact be correct (they have 0
entropy across these environments), it would be for the wrong reason—i.e.,
it ignores what happens in word-final position, where they could have had
some other distribution.

With regard to uniqueness: In order to get an accurate calculation of the
total predictability of distribution of a pair of sounds, it is important
to ensure that the set of environments chosen do not overlap with each other,
to ensure that individual tokens of the sounds are not being counted multiple
times. For example, one would not want to have both [#__] and [__i] in the
environment list for [t]/[d] while calculating systemic entropy, because
the words team and deem would appear in both environments, and the sounds
would (in this case) appear to be “more contrastive” (less predictably
distributed) than they might otherwise be, because the contrasting nature
of these words would be counted twice.

To be sure, one can calculate the entropy in a set of individual
environments that are non-exhaustive and/or overlapping, for comparison
of the differences in possible generalizations. But, in order to get an
accurate measure of the total predictability of distribution, the set of
environments must be both exhaustive and non-overlapping. As will be
described below, PCT will by default check whether any set of environments
you provide does in fact meet these characteristics, and will throw a
warning message if it does not.

It is also possible that there are multiple possible ways of developing
a set of exhaustive, non-overlapping environments. For example,
“word-initial” vs. “non-word-initial” would suffice, but so would
“word-initial” vs. “word-medial” vs. “word-final.” Again, it is up to
individual researchers to determine which set of environments makes the
most sense for the particular pheonmenon they are interested in.
See [Hall2012] for a comparison of two different sets of possible
environments in the description of Canadian Raising.

Once a set of exhaustive and non-overlapping environments has been
determined, the entropy in each individual environment is calculated,
as described in Predictability of Distribution in a Single Environment. The frequency of each environment itself is
then calculated by examining how many instances of the two sounds
occurred in each environment, as compared to all other environments, and
the entropy of each environment is weighted by its frequency. These
frequency-weighted entropies are then summed to give the total average
entropy of the sounds across the environments. Again, this value will
range between 0 (complete predictability; no uncertainty) and 1 (complete
unpredictability; maximal uncertainty). This formula is given below; e
represents each individual environment in the exhaustive set of
non-overlapping environments.

Formula for systemic entropy:

\(H_{total} = -\sum_{e \in E} H(e) * p(e)\)

As an example, consider [t]/[d]. One possible set of exhaustive,
non-overlapping environments for this pair of sounds is (1) word-initial
and (2) word-final. The relevant words for each environment are shown in
the table below, along with the calculation of systemic entropy from
these environments.

The calculations for the entropy of word-initial environments were given
above; the calculations for word-final environments are analogous.

To calculate the probability of the environments, we simply count up the
number of total words (either types or tokens) that occur in each
environment, and divide by the total number of words (types or tokens)
that occur in all environments.

Calculation of systemic entropy of [t] and [d]:

	e
	[t]-

words

	[d]-

words

	Types
	Types

	H(e)
	p(e)
	p(e) * H(e)
	H(e)
	p(e)
	p(e) * H(e)

	[#__]
	tot,
team,
toot,
tizzy
	dot,
dude,
deem,
dizzy
	1
	(4+4)/
(8+7)
=8/15
	0.533
	0.98
	(21+15)/
(36+29)
=36/65
	0.543

	[__#]
	hot,
hat,
tot,
dot,
toot
	hid,
dude
	0.863
	7/15
	0.403
	0.894
	29/65
	0.399

	
	0.533+0.403=0.936
	
	0.543+0.399=0.942

In this case, [t]/[d] are relatively highly unpredictably distributed
(contrastive) in both environments, and both environments contributed
approximately equally to the overall measure. Compare this to the example
of [s]/[z], shown below.

Calculation of systemic entropy of [s] and [z]:

	e
	[s]-

words

	[z]-

words

	Types
	Types

	H(e)
	p(e)
	p(e) * H(e)
	H(e)
	p(e)
	p(e) * H(e)

	[#__]
	song,
sing,
sizzle
	
	0
	3/8
	0
	0
	14/33
	0

	[__#]
	hiss
	his
	1
	2/8
	0.25
	0.954
	8/33
	0.231

	[V_V]
	
	sizzle,
dizzy,
tizzy
	0
	3/8
	0
	0
	11/33
	0

	
	0.25
	
	0.231

In this case, there is what would traditionally be called a contrast word
finally, with the minimal pair hiss vs. his; this contrast is neutralized
(made predictable) in both word-initial position, where [s] occurs but
[z] does not, and intervocalic position, where [z] occurs but [s] does
not. The three environments are roughly equally probable, though the
environment of contrast is somewhat less frequent than the environments
of neutralization. The overall entropy of the pair of sounds is on
around 0.25, clearly much closer to perfect predictability (0 entropy)
than [t]/[d].

Note, of course, that this is an entirely fictitious example—that is,
although these are real English words, one would not want to infer
anything about the actual relationship between either [t]/[d] or [s]/[z]
on the basis of such a small corpus. These examples are simplified for
the sake of illustrating the mathematical formulas!

“Predictability of Distribution” Across All Environments (i.e., Frequency-Only Entropy)

Given that the calculation of predictability of distribution is based on
probabilities of occurrence across different environments, it is also
possible to calculate the overall entropy of two segments using their
raw probabilities and ignoring specific environments. Note that this
doesn’t really reveal anything about predictability of distribution per
se; it simply gives the uncertainty of occurrence of two segments that
is related to their relative frequencies. This is calculated by simply
taking the number of occurrences of each of sound 1 (N1) and sound 2
(N2) in the corpus as a whole, and then applying the following formula:

Formula for frequency-only entropy:

\(H = (-1) * [(\frac{N1}{N1+N2}) log_{2} (\frac{N1}{N1+N2})
+(\frac{N2}{N1+N2}) log_{2} (\frac{N2}{N1+N2})]\)

The entropy will be 0 if one or both of the sounds never occur(s) in the
corpus. The entropy will be 1 if the two sounds occur with exactly the
same frequency. It will be a number between 0 and 1 if both sounds occur,
but not with the same frequency.

Note that an entropy of 1 in this case, which was analogous to
perfect contrast in the environment-specific implementation of this
function, does not align with contrast here. For example, [h] and [ŋ]
in English, which are in complementary distribution, could theoretically
have an entropy of 1 if environments are ignored and they happened to
occur with exactly the same frequency in some corpus. Similarly, two
sounds that do in fact occur in the same environments might have a low
entropy, close to 0, if one of the sounds is vastly more frequent than
the other. That is, this calculation is based ONLY on the frequency of
occurrence, and not actually on the distribution of the sounds in the
corpus. This function is thus useful only for getting a sense of the
frequency balance / imbalance between two sounds. Note that one can
also get total frequency counts for any segment in the corpus through
the “Summary” information feature (Summary information about a corpus).

Implementing the predictability of distribution function in the GUI

Assuming a corpus has been opened or created, predictability of
distribution is calculated using the following steps.

	Getting started: Choose “Analysis” / “Calculate predictability of
distribution...” from the top menu bar.

	Sound selection: On the left-hand side of the “Predictability of
distribution” dialogue box, select the two sounds of interest by
clicking “Add pair of sounds. The order of the sounds is
irrelevant; picking [i] first and [u] second will yield the
same results as [u] first and [i] second. Currently, PCT only
allows entire segments to be selected; the next release will allow
a “sound” to be defined as a collection of feature values. The
segment choices that are available will automatically correspond
to all of the unique transcribed characters in your corpus. You can
select more than one pair of sounds to examine in the same environments;
each pair of sounds will be treated individually.

	Environments: Click on “Add environment” to add an environment in
which to calculate predictability of distribution. The left side of
the “Create environment” dialogue box allows left-hand environments
to be specified (e.g., [+back]___), while the right side allows
right-hand environments to be specified (e.g., __#). Both can be used
simultaneously to specify environments on both sides (e.g., [+back]__#).
	Basis for building environments (segments vs. features): Environments
can be selected either as entire segments (including #) or as bundles
of features. Select from the drop-down menu which you prefer. Each
side of an environment can be specified using either type.

	Segment selection: To specify an environment using segments, simply
click on the segment desired.

	Feature selection: To specify an environment using features, select
the first feature from the list (e.g., [voice]), and then specify
whether you want it to be [+voice] or [-voice] by selecting “Add
[+feature]” or “Add [-feature]” as relevant. To add another feature
to this same environment, select another feature and again add
either the + or – value.

	No environments: Note that if NO environments are added, PCT will
calculate the overall predictability of distribution of the two
sounds based only on their frequency of occurrence. This will simply
count the frequency of each sound in the pair and calculate the
entropy based on those frequencies (either type or token). See
below for an example of calculating environment-free entropy for
four different pairs in the sample corpus:

[image: _images/prodfreq.png]

	Environment list: Once all features / segments for a given environment
have been selected, for both the left- and right-hand sides, click on
“Add”; it will appear back in the “Predictability of Distribution”
dialogue box in the environment list. To automatically return to the
environment selection window to select another environment, click on
“Add and select another” instead. Individual environments from the
list can be selected and removed if it is determined that an environment
needs to be changed. It is this list that PCT will verify as being
both exhaustive and unique; i.e., the default is that the environments
on this list will exhaustively cover all instances in your corpus of
the selected sounds, but will do so in such a way that each instance
is counted exactly once.

	Analysis tier: Under “Options,” first pick the tier on which you want
predictability of distribution to be calculated. The default is for
the entire transcription to be used, such that environments are defined
on any surrounding segments. If a separate tier has been created as part
of the corpus (see Creating new tiers in the corpus), however, predictability of distribution can
be calculated on this tier. For example, one could extract a separate
tier that contains only vowels, and then calculate predictability of
distribution based on this tier. This makes it much easier to define
non-adjacent contexts. For instance, if one wanted to investigate the
extent to which [i] and [u] are predictably distributed before front
vs. back vowels, it will be much easier to to specify that the relevant
environments are __[+back] and __[-back] on the vowel tier than to try
to account for possible intervening segments on the entire transcription
tier.

	Type vs. Token Frequency: Next, pick whether you want the calculation
to be done on types or tokens, assuming that token frequencies are
available in your corpus. If they are not, this option will not be
available. (Note: if you think your corpus does include token frequencies,
but this option seems to be unavailable, see Required format of corpus on the required
format for a corpus.)

	Exhaustivity & Uniqueness: The default is for PCT to check for both
exhaustivity and uniqueness of environments, as described above in
Predictability of Distribution across All Environments (Systemic Entropy). Un-checking this box will turn off this mechanism. For
example, if you wanted to compare a series of different possible
environments, to see how the entropy calculations differ under
different generalizations, uniqueness might not be a concern. Keep
in mind that if uniqueness and exhaustivity are not met, however,
the calculation of systemic entropy will be inaccurate.
	If you ask PCT to check for exhaustivity, and it is not met, an error
message will appear that warns you that the environments you have
selected do not exhaustively cover all instances of the symbols in
the corpus, as in the following; the “Show details...” option has
been clicked to reveal the specific words that occur in the corpus
that are not currently covered by your list of environments.
Furthermore, a .txt file is automatically created that lists all
of the words, so that the environments can be easily adjusted. This
file is stored in the ERRORS folder within the working directory
that contains the PCT software, and can be accessed directly by
clicking “Open errors directory.” If exhaustivity is not important,
and only the entropy in individual environments matters, then it is
safe to not enforce exhaustivity; it should be noted that the
weighted average entropy across environments will NOT be accurate
in this scenario, because not all words have been included.

[image: _images/proderror2.png]
Here’s an example of correctly exhaustive and unique selections for
calculating the predictability of distribution based on token frequency
for [s] and [ʃ] in the sample corpus:

[image: _images/proddialog.png]

	Entropy calculation / results: Once all environments have been specified,
click “Calculate predictability of distribution.” If you want to start
a new results table, click that button; if you’ve already done at least
one calculation and want to add new calculations to the same table,
select the button with “add to current results table.” Results will
appear in a pop-up window on screen. The last row for each pair gives
the weighted average entropy across all selected environments, with
the environments being weighted by their own frequency of occurrence.
See the following example:

[image: _images/prodresults.png]

	Output file / Saving results: If you want to save the table of results,
click on “Save to file” at the bottom of the table. This opens up a
system dialogue box where the directory and name can be selected.

To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Kullback-Leibler Divergence

About the function

Another way of measuring the distribution of environments as a proxy for
phonological relationships is the Kullback-Leibler (KL) measure of the
dissimilarity between probability distributions [Kullback1951].
Sounds that are distinct phonemes appear in the same environments, that is,
there are minimal or near-minimal, pairs. Allophones, on the other hand,
have complementary distribution, and never appear in the same environment.
Distributions that are identical have a KL score of 0, and the more
dissimilar two distributions, the higher the KL score. Applied to
phonology, the idea is to calculate the probability of two sounds across
all environments in a corpus, and use KL to measure their dissimilarity.
Scores close to 0 suggest that the two sounds are distinct phonemes,
since they occur in many of the same environments (or else there is
extensive free variation). Higher scores represent higher probabilities
that the two sounds are actually allophones. Since KL scores have no
upper bound, it is up to the user to decide what counts as “high enough”
for two sounds to be allophones (this is unlike the predictability of
distribution measure described in Predictability of Distribution). See [Peperkamp2006]
for a discussion of how to use Z-Scores to make this discrimination.

As with the predictability of distribution measure in Predictability of Distribution, spurious
allophony is also possible, since many sounds happen to have non-overlapping
distributions. As a simple example, vowels and consonants generally have
high KL scores, because they occur in such different environments.
Individual languages might have cases of accidental complementary
distribution too. For example, in English /h/ occurs only initially and
[ŋ] only occurs finally. However, it is not usual to analyze them as
being in allophones of a single underlying phonemes. Instead, there is
a sense that allophones need to be phonetically similar to some degree,
and /h/ and /ŋ/ are simply too dissimilar.

To deal with this problem, [Peperkamp2006] suggest two
“linguistic filters” that can be applied, which can help identify
cases of spurious allophones, such as /h/ and /ŋ/. Their filters do
not straightforwardly apply to CorpusTools, since they use 5-dimensional
vectors to represent sounds, while in CorpusTools most sounds have only
binary features. An alternative filter is used instead, and it is
described below.

It is important to note that this function’s usefulness depends on the
level of analysis in your transcriptions. In many cases, corpora are
transcribed at a phonemic level of detail, and KL will not be very
informative. For instance, the IPHOD corpus does not distinguish between
aspirated and unaspirated voiceless stops, so you cannot measure their
KL score.

Method of calculation

All calculations were adopted from [Peperkamp2006]. The variables
involves are as follows: s is a segment, c is a context, and C is the
set of all contexts. The Kullback-Leibler measure of dissimilarity between
the distributions of two segments is the sum for all contexts of the
entropy of the contexts given the segments:

KL Divergence:

\(m_{KL}(s_1,s_2) = \sum_{c \in C} P(c|s_1) log (\frac{P(c|s_1)}{P(c|s_2)})
+ P(c|s_2) log(\frac{P(c|s_2)}{P(c|s_1)})\)

The notation *P(c|s) means the probability of context c given segment s,
and it is calculated as follows:

\(P(c|s) = \frac{n(c,s) + 1}{n(s) + N}\)

...where n(c,s) is the number of occurrences of segments s in context c.
[Peperkamp2006] note that this equal to the number of occurrences
of the sequence sc, which suggests that they are only looking at the right
hand environment. This is probably because in their test corpora, they were
looking at allophones conditioned by the following segment. PCT provides
the option to look only at the left-hand environment, only at the right-hand
environment, or at both.

[Peperkamp2006] then compare the average entropy values of each segment,
in the pair. The segment with the higher entropy is considered to be a
surface representation (SR), i.e. an allophone, while the other is the
underlying representation (UR). In a results window in PCT, this is given
as “Possible UR.” More formally:

\(SR = \max_{SR,UR}[\sum_{c} P(c|s) log \frac{P(c|s)}{P(c)}]\)

[Peperkamp2006] give two linguistic filters for getting rid of spurious
allophones, which rely on sounds be coded as 5-dimensional vectors. In
PCT, this concept as been adopted to deal with binary features. The aim
of the filter is the same, however. In a results window the column labeled
“spurious allophones” gives the result of applying this filter.

The features of the supposed UR and SR are compared. If they differ by
only one feature, they are considered plausibly close enough to be
allophones, assuming the KL score is high enough for this to be
reasonable (which will depend on the corpus and the user’s expectations).
In this case, the “spurious allophones?” results will say ‘No.’

If they differ by more than 1 feature, PCT checks to see if there any
other sounds in the corpus that are closer to the SR than the UR is.
For instance, if /p/ and /s/ are compared in the IPHOD corpus, /p/ is
considered the UR and /s/ is the SR. The two sounds differ by two
features, namely [continuant] and [coronal]. There also exists another
sound, /t/, which differs from /s/ by [continuant], but not by [coronal]
(or any other feature). In other words, /t/ is more similar to /s/ than
/p/ is to /s/. If such an “in-between” sound can be found, then in the
“spurious allophones?” column, the results will say ‘Yes.’

If the two sounds differ by more than 1 feature, but no in-between sound
can be found, then the “spurious allophones?” results will say ‘Maybe.’

Note too that a more direct comparison of the acoustic similarity of
sounds can also be conducted using the functions in Acoustic Similarity.

Implementing the Kullback-Leibler Divergence function in the GUI

To implement the KL function in the GUI, select “Analysis” / “Calculate
Kullback-Leibler...” and then follow these steps:

	Pair of sounds: Click on “Add pair of sounds” to open the “Select
segment pair” dialogue box. The segment choices that are available
will automatically correspond to all of the unique transcribed
characters in your corpus; click on “Consonants” and/or “Vowels”
to see the options. You can select more than one pair of sounds to
examine in the same environments; each pair of sounds will be treated
individually. Selecting more than two sounds at a time will run the
analysis on all possible pairs of those sounds (e.g., selecting [t],
[s], and [d] will calculate the KL score for [t]~[s], [s]~[d], and
[t]~[d]).

	Contexts: Using KL requires a notion of “context,” and there are three
options: left, right, or both. Consider the example word [atema]. If
using the “both” option, then this word consists of these environments:
[#_t], [a_e], [t_m], [e_a], and [m_#]. If the left-side option is chosen,
then only the left-hand side is used, i.e., the word consists of the
environments [#_], [a_], [t_], [e_], and [m_]. If the right-side option
is chosen, then the environments in the word are [_t], [_e], [_m], [_a],
and [_#]. Note that the word boundaries don’t count as elements of words,
but can count as parts of environments.

	Results: Once all selections have been made, click “Calculate
Kullback-Leibler.” If you want to start a new results table, click
that button; if you’ve already done at least one calculation and
want to add new calculations to the same table, select the button
with “add to current results table.” Results will appear in a pop-up
window on screen. Each member of the pair is listed, along with which
context was selected, the entropy of each segment, the KL score, which
of the two members of the pair is more likely to be the UR (as described
above), and PCT’s judgment as to whether this is a possible case of
spurious allophones based on the featural distance.

	Output file / Saving results: If you want to save the table of results,
click on “Save to file” at the bottom of the table. This opens up a
system dialogue box where the directory and name can be selected.

To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

An example of calculating the KL scores in the Example corpus, with the
sounds [s], [ʃ], [t], [n], [m], [e], [u] selected (and therefore all
pairwise comparisons thereof calculated), examining only right-hand side
contexts:

The “Select segment pair” dialogue box, within the “Kullback-Leibler”
dialogue box:

[image: _images/segmentpair.png]
The “Kullback-Leibler” dialogue box, with pairs of sounds and contexts
selected:

[image: _images/kldialog.png]
The resulting table of results:

[image: _images/klresults.png]

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

String similarity and neighbourhood density

About the functions

String similarity is any measure of how similar any two sequences of
characters are. These character strings can be strings of letters or
phonemes; both of the methods of calculation included in PCT allow for
calculations using either type of character. It is, therefore, a basic
measure of overall form-based similarity.

String similarity finds more widespread use in areas of linguistics other
than phonology; it is, for example, used in Natural Language Processing
applications to determine, for example, possible alternative spellings
when a word has been mistyped. It is, however, also useful for determining
how phonologically close any two words might be.

String similarity could be part of a calculation of morphological
relatedness, if used in conjunction with a measure of semantic similarity
(see, e.g., [Hall2014b]). In particular, it can be used in conjunction
with the Frequency of Alternation function of PCT (see Frequency of alternation) as a means
of calculating the frequency with which two sounds alternate with each
other in a language.

Some measure of string similarity is also used to calculate neighbourhood
density (e.g. [Greenberg1964]; [Luce1998]; [Yao2011]),
which has been shown to affect phonological processing. A phonological
“neighbour” of some word X is a word that is similar in some close way
to X. For example, it might differ by maximally one phone (through deletion,
addition, or subsitution) from X. X’s neighbourhood density, then, is the
number of words that fit the criterion for being a neighbour.

Method of calculation: String similarity

Levenshtein Edit Distance

Edit distance is defined as the minimum number of one-symbol deletions,
additions, and substitutions necessary to turn one string into another.
For example, turn and burn would have an edit distance of 1, as the only
change necessary is to turn the <t> into a , while the edit distance
between turn and surfs would be 3, with <t> becoming <s>, <n> becoming
<f>, and ∅ becoming <s> at the end of the word. All such one-symbol
changes are treated as equal in Levenshtein edit distance, unlike
phonological edit distance, described in the following section. Generally
speaking, the neighbourhood density of a particular lexical item is
measured by summing the number of lexical items that have an edit distance
of 1 from that item [Luce1998].

Phonological Edit Distance

Phonological edit distance is quite similar to Levenshtein edit distance,
in that it calculates the number of one-symbol changes between strings,
but it differs in that changes are weighted based on featural similarity.
For example, depending on the feature system used, changing <t> to <s>
might involve a single feature change (from [-cont] to [+cont]), while
changing <t> to might involve two (from [-voice, +cor] to [+voice,
-cor]). By default, the formula for calculating the phonological distance
between two segments—or between a segment and “silence”, i.e. insertion
or deletion—is the one used in the Sublexical Learner [Allen2014].
When comparing two segments, the distance between them is equal to the
sum of the distances between each of their feature values: the distance
between two feature values that are identical is 0, while the distance
between two opposing values (+/- or -/+) is 1, and the distance between
two feature values in the case that just one of them is 0 (unspecified)
is set to by default to 0.25. When comparing a segment to “silence”
(insertion/deletion), the silence is given feature values of 0 for
all features and then compared to the segment as normal.

Khorsi (2012) Similarity Metric

Khorsi (2012) proposes a particular measure of string similarity based
on orthography, which he suggests can be used as a direct measure of
morphological relatedness. PCT allows one to calculate this measure,
which could be used, as Khorsi describes, on its own, or could be used
in conjunction with other measures (e.g., semantic similarity) to create
a more nuanced view.

This measure starts with the sum of the log of the inverse of the
frequency of occurrence of each of the letters in the longest common
shared sequence between two words, and then subtracts the sum of the
log of the inverse of the frequency of the letters that are not shared,
as shown below.

Formula for string similarity from [Khorsi2012]:

\(\sum_{i=1}^{\lVert LCS(w_1,w_2) \rVert} log (\frac{1}{freq(LCS(w_1,w_2)[i])})
- \sum_{i=1}^{\lVert \overline{LCS(w_1,w_2)} \rVert} log (\frac{1}{freq(\overline{LCS(w_1,w_2)}[i])})\)

Note:
* w1, w2 are two words whose string similarity is to be measured
* LCS(w1, w2) represents the Longest Common Shared Sequence of symbols

between the two words

As with other functions, the frequency measure used for each character
will be taken from the current corpus. This means that the score will
be different for a given pair of words (e.g., pressed vs. pressure)
depending on the frequency of the individual characters in the loaded corpus.

Implementing the string similarity function in the GUI

To start the analysis, click on “Analysis” / “Calculate string similarity...”
in the main menu, and then follow these steps:

	String similarity algorithm: The first step is to choose which of the
three methods described above is to be used to calculate string similarity.
The options are phonological edit distance, standard (Levenshtein) edit
distance, and the algorithm described above and in [Khorsi2012].

	Comparison type: Next, choose what kind of comparison is to be done.
One can either take a single word and get its string similarity score
to every other word in the corpus (useful, for example, when trying
to figure out which words are most / least similar to a given word,
as one might for stimuli creation), or can compare individual pairs
of words (useful if a limited set of pre-determined words is of
interest). For each of these, you can use words that already exist
in the corpus or calculate the similarity for words (or non-words)
that are not in the corpus. Note that these words will NOT be added
to the corpus itself; if you want to globally add the word (and
therefore have its own properties affect calculations), please use
the instructions in Adding a word.
	One word in the corpus: To compare the similarity of one word that
already exists in the corpus to every other word in the corpus,
simply select “Compare one word to entire corpus” and enter the
single word into the dialogue box, using its standard orthographic
representation. Note that you can choose later which tier string
similarity will be calculated on (spelling, transcription, etc.);
this simply identifies the word for PCT.

	One word not in the corpus: Click on “Calculate for a word/nonword
not in the corpus” and then select “Create word/nonword” to enter
the new word.
	Spelling: Enter the spelling for your new word / nonword using
the regular input keyboard on your computer.

	Transcription: To add in the phonetic transcription of the new
word, it is best to use the provided inventory. While it is
possible to type directly in to the transcription box, using
the provided inventory will ensure that all characters are
understood by PCT to correspond to existing characters in the
corpus (with their concomitant featural interpretation). Click
on “Show inventory” and then choose to show “Consonants,”
“Vowels,” and/or other. (If there is no featural interpretation
of your inventory, you will simply see a list of all the
available segments, but they will not be classified by major
category.) Clicking on the individual segments will add them to
the transcription. The selections will remain even when the
sub-inventories are hidden; we allow for showing / hiding the
inventories to ensure that all relevant buttons on the dialogue
box are available, even on small computer screens. Note that
you do NOT need to include word boundaries at the beginning
and end of the word, even when the boundary symbol is included
as a member of the inventory; these will be assumed
automatically by PCT.

	Frequency and other columns: These can be left at the default.
Note that entering values will NOT affect the calculation;
there is no particular need to enter anything here (it is an
artifact of using the same dialogue box here as in the “Add Word”
function described in Adding a word).

	Create word: To finish and return to the “String similarity”
dialogue box, click on “Create word.”

	Single word pair (in or not in) the corpus: If the similarity of an
individual word pair is to be calculated, one can enter the pair
directly into the dialogue box. For each word that is in the corpus,
simply enter its standard orthographic form. For each word that is
not in the corpus, you can add it by selecting “Create word/nonword”
and following the steps described immediately above in (2b).

	List of word pairs (in the corpus): If there is a long list of pairs
of words, one can simply create a tab-delimited plain .txt file
with one word pair per line. In this case, click on “Choose word
pairs file” and select the .txt file in the resulting system
dialogue box. Note that this option is currently available only
for words that already exist in the corpus, and that these pairs
should be listed using their standard orthographic representations.

	Tier: The tier from which string similarity is to be calculated can
be selected. Generally, one is likely to care most about either
spelling or transcription, but other tiers (e.g., a vowel tier)
can also be selected; in this case, all information removed from
the tier is ignored. Words should always be entered orthographically
(e.g., when telling PCT what word pairs to compare). If similarity is
to be calculated on the basis of spelling, words that are entered are
broken into their letter components. If similarity is to be calculated
on the basis of transcription, the transcriptions are looked up in the
corpus. If a word does not occur in the corpus, its similarity to other
words can still be calculated on the basis of spelling, but not
transcription (as PCT has no way of inferring the transcription from
the spelling).

	Frequency type: If Khorsi similarity is to be calculated, the frequencies
of the symbols is relevant, and so will be looked up in the currently
loaded corpus. Either type frequency or token frequency can be used for
the calculation. This option will not be available for either edit
distance algorithm, because frequency isn’t taken into account in
either one.

	Minimum / Maximum similarity: If one is calculating the similarity of
one word to all others in the corpus, an arbitrary minimum and maximum
can be set to filter out words that are particularly close or distant.
For example, one could require that only words with an edit distance
of both at least and at most 1 are returned, to get the members of
the standard neighbourhood of a particular lexical item. (Recall
that the Khorsi calculation is a measure of similarity, while edit
distance and phonological edit distance are measures of difference.
Thus, a minimum similarity value is analogous to a maximum distance
value. PCT will automatically interpret “minimum” and “maximum”
relative to the string-similarity algorithm chosen.

Here’s an example for calculating the Khorsi similarity of the pair
mata (which occurs in the corpus) and mitoo [mitu] (which does not),
in the sample corpus, using token frequencies and comparing transcriptions:

[image: _images/stringsimilaritydialog.png]

	Results: Once all options have been selected, click “Calculate string
similarity.” If this is not the first calculation, and you want to
add the results to a pre-existing results table, select the choice
that says “add to current results table.” Otherwise, select “start
new results table.” A dialogue box will open, showing a table of the
results, including word 1, word 2, the result (i.e., the similarity
score for Khorsi or distance score for either of the edit algorithms),
whether type or token frequency was used (if the Khorsi method is
selected; otherwise, N/A), and which algorithm was used. Note that
the entries in the table will be written in spelling regardless of
whether spelling or transcriptions were used. This file can be saved
to a desired location by selecting “Save to file” at the bottom of
the table.

Here’s an example result file for the above selection:

[image: _images/stringsimilarityresults.png]
To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

String similarity and neighbourhood density

About the functions

Some measures of string similarity are used to calculate neighbourhood
density (e.g. [Greenberg1964]; [Luce1998]; [Yao2011]),
which has been shown to affect phonological processing. A phonological
“neighbor” of some word X is a word that is similar in some close way
to X. For example, it might differ by maximally one phone (through deletion,
addition, or subsitution) from X. X’s neighborhood density, then, is the
number of words that fit the criterion for being a neighbour.

Method of calculation: Neighbourhood density

A word’s neighborhood density is equal to the number of other words in the
corpus similar to that word (or, if using token frequencies, the sum of
those words’ counts). The threshold that defines whether two words are
considered similar to each other can becalculated using any of the three
distance metrics described in Method of calculation: String similarity: Levenshtein edit distance,
phonological edit distance, or Khorsi (2012) similarity. As implemented
in PCT, for a query word, each other word in the corpus is checked for
its similarity to the query word and then added to a list of neighbors
if sufficiently similar.

For further detail about the available distance/similarity metrics,
refer to Method of calculation: String similarity.

Implementing the neighbourhood density function in the GUI

To start the analysis, click on “Analysis” / “Calculate neighbourhood
density...” in the main menu, and then follow these steps:

	String similarity algorithm: The first step is to choose which of the
three methods of string similarity is to be used to calculate
neighbourhood density. Note that the standard way of calculating
density is using standard Levenstein edit distance. We include the
other two algorithms here as options primarily for the purpose of
allowing users to explore whether they might be useful measures; we
make no claims that either phonological edit distance or the Khorsi
algorithm might be better than edit distance for any reason.
	Minimal pair counts / Substitution neighbours: It is also possible to
calculate neighbourhood density by using a variation of edit distance
that allows for “substitutions only” (not deletions or insertions).
This is particularly useful if, for example, you wish to know the
number of or identity of all minimal pairs for a given word in the
corpus, as minimal pairs are generally assumed to be substitution
neighbours with an edit distance of 1. (Note that the substitution
neighbours algorithm automatically assumes a threshold of 1; multiple
substitutions are not allowed.)

	Query type: Neighbourhood density can be calculated for one of four
types of inputs:
	One word in the corpus: The neighbourhood density of a single word
can be calculated by entering that word’s orthographic representation
in the query box.

	One word not in the corpus: (Note that this will NOT add the word
itself to the corpus, and will not affect any subsequent calculations.
To globally add a word to the corpus itself, please see the
instructions in Adding a word.) Select “Calculate for a word/nonword
in the corpus,” then choose “Create word/nonword” to enter the
new word and do the following:
	Spelling: Enter the spelling for your new word / nonword using
the regular input keyboard on your computer.

	Transcription: To add in the phonetic transcription of the new
word, it is best to use the provided inventory. While it is
possible to type directly in to the transcription box, using
the provided inventory will ensure that all characters are
understood by PCT to correspond to existing characters in the
corpus (with their concomitant featural interpretation). Click
on “Show inventory” and then choose to show “Consonants,”
“Vowels,” and/or other. (If there is no featural interpretation
of your inventory, you will simply see a list of all the
available segments, but they will not be classifed by major
category.) Clicking on the individual segments will add them
to the transcription. The selections will remain even when the
sub-inventories are hidden; we allow for showing / hiding the
inventories to ensure that all relevant buttons on the dialogue
box are available, even on small computer screens. Note that you
do NOT need to include word boundaries at the beginning and end
of the word, even when the boundary symbol is included as a member
of the inventory; these will be assumed automatically by PCT.

	Frequency and other columns: These can be left at the default.
Note that entering values will NOT affect the calculation; there
is no particular need to enter anything here (it is an artifact
of using the same dialogue box here as in the “Add Word” function
described in Adding a word).

	Create word: To finish and return to the “String similarity”
dialogue box, click on “Create word.”

	List of words: If there is a specific list of words for which density
is to be calculated (e.g., the stimuli list for an experiment), that
list can be saved as a .txt file with one word per line and uploaded
into PCT for analysis. Note that in this case, if the words are in
the corpus, either transcription- or spelling-based neighbourhood
density can be calculated; either way, the words on the list should be
written in standard orthography (their transcriptions will be looked
up in the corpus if needed). If the words are not in the corpus, then
only spelling-based neighbourhood density can currently be calculated;
again, the words should be written in orthographically.

	Whole corpus: Alternatively, the neighbourhood density for every word
in the corpus can be calculated. This is useful, for example, if one
wishes to find words that match a particular neighbourhood density.
The density of each word will be added to the corpus itself, as a
separate column; in the “query” box, simply enter the name of that
column (the default is “Neighborhood Density”).

	Tier: Neighbourhood density can be calculated from most of the available
tiers in a corpus (e.g., spelling, transcription, or tiers that
represent subsets of entries, such as a vowel or consonant tier).
(If neighbourhood density is being calculated with phonological edit
distance as the similarity metric, spelling cannot be used.) Standard
neighbourhood density is calculated using edit distance on transcriptions.

	Type vs. token frequency: If the Khorsi algorithm is selected as the
string similarity metric, similarity can be calculated using either
type or token frequency, as described in Khorsi (2012) Similarity Metric.

	Distance / Similarity Threshold: A specific threshold must be set to
determine what counts as a “neighbour.” If either of the edit distance
metrics is selected, this should be the maximal distance that is
allowed – in standard calculations of neighbourhood density, this
would be 1, signifying a maximum 1-phone change from the starting
word. If the Khorsi algorithm is selected, this should be the
minimum similarity score that is required. Because this is not the
standard way of calculating neighbourhood density, we have no
recommendations for what value(s) might be good defaults here;
instead, we recommend experimenting with the string similarity
algorithm to determine what kinds of values are common for words
that seem to count as neighbours, and working backward from that.

	Output file: If this option is left blank, PCT will simply return
the actual neighbourhood density for each word that is calculated
(i.e., the number of neighbours of each word). If a file is chosen,
then the number will still be returned, but additionally, a file
will be created that lists all of the actual neighbours for each word.

	Results: Once all options have been selected, click “Calculate
neighborhood density.” If this is not the first calculation, and
you want to add the results to a pre-existing results table, select
the choice that says “add to current results table.” Otherwise,
select “start new results table.” A dialogue box will open, showing
a table of the results, including the word, its neighbourhood density,
the string type from which neighbourhood density was calculated,
whether type or token frequency was used (if applicable), the string
similarity algorithm that was used, and the threshold value. If the
neighbourhood density for all words in the corpus is being calculated,
simply click on the “start new results table” option, and you will be
returned to your corpus, where a new column has been added automatically.

	Saving results: The results tables can each be saved to tab-delimited
.txt files by selecting “Save to file” at the bottom of the window.
Any output files containing actual lists of neighbours are already
saved as .txt files in the location specified (see step 6). If all
neighbourhood densities are calculated for a corpus, the corpus itself
can be saved by going to “File” / “Export corpus as text file,” from
where it can be reloaded into PCT for use in future sessions with the
neighbourhood densities included.

Here’s an example of neighbourhood density being calculated on
transcriptions for the entire example corpus, using edit distance
with a threshold of 1:

[image: _images/neighdendialog.png]
The corpus with all words’ densities added:

[image: _images/neighdencolumn.png]
An example of calculating all the neighbours for a given word in the
IPHOD corpus, and saving the resulting list of neighbours to an output file:

[image: _images/neighdendialogoutput.png]
The on-screen results table, which can be saved to a file itself:

[image: _images/neighdenresults.png]
And the saved output file listing all 45 of the neighbours of cat in the IPHOD corpus:

[image: _images/neighdenoutput.png]
An example .txt file containing one word per line, that can be uploaded
into PCT so that the neighbourhood density of each word is calculated:

[image: _images/neighdeninput.png]
The resulting table of neighbourhood densities for each word on the list
(in the IPHOD corpus, with standard edit distance and a threshold of 1):

[image: _images/neighdeninputresults.png]
To return to the function dialogue box with your most recently used
selections after any results table has been created, click on “Reopen
function dialog.” Otherwise, the results table can be closed and you
will be returned to your corpus view.

.._neighborhood_density_gui:

Implementing the neighbourhood density function on the command line

In order to perform this analysis on the command line, you must enter a
command in the following format into your Terminal:

pct_neighdens CORPUSFILE ARG2

...where CORPUSFILE is the name of your *.corpus file and ARG2 is either
the word whose neighborhood density you wish to calculate or the name
of your word list file (if calculating the neighborhood density of each
word). The word list file must contain one word (specified using either
spelling or transcription) on each line. You may also use command line
options to change various parameters of your neighborhood density
calculations. Descriptions of these arguments can be viewed by running
pct_neighdens –h or pct_neighdens –help. The help text from this
command is copied below, augmented with specifications of default values:

Positional arguments:

	
corpus_file_name

	Name of corpus file

	
query

	Name of word to query, or name of file including a list of words

Optional arguments:

	
-h

	
--help

	Show this help message and exit

	
-a ALGORITHM

	
--algorithm ALGORITHM

	The algorithm used to determine distance

	
-d MAX_DISTANCE

	
--max_distance MAX_DISTANCE

	Maximum edit distance from the queried word to consider a word a neighbor.

	
-s SEQUENCE_TYPE

	
--sequence_type SEQUENCE_TYPE

	The name of the tier on which to calculate distance

	
-w COUNT_WHAT

	
--count_what COUNT_WHAT

	If ‘type’, count neighbors in terms of their type frequency. If
‘token’, count neighbors in terms of their token frequency.

	
-m

	
--find_mutation_minpairs

	This flag causes the script not to calculate neighborhood density,
but rather to find minimal pairs–see documentation.

	
-o OUTFILE

	
--outfile OUTFILE

	Name of output file.

EXAMPLE 1: If your corpus file is example.corpus and you want to
calculate the neighborhood density of the word ‘nata’ using defaults
for all optional arguments, you would run the following command in your
terminal window:

pct_neighdens example.corpus nata

EXAMPLE 2: Suppose you want to calculate the neighborhood distance of a
list of words located in the file mywords.txt . Your corpus file is again
example.corpus. You want to use the phonological edit distance metric,
and you wish to count as a neighbor any word with a distance less than
0.75 from the query word. In addition, you want the script to produce an
output file called output.txt . You would need to run the following command:

pct_neighdens example.corpus mywords.txt -a phonological_edit_distance -d 0.75 -o output.txt

EXAMPLE 3: You wish to find a list of the minimal pairs of the word ‘nata’.
You would need to run the following command:

pct_neighdens example.corpus nata -m

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Frequency of alternation

About the function

The occurrence of alternations can be used in assessing whether two
phonemes in a language are contrastive or allophonic, with alternations
promoting the analysis of allophony (e.g., [Silverman2006], [Johnson2010],
[Lu2012]), though it’s clear that not all alternating sounds are
allophonic (e.g., the [k]~[s] alternation in electric~electricity).

In general, two phonemes are considered to alternate if they occur in
corresponding positions in two related words. For example, [s]/[ʃ]
would be considered an alternation in the words [dəpɹɛs] and [dəpɹɛʃən]
as they occur in corresponding positions and the words are morphologically
related. [Johnson2010] make the point that alternations may be
more or less frequent in a language, and imply that this frequency may
affect the influence of the alternations on phonological relations. As far
as we know, however, there is no literature that directly tests this claim
or establishes how frequency of alternation could actually be quantified
(though see discussion in [Hall2014b]).

Method of calculation

In PCT, frequency of alternation [1] is the ratio of the number of words
that have an alternation of two phonemes to the total number of words
that contain either phoneme, as in:

\(Frequency\ of\ alternation = \frac{Words\ with\ an\ alternation\ of\ s_1\ and\ s_2}
{Words\ with\ s_1\ +\ words\ with\ s_2}\)

To determine whether two words have an alternation of the targeted phonemes,
one word must contain phoneme 1, the other must contain phoneme 2, and some
threshold of “relatedness” must be met. In an ideal world, this would be
determined by a combination of orthographic, phonological, and semantic
similarity; see discussion in Hall et al. (in submission). Within PCT,
however, a much more basic relatedness criterion is used: string similarity.
This is indeed what [Khorsi2012] proposes as a measure of morphological
relatedness, and though we caution that this is not in particularly close
alignment with the standard linguistic interpretation of morphological
relatedness, it is a useful stand-in for establishing an objective
criterion. If both conditions are met, the two words are considered to
have an alternation and are added to the pool of “words with an
alternation of s1 and s2.”

It is also possible to require a third condition, namely, that the
location of phoneme 1 and phoneme 2 be roughly phonologically aligned
across the two words (e.g., preceded by the same material). Requiring
phonological alignment will make PCT more conservative in terms of what
it considers to “count” as alternations. However, the phonological
alignment algorithm is based on [Allen2014] and currently
only works with English-type morphology, i.e., a heavy reliance on
prefixes and suffixes rather than any other kinds of morphological
alternations. Thus, it should not be used with non-affixing languages.

Again, we emphasize that we do not believe this to currently be a
particularly accurate reflection of morphological relatedness, so the
resulting calculation of frequency of alternation should be treated with
extreme caution. We include it primarily because it is a straightforward
function of string similarity that has been claimed to be relevant, not
because the current instantiation is thought to be particularly valid.

Implementing the frequency of alternation function in the GUI

To start the analysis, click on “Analysis” / “Calculate frequency of
alternation...” in the main menu, and then follow these steps:

	Segments: The first step is to choose which two sounds you wish to
check alternations for. Click on “Add pair of sounds”; PCT will
automatically populate a menu of all sounds in the corpus, so all
that needs to be done is the selection of the targeted two sounds.
Multiple pairs of sounds can be added by selecting “Add and create
another” instead “Add” in the selection window.

	String similarity algorithm: Next, choose which distance / similarity
metric to use. Refer to Method of calculation: String similarity for more details.

	Tier: The tier from which string similarity is to be calculated can
be selected. Generally, one is likely to care most about full
transcriptions, but other tiers (e.g., a vowel tier) can also be
selected; in this case, all information removed from the tier is
ignored.

	Frequency Type: Next, select which frequency type to use for your
similarity metric, either type or token frequency. This parameter is
only available if using the Khorsi similarity metric, which relies on
counting the frequency of occurrence of the sounds in the currently
selected corpus; neither edit distance metric involves frequency.

	Minimal pairs: Then, select whether you wish to include alternations
that occur in minimal pairs. If, for example, the goal is to populate
a list containing all instances where two segments potentially
alternate, select “include minimal pairs.” Alternatively, if one
wishes to discard known alternations that are contrastive, select
“ignore minimal pairs.” (E.g., “bat” and “pat” look like a potential
“alternation” of [b] and [p] to PCT, because they are extremely similar
except for the sounds in question, which are also phonologically aligned.)

	Threshold values: If the Khorsi algorithm is selected, enter the minimum
similarity value required for two words to count as being related.
Currently the default is -15; this is an arbitrary (and relatively
low / non-conservative) value. We recommend reading [Khorsi2012] and
examining the range of values obtained using the string similarity
algorithm before selecting an actual value here. Alternatively, if
one of the edit distance algorithms is selected, you should instead
enter a maximum distance value that is allowed for two words to count
as being related. Again, there is a default (6) that is relatively
high and non-conservative; an understanding of edit distances is crucial
for applying this threshold in a meaningful way.

	Phonological alignment: Choose whether you want to require the phones
to be phonologically aligned or not, as per the above explanation.

	Corpus size: Calculating the full set of possible alternations for a
pair of sounds may be extremely time-consuming, as all words in the
corpus must be compared pairwise. To avoid this problem, a subset of
the corpus can be selected (in which case, we recommend running the
calculation several times so as to achieve different random subsets
for comparison). To do so, enter either (1) the number of words you’d
like PCT to extract from the corpus as a subset (e.g., 5000) or (2) a
decimal, which will result in that percentage of the corpus being used
as a subset (e.g., 0.05 for 5% of the corpus).

	Output alternations: You can choose whether you want PCT to output a
list of all the words it considers to be “alternations.” This is useful
for determining how accurate the calculation is. If you do want the
list to be created, enter a file path or select it using the system
dialogue box that opens when you click on “Select file location.” If
you do not want such a list, leave this option blank.

An example of selecting the parameters for frequency of alternation,
using the sample corpus:

[image: _images/freqaltdialog.png]

	Results: Once all options have been selected, click “Calculate
frequency of alternation.” If this is not the first calculation,
and you want to add the results to a pre-existing results table,
select the choice that says “add to current results table.” Otherwise,
select “start new results table.” A dialogue box will open, showing
a table of the results, including sound 1, sound 2, the total number
of words with either sound, and total number of words with an
alternation, the frequency of alternation and information about
the specified similarity / distance metric and selected threshold
values. To save these results to a .txt file, click on “Save to file”
at the bottom of the table.

An example of the results table:

[image: _images/freqaltresults.png]
To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

	[1]	As emphasized throughout this section, the algorithm implemented
in PCT is an extremely inaccurate way of calculating frequency of
alternation, and should be used only with a full understanding of
its severe limitations.

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Mutual Information

About the function

Mutual information [1] is a measure of how much dependency there is between
two random variables, X and Y. That is, there is a certain amount of
information gained by learning that X is present and also a certain amount
of information gained by learning that Y is present. But knowing that X
is present might also tell you something about the likelihood of Y being
present, and vice versa. If X and Y always co-occur, then knowing that
one is present already tells you that the other must also be present. On
the other hand, if X and Y are entirely independent, then knowing that
one is present tells you nothing about the likelihood that the other is
present.

In phonology, there are two primary ways in which one could interpret X
and Y as random variables. In one version, X and Y are equivalent random
variables, each varying over “possible speech sounds in some unit” (where
the unit could be any level of representation, e.g. a word or even a
non-meaningful unit such as a bigram). In this case, one is measuring
how much the presence of X anywhere in the defined unit affects the
presence of Y in that same unit, regardless of the order in which X and
Y occur, such that the mutual information of (X; Y) is the same as the
mutual information of (Y; X), and furthermore, the pointwise mutual
information of any individual value of each variable (X = a; Y = b) is
the same as the pointwise mutual information of (X = b; Y = a). Although
his is perhaps the most intuitive version of mutual information, given
that it does give a symmetric measure for “how much information does the
presence of a provide about the presence of b,” we are not currently
aware of any work that has attempted to use this interpretation of MI
for phonological purposes.

The other interpretation of MI assumes that X and Y are different random
variables, with X being “possible speech sounds occurring as the first
member of a bigram” and Y being “possible speech sounds occurring as the
second member of a bigram.” This gives a directional interpretation to
mutual information, such that, while the mutual information of (X; Y) is
the same as the mutual information of (Y; X), the pointwise mutual
information of (X = a; Y = b) is NOT the same as the pointwise mutual
information of (X = b; Y = a), because the possible values for X and Y
are different. (It is still, trivially, the case that the pointwise mutual
information of (X = a; Y = b) and (Y = b; X = a) are equal.)

This latter version of mutual information has primarily been used as a
measure of co-occurrence restrictions (harmony, phonotactics, etc.). For
example, [Goldsmith2012] use pointwise mutual information as a
way of examining Finnish vowel harmony; see also discussion in
[Goldsmith2002]. Mutual information has also been used instead of
transitional probability as a way of finding boundaries between words
in running speech, with the idea that bigrams that cross word boundaries
will have, on average, lower values of mutual information than bigrams
that are within words (see [Brent1999], [Rytting2004]). Note, however, that
in order for this latter use of mutual information to be useful, one must
be using a corpus based on running text rather than a corpus that is
simply a list of individual words and their token frequencies.

Method of calculation

Both of the interpretations of mutual information described above are
implemented in PCT. We refer to the first one, in which X and Y are
interpreted as equal random variables, varying over “possible speech
sounds in a unit,” as word-internal co-occurrence pointwise mutual
information (pMI), because we specifically use the word as the unit in
which to measure pMI. We refer to the second one, in which X and Y are
different random variables, over either the first or second members of
bigrams, as ordered pair pMI.

The general formula for pointwise mutual information is given below;
it is the binary logarithm of the joint probability of X = a and Y = b,
divided by the product of the individual probabilities that X = a and Y = b.

\(pMI = log_2 (\frac{p(X=a \& Y = b)}{p(X=a)*p(Y=b)})\)

Word-internal co-occurrence pMI: In this version, the joint probability
that X = a and Y = b is equal to the probability that some unit
(here, a word) contains both a and b (in any order). Therefore, the
pointwise mutual information of the sounds a and b is equal to the binary
logarithm of the probability of some word containing both a and b, divided
by the product of the individual probabilities of a word containing a and
a word containing b.

Pointwise mutual information for individual segments:

\(pMI_{word-internal} = log_2 (\frac{p(a \in W \& b \in W)}
{p(a \in W)*p(b \in W)})\)

Ordered pair pMI: In this version, the joint probability that X = a and
Y = b is equal to the probability of occurrence of the sequence ab.
Therefore, the pointwise mutual information of a bigram (e.g., ab) is
equal to the binary logarithm of the probability of the bigram divided
by the product of the individual segment probabilities, as shown in the
formula below.

Pointwise mutual information for bigrams:

\(pMI_{ordered-pair} = log_2 (\frac{p(ab)}
{p(a)*p(b)})\)

For example, given the bigram [a, b], its pointwise mutual information
is the binary logarithm of the probability of the sequence [ab] in the
corpus divided by a quantity equal to the probability of [a] times the
probability of [b]. Bigram probabilities are calculated by dividing counts
by the total number of bigrams, and unigram probabilities are calculated
equivalently.

Note that pMI can also be expressed in terms of the information content
of each of the members of the bigram. Information is measured as the
negative log of the probability of a unit \((I(a) = -log_2*p(a))\), so the
pMI of a bigram ab is also equal to \(I(a) + I(b) – I(ab)\).

Note that in PCT, calculations are not rounded until the final stage,
whereas in [Goldsmith2012], rounding was done at some
intermediate stages as well, which may result in slightly different
final pMI values being calculated.

Implementing the mutual information function in the GUI

To start the analysis, click on “Analysis” / “Calculate mutual information...”
in the main menu, and then follow these steps:

	Bigram: Click on the “Add bigram” button in the “Mutual Information”
dialogue box. A new window will open with a phonetic inventory of all
the segments that occur in your corpus. Select the bigram by clicking
on one segment from the “left-hand side” and one segment from the
“right-hand side.” To add more than one bigram, click “Add and create
another” to be automatically returned to the selection window. Once
the last bigram has been selected, simply click “Add” to return to
the Mutual Information dialogue box. All the selected bigrams will
appear in a list. To remove one, click on it and select “Remove
selected bigram.”

	Tier: Mutual information can be calculated on any available tier.
The default is transcription. If a vowel tier has been created,
for example, one could calculate the mutual information between
vowels on that tier, ignoring intervening consonants, to examine
harmony effects.

	Domain: Choosing “set domain to word” will change the calculation so
that the calculation is for word-internal co-occurrence pMI. In this
case, the order and adjacency of the bigram does not matter; it is
simply treated as a pair of segments that could occur anywhere in a word.

	Word boundary count: A standard word object in PCT contains word
boundaries on both sides of it (e.g., [#kæt#] ‘cat’). If words were
concatenated in real running speech, however, one would expect to see
only one word boundary between each pair of words (e.g., [#mai#kæt#]
‘my cat’ instead of [#mai##kæt#]). To reproduce this effect and assume
that word boundaries occur only once between words (as is assumed in
[Goldsmith2012], choose “halve word boundary count.” Note that this
technically divides the number of boundaries in half and then adds one,
to compensate for the extra “final” boundary at the end of an utterance.
(It will make a difference only for calculations that include a boundary
as one member of the pair.)

	Results: Once all options have been selected, click “Calculate mutual
information.” If this is not the first calculation, and you want to add
the results to a pre-existing results table, select the choice that
says “add to current results table.” Otherwise, select “start new
results table.” A dialogue box will open, showing a table of the
results, including sound 1, sound 2, the tier used, and the mutual
information value. To save these results to a .txt file, click on
“Save to file” at the bottom of the table.

The following image shows the inventory window used for selecting bigrams
in the sample corpus:

[image: _images/bigram.png]
The selected bigrams appear in the list in the “Mutual Information” dialogue box:

[image: _images/midialog.png]
The resulting mutual information results table:

[image: _images/miresults.png]
To return to the function dialogue box with your most recently used selections,
click on “Reopen function dialog.” Otherwise, the results table can be
closed and you will be returned to your corpus view.

Implementing the mutual information function on the command line

In order to perform this analysis on the command line, you must enter a
command in the following format into your Terminal:

pct_mutualinfo CORPUSFILE ARG2

...where CORPUSFILE is the name of your *.corpus file and ARG2 is the
bigram whose mutual information you wish to calculate. The bigram must
be in the format ‘s1,s2’ where s1 and s2 are the first and second
segments in the bigram. You may also use command line options to
change the sequency type to use for your calculations, or to specify
an output file name. Descriptions of these arguments can be viewed by
running pct_mutualinfo -h or pct_mutualinfo --help. The help text
from this command is copied below, augmented with specifications of
default values:

Positional arguments:

	
corpus_file_name

	Name of corpus file

	
query

	Bigram, as str separated by comma

Optional arguments:

	
-h

	
--help

	Show help message and exit

	
-s SEQUENCE_TYPE

	
--sequence_type SEQUENCE_TYPE

	The attribute of Words to calculate FL over. Normally, this will be
the transcription, but it can also be the spelling or a user-specified tier.

	
-o OUTFILE

	
--outfile OUTFILE

	Name of output file

EXAMPLE 1: If your corpus file is example.corpus and you want to calculate
the mutual information of the bigram ‘si’ using defaults for all optional
arguments, you would run the following command in your terminal window:

pct_mutualinfo example.corpus s,i

EXAMPLE 2: Suppose you want to calculate the mutual information of the
bigram ‘si’ on the spelling tier. In addition, you want the script to
produce an output file called output.txt. You would need to run the
following command:

pct_mutualinfo example.corpus s,i -s spelling -o output.txt

	[1]	The algorithm in PCT calculates what is sometimes referred to
as the “pointwise” mutual information of a pair of units X and Y,
in contrast to “mutual information,” which would be the expected
average value of the pointwise mutual information of all possible
values of X and Y. We simplify to use “mutual information” throughout.

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Acoustic Similarity

About the function

Acoustic similarity analyses quantify the degree to which waveforms of
linguistic objects (such as sounds or words) are similar to each other.
The acoustic similarity measures provided here have primarily been used
in the study of phonetic convergence between interacting speakers;
convergence is measured as a function of increasing similarity. These
measures are also commonly used in automatic speech and voice recognition
systems, where incoming speech is compared to stored representations.
Phonologically, acoustic similarity also has a number of applications.
For example, it has been claimed that sounds that are acoustically distant
from each other cannot be allophonically related, even if they are in
complementary distribution (e.g. [Pike1947]; [Janda1999]).

Acoustic similarity alogorithms work on an aggregate scale, quantifying,
on average, how similar one group of waveforms is to another.
Representations have traditionally been in terms of mel-frequency cepstrum
coefficents (MFCCs; [Delvaux2007]; [Mielke2012]), which is
used widely for automatic speech recognition, but one recent introduction
is multiple band amplitude envelopes [Lewandowski2012]. Both MFCCs and
amplitude envelopes will be described in more detail in the following
sections, and both are available as part of PCT.

The second dimension to consider is the algorithm used to match
representations. The most common one is dynamic time warping (DTW),
which uses dynamic programming to calculate the optimal path through a
distance matrix [Sakoe1971], and gives the best alignment of
two time series. Because one frame in one series can align to multiple
frames in another series without a significant cost, DTW provides a
distance independent of time. The other algorithm that is used is
cross-correlation (see discussion in [Lewandowski2012], which aligns
two time series at variable lags. Taking the max value of the alignment
gives a similarity value for the two time series, with higher values
corresponding to higher similarity.

Method of calculation

Preprocessing

Prior to conversion to MFCCs or amplitude envelopes, the waveform is
pre-emphasized to give a flatter spectrum and correct for the higher
drop off in amplitude of higher frequencies due to distance from the mouth.

MFCCs

The calculation of MFCCs in PCT’s function follows the Rastamat
[Ellis2005]‘s implementation of HTK-style MFCCs [HTK] in [Matlab].
Generating MFCCs involves windowing the acoustic waveform and transforming
the windowed signal to the linear frequency domain through a Fourier
transform. Following that, a filterbank of triangular filters is
constructed in the mel domain, which gives greater resolution to
lower frequencies than higher frequencies. Once the filterbank is
applied to the spectrum from the Fourier transform, the spectrum is
represented as the log of the power in each of the mel filters. Using
this mel spectrum, the mel frequency cepstrum is computed by performing
a discrete cosine transform. This transform returns orthogonal
coefficients describing the shape of the spectrum, with the first
coefficent as the average value, the second as the slope of the spectrum,
the third as the curvature, and so on, with each coefficient representing
higher order deviations. The first coefficent is discarded, and the next
X coefficents are taken, where X is the number of coefficents specified
when calling the function. The number of coefficents must be one less
than the number of filters, as the number of coefficents returned by the
discrete cosine transform is equal to the number of filters in the mel
filterbank.

Amplitude envelopes

The calculation of amplitude envelopes follows the Matlab implementation
found in [Lewandowski2012]. First, the signal is filtered into X number
of logarithmically spaced bands, where X is specified in the function call,
using 4th order Butterworth filters. For each band, the amplitude envelope
is calculated by converting the signal to its analytic signal through a
Hilbert transform. Each envelope is downsampled to 120 Hz.

Dynamic time warping (DTW)

PCT implements a standard DTW algorithm [SakoeChiba, 1971]_
and gives similar results as the dtw package [Giorgino2009)]_ in [R].
Given two representations, a 2D matrix is constructed where the dimensions
are equal to the number of frames in each representation. The initial
values for each cell of the matrix is the Euclidean distance between the
two feature vectors of those frames. The cells are updated so that they
equal the local distance plus the minimum distance of the possible previous
cells. At the end, the final cell contains the summed distance of the
best path through the matrix, and this is the minimum distance between
two representations.

Cross-correlation

Cross-correlation seeks to align two time series based on corresponding
peaks and valleys. From each representation a time series is extracted
for each frame’s feature and this time series is cross-correlated with
the respective time series in the other representation. For instance,
the time series for an amplitude envelope’s representation corresponds
to each frequency band, and each frequency band of the first representation
is cross-correlated with each respective frequency band of the second
representation. The time series are normalized so that they sum to 1,
and so matching signals receive a cross-correlation value of 1 and
completely opposite signals receive a cross-correlation value of 0.
The overall distance between two representations is the inverse of the
average cross-correlation values for each band.

Similarity across directories

The algorithm for assessing the similarity of two directories
(corresponding to segments) averages the similarity of each .wav
file in the first directory to each .wav file in the second directory.

Implementing the acoustic similarity function in the GUI

To start the analysis, click on the “Calculate acoustic similarity...” in
the Analysis menu and provide the following parameters. Note that unlike
the other functions, acoustic similarity is not tied directly to any corpus
that is loaded into PCT; sound files are accessed directly through
directories on your computer.

	Comparison type: There are three kinds of comparisons that can be done
in PCT: single-directory, two-directory, or pairwise.
	Single directory: If a single directory is selected (using the
“Choose directory...” dialogue box), two types of results will be
returned: (1) each of the pairwise comparisons and (2) an average
of all these comparisons (i.e., a single value).

	Two directories: Choose two directories, each corresponding to a
set of sounds to be compared. For example, if one were interested
in the similarity of [s] and [ʃ] in Hungarian, one directory would
contain .wav files of individual [s] tokens, and the other directory
would contain .wav files of individual [ʃ] tokens. Every sound file
in the first directory will be compared to every sound file in the
second directory, and the acoustic similarity measures that are
returned will again be (1) all the pairwise comparisons and (2)
an average of all these comparisons (i.e., a single value).

	Pairwise: One can also use a tab-delimied.txt file that lists all
of the pairwise comparisons of individual sound files by listing
their full path names. As with a single directory, each pairwise
comparison will be returned separately.

	Representation: Select whether the sound files should be represented
as MFCCs or amplitude envelopes (described in more detail above).

	Distance algorithm: Select whether comparison of sound files should
be done using dynamic time warping or cross-correlation (described in
more detail above).

	Frequency limits: Select a minimum frequency and a maximum frequency
to use when generating representations. The human voice typically
doesn’t go below 80 Hz, so that is the default cut off to avoid
low-frequency noise. The maximum frequency has a hard bound of the
Nyquist frequency of the sound files, that is, half their sampling rate.
The lowest sampling rate that is typically used for speech is 16,000 Hz,
so a cutoff near the Nyquist (8,000 Hz) is used as the default. The
range of human hearing is 20 Hz to 20 kHz, but most energy in speech
tends to fall off after 10 kHz.

	Frequency resolution: Select the number of filters to be used to divide
up the frequency range specified above. The default for MFCCs is for 26
filters to be constructed, and for amplitude envelopes, 8 filters.

	Number of coefficients (MFCC only): Select the number of coefficients
to be used in MFCC representations. The default is 12 coefficients,
as that is standard in the field. If the number of coefficients is
more than the number of filters minus one, the number of coefficients
will be set to the number of filters minus one.

	Output: Select whether to return results as similarity (inverse
distance) or to us ethe default, distance (inverse similarity).
Dynamic time warping natively returns a distance measure which gets
inverted to similarity and cross-correlation natively returns a
similarity value which gets inverted to distance.

	Multiprocessing: As the generation and comparison of representations
can be time-intensive, using multiprocessing on parts that can be
run in parallel can speed the process up overall. In order to make
this option available, the python-acoustic-similarity module must be
installed; multiprocessing itself can be enabled by going to
“Options” / “Preferences” / “Processing” (see also §3.9.1).

Here’s an example of the parameter-selection box:

[image: _images/acousticsimdialog.png]

	Calculating and saving results: The first time an analysis is run,
the option to “Calculate acoustic similarity (start new results
table)” should be selected. This will output the results to a
pop-up window that lists the directories, the representation choice,
the matching function, the minimum and maximum frequencies, the
number of filters, the number of coefficients, the raw result, and
whether the result is similarity (1) or distance (0). Subsequent
analyses can either be added to the current table (as long as it
hasn’t been closed between analyses) or put into a new table. Once
a table has been created, click on “Save to file” at the bottom of
the table window in order to open a system dialogue box and choose
a directory; the table will be saved as a tab-delimited .txt file.

Here’s an example of the results file:

[image: _images/asresults.png]
To return to the function dialogue box with your most recently used
selections, click on “Reopen function dialog.” Otherwise, the results
table can be closed and you will be returned to your corpus view.

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

Citing PCT and the algorithms used therein

Please cite PCT as the following (all authors after K. C. Hall are listed
alphabetically):

Hall, Kathleen Currie, Blake Allen, Michael Fry, Scott Mackie, and
Michael McAuliffe. (2015). Phonological CorpusTools, Version 1.0.
[Computer program]. Available from PCT SourceForge page [http://sourceforge.net/projects/phonologicalcorpustools/].

If you need to cite a more traditional academic source rather than the
software itself, please use:

Mackie, Scott, Kathleen Currie Hall, Blake Allen, Michael McAuliffe,
Michael Fry. (2014). Phonological CorpusTools: A free, open-source tool
for phonological analysis. Presented at the 14th Conference for Laboratory
Phonology, Tokyo, Japan.

If you are using the IPHOD corpus as distributed with PCT, please also be
sure to cite:

Vaden, K. I., Halpin, H. R., Hickok, G. S. (2009). Irvine Phonotactic Online
Dictionary, Version 2.0. [Data file]. Available from http://www.iphod.com.

and if you are making use of the SUBTLEX token frequencies as part of the
IPHOD corpus, you should cite:

Brysbaert, Marc, & Boris New. (2009). Moving beyond Kučera and Francis:
A critical evaluation of current word frequency norms and the introduction
of a new and improved word frequency measure for American English.
Behavior Research Methods 41(4): 977-990.

More generally, the algorithms that are implemented in PCT are taken from
published sources. As mentioned in the introduction, we highly encourage
users of PCT to cite the original sources of the algorithms rather than,
for example, saying that “functional load was calculated using PCT” and
just citing PCT itself. First, there are multiple parameters within PCT
that can be selected for any given calculation, and these should themselves
be specified for maximum clarity and replicability. Second, credit for the
original creation or application of the algorithms should obviously be given
to the proper sources. We have attempted to make this as easy as possible
by both giving these sources here in the user’s manual and also embedding
them in each function in the “About” option for each. Furthermore, if you
are the author of a function that is currently implemented in PCT and you
disagree with the way in which it has been implemented, please contact us
to let us know! We have done our best to faithfully replicate published
descriptions, but it is obviously possible that we have made errors.
Finally, if you are the author of a function that you would like to see
implemented in PCT, please contact us to discuss the possibility.

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Phonological CorpusTools 1.0.0 documentation

References

	[Allen2014]	Allen, Blake & Michael Becker (2014).
Learning alternations from surface forms with sublexical phonology.
Ms. University of British Columbia and Stony Brook University.
See also http://sublexical.phonologist.org/.

	[Archangeli2013]	Archangeli, Diana & Douglas Pulleyblank. 2013.
The role of UG in phonology. Proceedings of the West Coast Conference
on Formal Linguistics 31. Somerville, MA: Cascadilla Press.

	[PRAAT]	Boersma, Paul & Weenink, David (2014). Praat: doing phonetics by computer
[Computer program]. Available from http://www.praat.org/

	[Brent1999]	Brent, Michael R. 1999. An efficient, probabilistically sound algorithm
for segmentation and word discovery. Machine Learning 34.71-105.

	[SUBTLEX]	Brysbaert, Marc, & Boris New. 2009. Moving beyond Kučera and Francis:
A critical evaluation of current word frequency norms and the introduction
of a new and improved word frequency measure for American English.
Behavior Research Methods 41(4): 977-990.

	[Bybee2001]	Bybee, Joan L. 2001. Phonology and language use. Cambridge: Cambridge UP.

	[SPE]	Chomsky, Noam & Morris Halle. 1968. The sound pattern of English.
New York: Harper & Row.

	[Delvaux2007]	Delvaux, V., Soquet, A., 2007. The influence of ambient speech on adult
speech productions through unintentional imitation.
Phonetica 64 (2-3), 145–173.

	[Ellis2005]	Ellis, D. P. W. (2005). PLP and RASTA (and MFCC), and inversion) in Matlab.
Online web resource. http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

	[Ernestus2011]	Ernestus, Mirjam. 2011. Gradience and categoricality in phonological theory.
In The Blackwell Companion to Phonology, ed. by M. van Oostendorp,
C.J. Ewen, E. Hume & K. Rice, 2115-36. Oxford: Wiley-Blackwell.

	[HTK]	Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., ... & Woodland, P.
(1997). The HTK book (Vol. 2). Cambridge: Entropic Cambridge Research Laboratory.

	[Frisch2011]	Frisch, Stefan A. 2011. Frequency effects. In The Blackwell Companion to
Phonology, ed. by M. van Oostendorp, C.J. Ewen, E. Hume & K. Rice,
2137-63. Oxford: Wiley-Blackwell.

	[Frisch2004]	Frisch, Stefan, Janet B. Pierrehumbert & Michael B. Broe. 2004. Similarity
avoidance and the OCP. Natural Language and Linguistic Theory 22.179-228.

	[TIMIT]	Garofolo, John, et al. 1993. TIMIT Acoustic-Phonetic Continuous Speech Corpus
LDC93S1. Web Download. Philadelphia: Linguistic Data Consortium.

	[Giorgino2009]	Giorgino, T. (2009). Computing and visualizing dynamic time warping
alignments in R: the dtw package.
Journal of statistical Software, 31(7), 1-24.

	[Goldsmith2002]	Goldsmith, John. 2002. Probabilistic models of grammar: phonology as
information minimization. Phonological Studies 5.21-46.

	[Goldsmith2012]	Goldsmith, John & Jason Riggle. 2012. Information theoretic approaches
to phonological structure: the case of Finnish vowel harmony. Natural Language and Linguistic Theory 30.859-96.

	[Greenberg1964]	Greenberg, J.H. & J. Jenkins. 1964. Studies in the psychological
correlated of the sound system of American English. Word 20.157-77.

	[Hall2013a]	Hall, Daniel Currie & Kathleen Currie Hall. 2013. Marginal contrasts and
the Contrastivist Hypothesis. Paper presented to the Linguistics
Association of Great Britain, London, 2013.

	[Hall2009]	Hall, Kathleen Currie. 2009. A probabilistic model of phonological
relationships from contrast to allophony. Columbus, OH: The Ohio
State University Doctoral dissertation.

	[Hall2012]	Hall, Kathleen Currie. 2012. Phonological relationships: A probabilistic
model. McGill Working Papers in Linguistics 22.

	[Hall2013b]	Hall, Kathleen Currie. 2013. Documenting phonological change: A
comparison of two Japanese phonemic splits. In: Luo, S. (Ed.),
Proceedings of the 2013 Annual Meeting of the Canadian Linguistic
Association. Canadian Linguistic Association, Toronto, published
online at http://homes.chass.utoronto.ca/~cla-acl/actes2013/actes2013.html.

	[Hall2014a]	Hall, Kathleen Currie, and Elizabeth Hume. 2014. Modeling Perceptual
Similarity: Phonetic, Phonological and Other Influences on the
Perception of French Vowels. Ms., University of British Columbia &
University of Canterbury.

	[Hall2014b]	Hall, Kathleen Currie, Claire Allen, Tess Fairburn, Kevin McMullin,
Michael Fry, & Masaki Noguchi. 2014. Measuring perceived morphological
relatedness. Paper presented at the Canadian Linguistics Association
annual meeting.

	[Hayes2009]	Hayes, Bruce. 2009. Introductory Phonology. Malden, MA: Blackwell - Wiley.

	[Hockett1955]	Hockett, Charles F. (1955). A manual of phonology. International
Journal of American Linguistics, 21(4).

	[Hockett1966]	Hockett, Charles F. 1966. The quantification of functional load:
A linguistic problem. U.S. Air Force Memorandum RM-5168-PR.

	[Hume2015]	Hume, Elizabeth, Kathleen Currie Hall & Andrew Wedel. to appear.
Strategic responses to uncertainty: Strong and weak sound patterns.
Proceedings of the 5th International Conference on Phonology
and Morphology. Korea.

	[Hume2013]	Hume, Elizabeth, Hall, Kathleen Currie, Wedel, Andrew, Ussishkin, Adam,
Adda-Decker, Martine, & Gendrot, Cédric. (2013). Anti-markedness
patterns in French epenthesis: An information-theoretic approach.
In C. Cathcart, I.-H. Chen, G. Finley, S. Kang, C. S. Sandy & E.
Stickles (Eds.), Proceedings of the Thirty-Seventh Annual Meeting
of the Berkeley Linguistics Society (pp. 104-123). Berkeley:
Berkeley Linguistics Society.

	[Janda1999]	Janda, Richard D. (1999). Accounts of phonemic split have been greatly
exaggerated – but not enough. Proceedings of the 14th International
Congress of Phonetic Sciences, 329-332.

	[Johnson2010]	Johnson, Keith, & Molly Babel. 2010. On the perceptual basis of distinctive
features: Evidence from the perception of fricatives by Dutch and English
speakers. Journal of Phonetics 38: 127-136.

	[Khorsi2012]	Khorsi, Ahmed. 2012. On morphological relatedness. Natural Language Engineering.1-19.

	[King1967]	King, Robert D. (1967). Functional load and sound change. Language, 43(4), 831-852.

	[Kucera1963]	Kučera, Henry. (1963). Entropy, redundancy, and functional load in
Russian and Czech. American contributions to the Fifth
International Conference of Slavists (Sofia), 191-219.

	[Lewandowski2012]	Lewandowski, Natalie. 2012. Talent in nonnative phonetic convergence:
Universität Stuttgart Doctoral dissertation.

	[Lu2012]	Lu, Yu-an. 2012. The role of alternation in phonological relationships:
Stony Brook University Doctoral dissertation.

	[Luce1998]	Luce, Paul A. & David B. Pisoni. 1998. Recognizing spoken words:
The neighborhood activation model. Ear Hear 19.1-36.

	[Maekawa2003]	Maekawa, Kikuo. 2003. Corpus of Spontaneous Japanese: Its Design and
Evaluation. Proceedings of ISCA and IEEE Workshop on Spontaneous
Speech Processing and Recognition (SSPR2003).7-12.

	[CSJ]	Maekawa, Kikuo. 2004. Design, compilation, and some preliminary
analyses of the Corpus of Spontaneous Japanese. Spontaneous
speech: Data and analysis, ed. by K. Maekawa & K. Yoneyama, 87-108.
Tokyo: The National Institute of Japanese Language.

	[MATLAB]	The MathWorks Inc. (2014). MATLAB, Version R2014a.

	[Mielke2008]	Mielke, Jeff. 2008. The emergence of distinctive features. Oxford: Oxford UP.

	[Mielke2012]	Mielke, J. 2012. A phonetically based metric of sound similarity.
Lingua, 122(2), 145-163.

	[Peperkamp2003]	Peperkamp, Sharon, Michèle Pettinato & Emmanuel Dupoux. 2003.
Allophonic variation and the acquisition of phoneme categories.
Proceedings of the 27th Annual Boston University Conference on Language
Development, 650-61. Somerville, MA: Cascadilla Press.

	[Peperkamp2006]	Peperkamp, Sharon, Le Calvez, Rozenn, Nadal, Jean-Pierre, & Dupoux,
Emmanuel. (2006). The acquisition of allophonic rules:
Statistical learning with linguistic constraints. Cognition, 101, B31-B41.

	[Pike1947]	Pike, Kenneth L. (1947). Phonemics. Ann Arbor: The University of Michigan Press.

	[BUCKEYE]	Pitt, M.A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W.,
Hume, E. and Fosler-Lussier, E. (2007) Buckeye Corpus of
Conversational Speech (2nd release) [www.buckeyecorpus.osu.edu]
Columbus, OH: Department of Psychology, Ohio State University (Distributor).

	[R]	R Core Team (2014). R: A Language and Environment for Statistical
Computing, Version 3.1.0. http://www.R-project.org/

	[Rytting2004]	Rytting, C. Anton. 2004. Segment predictability as a cue in word
segmentation: Application to Modern Greek. Proceedings of the
Workshop of the ACL Special Interest Group on Computational Phonology (SIGPHON).

	[Sakoe1971]	Sakoe, H., & Chiba, S. (1971). A dynamic programming approach to
continuous speech recognition. In Proceedings of the seventh
international congress on acoustics (Vol. 3, pp. 65-69).

	[Shannon1949]	Shannon, Claude E., & Weaver, Warren. (1949). The Mathematical Theory of
Communication (1998 ed.). Urbana-Champaign: University of Illinois Press.

	[Silverman2006]	Silverman, Daniel. 2006. A critical introduction to phonology: Of sound,
mind, and body. London/New York: Continuum.

	[Surendran2003]	Surendran, Dinoj & Partha Niyogi. 2003. Measuring the functional load
of phonological contrasts. In Tech. Rep. No. TR-2003-12. Chicago.

	[Thakur2011]	Thakur, Purnima (2011). Sibilants in Gujarati phonology. Paper presented
at Information-theoretic approaches to linguistics, University of Colorado - Boulder.

	[Todd2012]	Todd, Simon. 2012. Functional load and length-based Māori vowel
contrast. Poster presented at the Annual Meeting of the New
Zealand Linguistic Society. Auckland, Dec. 2012.

	[IPHOD]	Vaden, K. I., H. R. Halpin & G. S. Hickok. 2009. Irvine Phonotactic
Online Dictionary, Version 2.0. [Data file.] Available from:
http://www.iphod.com.

	[Vitevitch1999]	Vitevitch, M.S. and Luce, P.A. (1999). Probabilistic phonotactics and
neighborhood activation in spoken word recognition. Journal of
Memory & Language, 40, 374-408.

	[Vitevitch2004]	Vitevitch, M.S. & Luce, P.A. (2004). A web-based interface to calculate
phonotactic probability for words and nonwords in English. Behavior
Research Methods, Instruments, and Computers, 36, 481-487.

	[Wedel2013]	Wedel, Andrew, Abby Kaplan & Scott Jackson. (2013). High functional
load inhibits phonological contrast loss: A corpus study.
Cognition 128.179-86.

	[CMU]	Weide, Robert L. (1994). CMU Pronouncing Dictionary.
http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

	[Yao2011]	Yao, Yao. (2011). The effects of phonological neighborhoods on
pronunciation variation in conversational speech. Berkeley:
University of California, Berkeley Doctoral dissertation.

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Phonological CorpusTools 1.0.0 documentation

Index

 Symbols
 | C
 | P
 | Q

Symbols

 	

 	
 --algorithm ALGORITHM

 	

 	command line option, [1]

 	
 --count_what COUNT_WHAT

 	

 	command line option

 	
 --delimiter DELIMITER

 	

 	command line option

 	
 --distinguish_homophones DISTINGUISH_HOMOPHONES

 	

 	command line option

 	
 --find_mutation_minpairs

 	

 	command line option

 	
 --frequency_cutoff FREQUENCY_CUTOFF

 	

 	command line option

 	
 --help

 	

 	command line option, [1], [2], [3]

 	
 --max_distance MAX_DISTANCE

 	

 	command line option

 	
 --outfile OUTFILE

 	

 	command line option, [1], [2]

 	
 --relative_fl RELATIVE_FL

 	

 	command line option

 	
 --sequence_type SEQUENCE_TYPE

 	

 	command line option, [1], [2]

 	
 --trans_delimiter TRANS_DELIMITER

 	

 	command line option

 	
 --type_or_token TYPE_OR_TOKEN

 	

 	command line option

 	

 	
 -a ALGORITHM

 	

 	command line option, [1]

 	
 -d DELIMITER

 	

 	command line option

 	
 -d DISTINGUISH_HOMOPHONES

 	

 	command line option

 	
 -d MAX_DISTANCE

 	

 	command line option

 	
 -e RELATIVE_FL

 	

 	command line option

 	
 -f FREQUENCY_CUTOFF

 	

 	command line option

 	
 -h

 	

 	command line option, [1], [2], [3]

 	
 -m

 	

 	command line option

 	
 -o OUTFILE

 	

 	command line option, [1], [2]

 	
 -s SEQUENCE_TYPE

 	

 	command line option, [1], [2]

 	
 -t TRANS_DELIMITER

 	

 	command line option

 	
 -t TYPE_OR_TOKEN

 	

 	command line option

 	
 -w COUNT_WHAT

 	

 	command line option

C

 	

 	
 command line option

 	

 	--algorithm ALGORITHM, [1]

 	--count_what COUNT_WHAT

 	--delimiter DELIMITER

 	--distinguish_homophones DISTINGUISH_HOMOPHONES

 	--find_mutation_minpairs

 	--frequency_cutoff FREQUENCY_CUTOFF

 	--help, [1], [2], [3]

 	--max_distance MAX_DISTANCE

 	--outfile OUTFILE, [1], [2]

 	--relative_fl RELATIVE_FL

 	--sequence_type SEQUENCE_TYPE, [1], [2]

 	--trans_delimiter TRANS_DELIMITER

 	--type_or_token TYPE_OR_TOKEN

 	-a ALGORITHM, [1]

 	-d DELIMITER

 	-d DISTINGUISH_HOMOPHONES

 	-d MAX_DISTANCE

 	-e RELATIVE_FL

 	-f FREQUENCY_CUTOFF

 	-h, [1], [2], [3]

 	-m

 	-o OUTFILE, [1], [2]

 	-s SEQUENCE_TYPE, [1], [2]

 	-t TRANS_DELIMITER

 	-t TYPE_OR_TOKEN

 	-w COUNT_WHAT

 	corpus_file_name, [1], [2]

 	pairs_file_name_or_segment

 	query, [1]

 	

 	
 corpus_file_name

 	

 	command line option, [1], [2]

P

 	

 	
 pairs_file_name_or_segment

 	

 	command line option

Q

 	

 	
 query

 	

 	command line option, [1]

 Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

 _static/examplevoweltier.png
8086 . Phonological CorpusTools e el

[Search...
_i
atema 110
enuta enuta 110 eua
mashomisi 5.0
mata 2.0 aa
nata nata 2.0 aa
139.0
430
3.0
shushoma. 126.0 uo.a

_static/phonosearchenvironment.png
8006

Create environment

Left hand side Right hand side
Basis for building environment: Basis for bui
[Segments :| [Features

Consonants
Labial | Dental | Aveopalatal
Stop t
Nasal m n
Fricative s I
Vowels high
lat
Front | Nearback | Back Tow
mv_glot_cl
Close i u nasal
round
Close mid e o on
strid
sl g tense
Diphthongs
Other

|

[Add | [Add and create another | [Cancel |

ing environment:

Add [-feature]

[Removeall |

[Add [+feature]

Add [feature]
[Add [nfeature]
Remove selected

+voc

_static/examplecvtier.png
[Search...
Transcription | Frequency | Cvskeleton
atema atema vevey
enuta enuta vevey
mashomisi cvevevey
mata cvev
nata cvev
sasi cvev
shashi cvev
shisata cvevey
shushoma | f.u.f.o.m.a cvevey

_static/miresults.png
8086 Mutual

formation results

Segment 2 “Transcription tier Domain Halved edges Mutual information
t i Transcription Unigram/Bigram | Yes 0.121
t e Transcri Unigram/Bigram | Yes 1.858
t Unigram/Bigram | Yes 1.764

Save to file

] (

Close window

_static/comment.png

_static/neighdenoutput.png
© O O [4iphod_cat_neighbours.rtf
(] (pebetea %) (reguier (12 [+) (M)

2 S S S S S S S
Ty Iy Tz Ty T
kat

Kut

Kt

bt

Y

mat

nat

koot

et

a2t
gt
kam
pat
Kt
kb
Kkat
Ky
f1
It
hat
skat
kan
ks
kant
Py

_images/stringsimilarityresults.png
Word2 | Swingtype | Result | Typeortoken | Algorithm type

mata mitoo. Transcription | -11.429 | token Khorsi

[e T S—

_static/gitksanoriginal.png
Gitksan_love_story_transcription.txt
Tukvuixsox"=s ¢'iic’ gan=t akvi tkvu:ix"-m hanag'-t

Kat ?4: wai—tx"-s c'iic’ wai-tx"-t
o Wil wil-t xsa pagatil-ta

Ztxnos crite
Lx"-m hanaq’
fi-tizt
K=t ket
ikeu titxem hanag’ ki tom naks—x-t

4 go-hakr-ot 7i: ta: hukwo
hot wai—tx"-s c’'iic’ wai—tx"—t
K'iy=t sa 71: palki xsi to7-txv=t i

ka?=t keu t’itx"-n hanaq’ ki ?i:
a—¥iii?u—t-tiit ?i: na-ni:nisxw-tiit

c'in gangan
keu £ itxom hanag’ Ait

4 wilhastasit

ALt wila so-t'a:h
is-xe-y

_static/phonoprobdialog.png
8086

Phonotactic probabiliy algorithm

(@ Vitevitch & Luce

Query.

Calculate for one word

(@ Calculate for a word/nonword not in the corpus
pidger (p.r.ds.2) | Create word/nonword |

() Caleulate for list of words

[Choose file.

Calculate for all words in the corpus

Column name: honotactic probability

Calculate phonotactic probability
(start new results table)

Options
Tier

[Transcription

Type or token

() Count types
(&) Count tokens

Probability type

_) Biphone
(@ Single-phone

Calculate phonotactic probability | (¢, o] [~ About phonotactic probal

(add to current results table)

_static/featurefile.png
8 06 [] sample_feature file.txt

releaseapproxin

Fymbol syliabic consonantal — sonorant continuant gelayed

e
RN

'

'

'

T

R
'

TN
EEEETERT]
Lieeh e
' '

' '

' '

' '

T

O @t €3 < 4P IV TT
'
A st
'
+
+
'
'
'
'
'

'
+
+
'
'
'
'
+
'

_images/funtionalloadresults.png
o Functional load results

[sgment v | segment2 Transcripton tier Type of funcational load Result lgnored homophones? Relatve count2 Minimum word frequency Type or toke
m

n ‘ Transcription ‘ Minimal pairs ‘ 0.111 ‘ No ‘ Yes 10 ‘ type

[Reopenfunctiondialog || Save to file] (Close window

_images/prodresults.png
0.0 oo e PO CEDIY,OF JiStIBUTON LSS s s

Soundl | Sound2 | Tier | Environment Freq.ofSound2 | Freg.ofew. | Entropy | Typeortoken
s I Transcription |_# 0 0 0 0 type
s I Transcription |_[-voc] 0 0 0 0 type
s I Transcription |_[+voc,+highl | 2 5 7 0.863 type
s I Transcription |_[+voc,-highl |3 4 7 0.985 type
s I Transcription | AVG 5 9 10 0.924 type

[Reopenfunctondaios] | Saveto e) (Close window

_images/prodfreq.png
[soundi w| sownz | Ter Environment Freq. of Sound1. Freq. of Sound2 Freq. of env. Entropy Type or token
s I Transcription | FREQ-ONLY 5 9 14 0.94 type
m n Transcription | FREQ-ONLY 6 4 10 0.971 type
e i Transcription | FREQ-ONLY 3 10 13 0.779 type
i u Transcription | FREQ-ONLY 10 4 14 0.863 type

Save to file

_images/loadcorpus.png
8006 Load corpora

Available corpora

‘closed_monosyllabic_words_from_IPHO| [Download example corpora |

example
fox_in_sox_running_text (

Gitksan_love_story_transcription_c 7
inhod [Create corpus from running text (orthography) |

Load corpus from pre-formatted textfile |

[Create corpus from running text (transc

(Import spontaneous speech corpus]

(Remove selected corpus]

Load selected corpus) (Cancel

_images/phonosearchsummary.png
008 s PhONOIOGICE) SEB1C (UM s

Environment Type frequency Token frequency.

t #_[+voc] 5.0 235.0

t aa 3.0 7.0

Show ndividul resuls | [Reapen Fnction deg)

_images/downloadfeature.png
6006 Download feature system

Selecta transeription system Select a feature system
el
(O ARPABET (CMU) *) Sound Pattern of English (SPE)
) XSAMPA -

(@ CELEX
S oisc Clig

Klatt

[Cancel

_images/createtierfeatures.png
8086 Create tier

Name of tier

Vowels

Basis for creating tie:

(Features 2]

Features to define the tier

+voc

hi_subgl_p
glot_cl
EXTRA
distr
round
voice | Add [+feature] |
mv_glotel |l Tadq [feature] |
son

| Add [feature] |
LONG | Add [nfeature] |
lat
cor

cont

[Remove selected |

[Removeall |

[Createtier | [Previewtier | [Cancel

_images/phonoprobresults.png
Phonotactic probability results

Tier Phonotactic probability Algorithm Probabilty type ‘Type or token

Transcription ‘ 0.06 Vitevitch & Luce

ngle-phone token

[Reopen function dialog | | Save to file) (Close window

_images/phonosearchindividual.png
BD.0.0 s PHONOI0GICE) SO EIUHS s

Word | Transcription | Segment
nata nata t aa
mata mata t aa
shisata fisata t aa
ta ta t #_[+voc]
tatomi tatomi t #_[+vod]
tusa tus.a t #_[+voc]
toni to.ni t #_[+vod]
tishenishu t #_[+vod]

Show summary results | [Reopen function dialog | | Save to file Close window

_images/neighdeninputresults.png
600 Neighborhood density results

_ Neighborhood density | Swingtype | Typeortoken | Algorithmtype | Threshold
snow |15 Transcription | N/A Edit distance 1

bell 64 Transcri N/A 1

tree |41 Transcription | N/A 1

ice 37 Transcription | N/A 1

love |21 Transcription | N/A Edit distance 1

star 21 Transcription | N/A Edit distance 1

Angel |2 Transcription | N/A 1

[Reopen function dialog | | Save to file) (Close window

_static/neighdencolumn.png
LN M .. < (77T 1 —"

[Search...
speling v | | Frequency | Neighborhood density
atema 110 0
enuta 110 0
masho... 5.0 0
mata 20 1
nata 20 1
sasi 139.0 0
shashi | f.a. 43.0 0
shisata | fis.ata 3.0 0
f.u.lo.m.a 0

_static/asresults.png
__Acoustic similarity r

File 2 Representation Match function Minimum frequency. Maximum frequency Number of filters Number of coefficients Resu
501_s_02.wav | 501_s_03.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 30.092
501_s_01.wav | 501_s_05.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 29.822
501_s_01.wav | 501_s_03.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 28.17¢
501_s_02.wav | 501_s_01.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 30.906
501_s_05.wav | 501_s_01.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 29.822
501_s_05.wav | 501_s_04.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 30.401
501_s_05.wav | 501_s_03.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 31.042
501_s_05.wav | 501_s_02.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 29.328
501_s_03.wav | 501_s_05.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 31.042
501_s_03.wav | 501_s_02.wav | MFCC Dynami 80.0 7800.0 26 12 30.092

[Reopenfunctiondialg] |

Save to file

Close window

_static/up-pressed.png

_images/cvtier.png
() CV skeleton

The following abstract symbols
correspond to the following segments:
cmns,)
Vie/i,0,u,a

o)

_images/neighdendialogoutput.png
8086

Neighborhood Density

String similarity algorithm

(@ Edit distance

() Phonological edit distance
(O Substitution neighbors only
O Khorsi

Query.

Options
. Tier

(@ Calculate for one word in the corpus

fcat [Transcri o

Calculate for a word/nonword not in the corpus

None created | Create word/nonword |

Calculate for list of words

[Choose file.

Calculate for all words in the corpus

Column name: Neighborhood density

Calculate neighborhood density
(start new results table)

Type or token

+) Count types
Count tokens

Max distance /min similarity.

Threshold: 1

Output it of neighbors to a ile

Choose file.

Calculate neighborhood density
(add to current results table)

(Cancel

| [About neighborhood density..

_images/gitksanoriginal.png
Gitksan_love_story_transcription.txt
Tukvuixsox"=s ¢'iic’ gan=t akvi tkvu:ix"-m hanag'-t

Kat ?4: wai—tx"-s c'iic’ wai-tx"-t
o Wil wil-t xsa pagatil-ta

Ztxnos crite
Lx"-m hanaq’
fi-tizt
K=t ket
ikeu titxem hanag’ ki tom naks—x-t

4 go-hakr-ot 7i: ta: hukwo
hot wai—tx"-s c’'iic’ wai—tx"—t
K'iy=t sa 71: palki xsi to7-txv=t i

ka?=t keu t’itx"-n hanaq’ ki ?i:
a—¥iii?u—t-tiit ?i: na-ni:nisxw-tiit

c'in gangan
keu £ itxom hanag’ Ait

4 wilhastasit

ALt wila so-t'a:h
is-xe-y

_images/phonoprobdialog.png
8086

Phonotactic probabiliy algorithm

(@ Vitevitch & Luce

Query.

Calculate for one word

(@ Calculate for a word/nonword not in the corpus
pidger (p.r.ds.2) | Create word/nonword |

() Caleulate for list of words

[Choose file.

Calculate for all words in the corpus

Column name: honotactic probability

Calculate phonotactic probability
(start new results table)

Options
Tier

[Transcription

Type or token

() Count types
(&) Count tokens

Probability type

_) Biphone
(@ Single-phone

Calculate phonotactic probability | (¢, o] [~ About phonotactic probal

(add to current results table)

_images/neighdeninput.png
© 0O [7word.list for ND_calcs.txt

bell
tree
love
star
angel

_images/featurefile.png
8 06 [] sample_feature file.txt

releaseapproxin

Fymbol syliabic consonantal — sonorant continuant gelayed

e
RN

'

'

'

T

R
'

TN
EEEETERT]
Lieeh e
' '

' '

' '

' '

T

O @t €3 < 4P IV TT
'
A st
'
+
+
'
'
'
'
'

'
+
+
'
'
'
'
+
'

_images/examplevoweltier.png
8086 . Phonological CorpusTools e el

[Search...
_i
atema 110
enuta enuta 110 eua
mashomisi 5.0
mata 2.0 aa
nata nata 2.0 aa
139.0
430
3.0
shushoma. 126.0 uo.a

_images/phonosearchenvironment.png
8006

Create environment

Left hand side Right hand side
Basis for building environment: Basis for bui
[Segments :| [Features

Consonants
Labial | Dental | Aveopalatal
Stop t
Nasal m n
Fricative s I
Vowels high
lat
Front | Nearback | Back Tow
mv_glot_cl
Close i u nasal
round
Close mid e o on
strid
sl g tense
Diphthongs
Other

|

[Add | [Add and create another | [Cancel |

ing environment:

Add [-feature]

[Removeall |

[Add [+feature]

Add [feature]
[Add [nfeature]
Remove selected

+voc

_images/examplecvtier.png
[Search...
Transcription | Frequency | Cvskeleton
atema atema vevey
enuta enuta vevey
mashomisi cvevevey
mata cvev
nata cvev
sasi cvev
shashi cvev
shisata cvevey
shushoma | f.u.f.o.m.a cvevey

_images/miresults.png
8086 Mutual

formation results

Segment 2 “Transcription tier Domain Halved edges Mutual information
t i Transcription Unigram/Bigram | Yes 0.121
t e Transcri Unigram/Bigram | Yes 1.858
t Unigram/Bigram | Yes 1.764

Save to file

] (

Close window

_images/bigram.png
800 Create bigram

Left hand side Right hand side
Consonants Consonants
Labial | Dental | Alveopalatal Labial | Dental | Alveopalatal
stop t stop t
Nasal m| |n Nasal m| |n
Fricative s I Fricative s I
Vowels Vowels
Front | Near back | Back Front | Near back | Back
Close] u Close [i] u
Close mid e ° Close mid e °
Open a Open a
Diphthongs Diphthongs
Other Other
#

[Add | [Add and create another | [Cancel |

_images/kldialog.png
8086

Kullback-Leibler

Segments

Add pair of sounds

Remove selected sound p:

-
. "
. .
. .
. p
. .

Contexts to examine.

Left-hand side only
(@ Right-hand side only
Both sides

Calculate Kullback-Leibler
(start new results table)

Calculate Kullback-Leibler
(add to current results table)

[Cancel | [About Kullback-Leible

_images/neighdenoutput.png
© O O [4iphod_cat_neighbours.rtf
(] (pebetea %) (reguier (12 [+) (M)

2 S S S S S S S
Ty Iy Tz Ty T
kat

Kut

Kt

bt

Y

mat

nat

koot

et

a2t
gt
kam
pat
Kt
kb
Kkat
Ky
f1
It
hat
skat
kan
ks
kant
Py

_images/loadfeature.png
8086 Create feature system from csv

Path to feature system (i o et [Choose file...|

Transcription and features.

ion system [Custom ¢

Transcription system name (if custom) [gitksan
Feature system | hayes s

Feature system name (if custom)

Column delimiter (enter "\t' for tab) [\t

e Cancel

_images/createtier.png
8086 Create tier

Name of tier

Non-mid vowels

Basis for creating
(Segments 3]

Segments to define the tier

Consonants

Lablal | Dental | Alveopalatal

stop €

Nasal m [[n)

Fricative s 7]

Vowels

Front | Near back | Back

Close.

Close mid e o

Open (==

Diphthongs

Other

=3

[Createtier | [Previewtier | [Cancel

_images/loadexample.png
usTe

[Search...
[spelling v | Transcripion Frequency |
atema | atem.a 110 o
enuta |enuta 110 0
masho... | m.a.f.o.m. 5.0 0
mata | mata 20 1
nata nata 20 1
sasi s, 130.0 0
shashi | f.a. 43.0 0
shisata | fis.ata 3.0 0
shusho... | f.u. 126.0 0

_images/spontaneouscorpus.png
Speakers E
v [Search. [Search...

L | oo | R R —

A11M0846 oyo'Qto H W ueQbulko'... |sUkue<.. |51.534

cyoH 4)| uwa 53.571

cyoHse'H 1 toH a#<cl>toH | 53.758

. | cvouisji 2 | KeNkyu oH.<cl> ke... | 54.111

cyoQto 1 sjicu uH.sjl<cl>... | 54.511

cyokuseN 1 de u<dde |54.672

cyokusecu 3 (FeH) ed.<fvs.<. |54.868

cyuHsyucu 3 webu eHw.e.<sv... |55.882

oy 3 2yoH u<cl>.zy.0H 56177

N B P

_images/gitksandelimited.png
ke,

eactimt

heougm b

n_delimited.txt

ry_transcriptiol

Gitksan_love_stor

(&

e

wiilia,

il

Lteiyea

R A

_images/neighdenresults.png
cat

Neighborhood density.

string type

Type or token

Algorithm type

Threshold

Transcription

N/A

Edit distance

Save to file

_images/tierpreview.png
Segments excluded: #, m, n, s, t, |

o

_images/gitksanloaded.png
[Search..

Tuk"uixsx"s

AUt m

hanaq

hanag'.t

he.c.a.mh.o:

hox.

_images/freqaltresults.png
Segment2 | Transcription tier Total words in corpus Total words with alternations | Frequency of alternation | Typeortoken | Distance metr|
Transcription 0.25 e nological edit
pti type Phonological edi
[Reopentuncionsios | S o e) (oz indon)

_images/neighdendialog.png
8086

Neighborhood Density

String similarity algorithm

(@ Edit distance

Phonological edit distance

(O Substitution neighbors only
Khorsi

Query Options
- Tier
) Calculate for one word in the corpus
[Trans

) Calculate for a word/nonword not in the corpus

None created | Create word/nonword |

) Calculate for list of words

[Choose fi

the corpus

(@ Calculate for all word
Column name: Neighborhood density

Calculate neighborhood density
(start new results table)

Type or token

+) Count types
Count tokens

Max distance /min similarity.

Threshold:

Output it of neighbors to a ile

Choose file...

Calculate neighborhood density | | Cancel

| [About neighborhood density..

(add to current results table)

_images/freqaltdialog.png
8086

Frequency Of Alternation

Segments

(Add pair of sounds

[Remove selected sound pair

Segment 1 Segment 2

String similarity algorithm

(O Edit distance
(@ Phonological edit distance

Calculate frequency of alternation
(start new results table)

Calculate frequency of alternation
(add to current results table)

Options
Tier

[Transcription s

Type or token

+) Count types
Count tokens

[Include minimal pairs
Threshold values

Maximum distance (edit distance): 6

Alignment
(Do phonological alignment
Corpus size

Subset corpus:

Output file f desired)

trnation_sample.txt| [Choose fil

[_Cancel | [About frequency of alternation...

_images/pronunciationvariant.png
desu Search...
Speling v | Transcipon | Frequency
deru 1
deruta 1
(] N.<cl>,d.e.sj,|

= R e gesi
desu 142 1

a.<cl>.d.esj,l
desu<H> 1

N.<cl>,
desyo’ 2
disuka'QsyoN. 3
do 4
Lot 17

_images/funtionalloaddialog.png
8086

Functional Load

Segments

[Add pair of sounds

[Remove selected sound pai

Functional load algorithm

m n

(@ Minimal pairs

() Change in entropy

Calculate functional load
(start new results table)

Options
Tier

[Transcription s

Multiple segment pair behaviour

() Al segment pairs together
(@) Each segment pair individually

Minimum frequency.

——

Minimal pair options

(M Use counts relative to number of possible pairs
(] Include homophones

Change in entropy options.

Type or token frequencies

<) Type
Token

Calculate functional load (
(add to current results table)

Cancel | [About functional load...

_images/corpustranscribed.png
8086 Create corpus from transcribed text

Corpus details

Path to corpus b [Choose file.

Name for corpus (auto-suggested) fans:

Punctuation to ignore

n_del

EIF
v
®

Check all Uncheck all

Transcription details

Transcription and features.

ion system [gitksan ¢
Feature system | hayes delimited +

Transcr

E—
Transcription delimiter |

Digraphs

—r

Construct a digraph

ok

Cancel

_images/logo.png
Phonological CorpusTools

Take the stress out of corpus analys

_images/importspontaneous.png
600 Import spontaneous speech corpus

rectory... |

Corpus directory: {1 ox/CS)/CS)_subset] | Choose directory... |

Corpus file set up: [TextG

[| Cancel

_static/freqaltdialog.png
8086

Frequency Of Alternation

Segments

(Add pair of sounds

[Remove selected sound pair

Segment 1 Segment 2

String similarity algorithm

(O Edit distance
(@ Phonological edit distance

Calculate frequency of alternation
(start new results table)

Calculate frequency of alternation
(add to current results table)

Options
Tier

[Transcription s

Type or token

+) Count types
Count tokens

[Include minimal pairs
Threshold values

Maximum distance (edit distance): 6

Alignment
(Do phonological alignment
Corpus size

Subset corpus:

Output file f desired)

trnation_sample.txt| [Choose fil

[_Cancel | [About frequency of alternation...

_images/proderror2.png
The environments specified were not unique.

Please refer to file ‘pred_of_dist_s_f_error.txt'in the errors directory for
details or click on Show Details.

.| [Close | [_Open errors directory |

| Hide Detai

Segments you selected: s, |
Environments you selected: #_, #,, [+voc]

Word
shisata

n

Word environment Overlapping environments
#i #,_l+voc]
#i #, [+voc]

shushoma #_u #,_[+voc]

_static/gitksanloaded.png
[Search..

Tuk"uixsx"s

AUt m

hanaq

hanag'.t

he.c.a.mh.o:

hox.

_static/comment-bright.png

_static/freqaltresults.png
Segment2 | Transcription tier Total words in corpus Total words with alternations | Frequency of alternation | Typeortoken | Distance metr|
Transcription 0.25 e nological edit
pti type Phonological edi
[Reopentuncionsios | S o e) (oz indon)

_static/createtier.png
8086 Create tier

Name of tier

Non-mid vowels

Basis for creating
(Segments 3]

Segments to define the tier

Consonants

Lablal | Dental | Alveopalatal

stop €

Nasal m [[n)

Fricative s 7]

Vowels

Front | Near back | Back

Close.

Close mid e o

Open (==

Diphthongs

Other

=3

[Createtier | [Previewtier | [Cancel

_static/loadfeature.png
8086 Create feature system from csv

Path to feature system (i o et [Choose file...|

Transcription and features.

ion system [Custom ¢

Transcription system name (if custom) [gitksan
Feature system | hayes s

Feature system name (if custom)

Column delimiter (enter "\t' for tab) [\t

e Cancel

_static/tierpreview.png
Segments excluded: #, m, n, s, t, |

o

_static/neighdenresults.png
cat

Neighborhood density.

string type

Type or token

Algorithm type

Threshold

Transcription

N/A

Edit distance

Save to file

_static/neighdendialog.png
8086

Neighborhood Density

String similarity algorithm

(@ Edit distance

Phonological edit distance

(O Substitution neighbors only
Khorsi

Query Options
- Tier
) Calculate for one word in the corpus
[Trans

) Calculate for a word/nonword not in the corpus

None created | Create word/nonword |

) Calculate for list of words

[Choose fi

the corpus

(@ Calculate for all word
Column name: Neighborhood density

Calculate neighborhood density
(start new results table)

Type or token

+) Count types
Count tokens

Max distance /min similarity.

Threshold:

Output it of neighbors to a ile

Choose file...

Calculate neighborhood density | | Cancel

| [About neighborhood density..

(add to current results table)

_static/gitksandelimited.png
ke,

eactimt

heougm b

n_delimited.txt

ry_transcriptiol

Gitksan_love_stor

(&

e

wiilia,

il

Lteiyea

R A

_images/acousticsimdialog.png
8086

Acoustic Similarity

Comparison type

(® Analyze single directory
Directory:

Represenation

(@ MFcC
() Amplitude envelopes

ilarity /Hungarian_s | [_Choose

directory... | Distance algorithm

() Compare two directories
First directory:

(®) Dynamic time warping
) Cross-correlation

Frequency limits

| Choose directory... |
Minimur frequency (H2): (80
Sl ey Maximum frequency (Hz): (7800
| Choose directory... | Frequency resolution
() Use list of full path comparisons Number of filters: |26
——— Number of coefficients (MFCC only): 12
Choose fil

(] Output as similarity (0 to 1)

The acoustic similarity module loaded
does not support multiprocessing.

Install python-acousti
to access multiprocessing and ad

Calculate acoustic similarity.
(start new results table)

Calculate acoustic similarity | | Cancel | [About acoustic

milarity...

(add to current results table)

_images/stringsimilaritydialog.png
600 String Similarity

String similarity algorithm Comparison type Options
- - Tier
() Edit distance () Compare one word to entire corpus
) Phonological edit distance
(® Khorsi
Calculate for a word/nonword not in the corpus. | Transcription
None created | Create word/nonword |
() Compare a single pair of words to each other e
Word 1 spelling (if in corpus): [mata O Count types
None created | Create word/nonword (#) Count tokens.
Word 2 spelling (i in corpus):
mitoo (m.i.t.u) | Create word/nonword | e e el
Compare alist of pairs of words. ——
| Choose file... | Maximum:
Clear all created words/nonwords]
Calculate string similarity Calculate string similarity PR
(start new results table) (add to current results table) | | Cancel jJ lmmAbostring;smilariy.

_images/digraph.png
600 Construct Digraph

Characters.

aceh
sxuwxya¢7'
x

[Add | [Addand create another | [Cancel |

_images/midialog.png
Mutual Information

Options
Tier

Add bigram

Transcription

(Remove selected bigrams

ti

Set domain to word [
Halve word boundary count &

Calculate mutual information
(start new results table)

Calculate mutual information
(add to current results table)

Cancel About mutual informati

_images/phonosearchenvironment2.png
8006 Phonological search

Environments Options

Tier

Basis for sear

(Add environment
[Features 3

[Remove selected environments |

~voice
~cont
[+vod]
aa
| Add [+feature] |
| Add [-feature] | -
| Add [feature] | =
mv_glot_cl | Add [nfeature] |
nasal [Remove selected |
round
son [Removeall |
strid
tense
Calculate phonological search Calculate phonological search | (

(start new results table) (add to current results table) Cancel [mAbout phonolog calsearchacm]

search.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

_images/klresults.png
T T SOOI —

| segmenti y| segmenz | Comext | Segmemlenwopy Segment2emwopy | KL | PossbleUR | Spurious allophones?
e m right 0.003 0.232 0703 e Yes
e n right 0.003 0.004 0442 e Yes
e s right 0.003 0.178 0598 e Yes
e t right 0.003 0.265 0845 e Yes
e u right 0.003 0.06 0387 |u Yes
e I right 0.003 0.148 0635 e Yes
m n right 0.232 0.004 0199 |n No
m s right 0.232 0.178 001 s Yes
m t right 0.232 0.265 0172 |m Yes
m u right 0.232 0.06 0693 |u Yes
m I right 0.232 0.148 0414 S No
n s right 0.004 0.178 013 |n Yes
n t right 0.004 0.265 0369 |n Yes
n u right 0.004 0.06 0424 |u Yes
n I right 0.004 0.148 0121 |n Yes
s t right 0.178 0.265 0198 s Yes
s u right 0.178 0.06 0583 |u Yes
s I right 0.178 0.148 0326 S No
t u right 0.265 0.06 086 |u Yes
t I right 0.265 0.148 0373 |f Yes
— ———————— Save o e] (Clos window]

about.html

 Navigation

 		
 index

 		Phonological CorpusTools 1.0.0 documentation »

 [image: _images/logo.png]

About

Phonological CorpusTools allows for easy computation of phonological metrics
used in the literature for any corpus of language that you provide.

Github repository [https://github.com/kchall/CorpusTools/]

SourceForge page [http://sourceforge.net/projects/phonologicalcorpustools/]

Contributors

Kathleen Currie Hall (kathleen.hall@ubc.ca)

Blake Allen

Michael Fry

Scott Mackie

Michael McAuliffe

Department of Linguistics

The University of British Columbia

Acknowledgments

We give special thanks to Kevin McMullin for help throughout
this project; to Andy Wedel for help with the implementation of functional load;
to Barbara Sennott, originally from Kispiox / Anspayax, for the use of her Gitksan
love story as an example; to Paul Tupper, John Goldsmith, and Jason Riggle for
discussion of mutual information; to Alfred Ko for help in compiling various
transcription / feature files; and to Kenny Vaden, Marc Brysbaert, Bruce Hayes,
and Jeff Mielke for the use of the IPHOD corpus, SUBTLEX frequencies,
Hayes features, and P-base features (respectively) within PCT. Financial
support for this project comes from a SSHRC Insight Development Grant to
Kathleen Currie Hall.

 © Copyright 2015, PCT.
 Created using Sphinx 1.2.2.

_images/proddialog.png
8086

Predictability of distribution

Segments Environments Options
Tier
(Add pair of sounds] (Add environment
[Remove selected sound pair | (Remove selected environments [Transcri o

Segment 1 Segment 2

_[+voc, +high]

Calculate predictability of distribution
(start new results table)

Calculate predictability of distribution
(add to current results table)

Type or token

() Count types
() Count tokens

Exhaustivity and uniqueness

(Enforce environment
exhaustivity and uniqueness

[_Cancel | [About predictability of distribution...

_images/corpustranscribed_digraphs.png
8006

Create corpus from transcribed text

Corpus details

Name for corpus (auto-suggested) bry_transcs

Punctuation to ignore

Path to corpus [|

txt

Choose fil

n_only

UL DAL
Ny < >|?|e \
NinIBIntnInIE

Check all

Uncheck all

Transcription details

Transcription and features.

n system [gitksan _ +
Feature system | hayes s

Trans

Transcription delimiter

Digraphs

s, 15,01,20, 00 Wk ALK

Construct a digraph

ok

Cancel

_images/asresults.png
__Acoustic similarity r

File 2 Representation Match function Minimum frequency. Maximum frequency Number of filters Number of coefficients Resu
501_s_02.wav | 501_s_03.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 30.092
501_s_01.wav | 501_s_05.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 29.822
501_s_01.wav | 501_s_03.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 28.17¢
501_s_02.wav | 501_s_01.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 30.906
501_s_05.wav | 501_s_01.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 29.822
501_s_05.wav | 501_s_04.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 30.401
501_s_05.wav | 501_s_03.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 31.042
501_s_05.wav | 501_s_02.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 29.328
501_s_03.wav | 501_s_05.wav | MFCC Dynamic time warping | 80.0 7800.0 26 12 31.042
501_s_03.wav | 501_s_02.wav | MFCC Dynami 80.0 7800.0 26 12 30.092

[Reopenfunctiondialg] |

Save to file

Close window

_static/kldialog.png
8086

Kullback-Leibler

Segments

Add pair of sounds

Remove selected sound p:

-
. "
. .
. .
. p
. .

Contexts to examine.

Left-hand side only
(@ Right-hand side only
Both sides

Calculate Kullback-Leibler
(start new results table)

Calculate Kullback-Leibler
(add to current results table)

[Cancel | [About Kullback-Leible

_static/bigram.png
800 Create bigram

Left hand side Right hand side
Consonants Consonants
Labial | Dental | Alveopalatal Labial | Dental | Alveopalatal
stop t stop t
Nasal m| |n Nasal m| |n
Fricative s I Fricative s I
Vowels Vowels
Front | Near back | Back Front | Near back | Back
Close] u Close [i] u
Close mid e ° Close mid e °
Open a Open a
Diphthongs Diphthongs
Other Other
#

[Add | [Add and create another | [Cancel |

_static/spontaneouscorpus.png
Speakers E
v [Search. [Search...

L | oo | R R —

A11M0846 oyo'Qto H W ueQbulko'... |sUkue<.. |51.534

cyoH 4)| uwa 53.571

cyoHse'H 1 toH a#<cl>toH | 53.758

. | cvouisji 2 | KeNkyu oH.<cl> ke... | 54.111

cyoQto 1 sjicu uH.sjl<cl>... | 54.511

cyokuseN 1 de u<dde |54.672

cyokusecu 3 (FeH) ed.<fvs.<. |54.868

cyuHsyucu 3 webu eHw.e.<sv... |55.882

oy 3 2yoH u<cl>.zy.0H 56177

N B P

_static/loadexample.png
usTe

[Search...
[spelling v | Transcripion Frequency |
atema | atem.a 110 o
enuta |enuta 110 0
masho... | m.a.f.o.m. 5.0 0
mata | mata 20 1
nata nata 20 1
sasi s, 130.0 0
shashi | f.a. 43.0 0
shisata | fis.ata 3.0 0
shusho... | f.u. 126.0 0

_images/segmentpair.png
™ Consonants

Labial | Dental | Aveopalatal

= ||

Nosa! .

fricatve . .

™ Vowels

Front | Nearback | Back

Close. i

Close mid o

Open a

Diphthongs

Other

#

[Add | | Add and create another | | Cancel

_static/funtionalloadresults.png
o Functional load results

[sgment v | segment2 Transcripton tier Type of funcational load Result lgnored homophones? Relatve count2 Minimum word frequency Type or toke
m

n ‘ Transcription ‘ Minimal pairs ‘ 0.111 ‘ No ‘ Yes 10 ‘ type

[Reopenfunctiondialog || Save to file] (Close window

_static/loadcorpus.png
8006 Load corpora

Available corpora

‘closed_monosyllabic_words_from_IPHO| [Download example corpora |

example
fox_in_sox_running_text (

Gitksan_love_story_transcription_c 7
inhod [Create corpus from running text (orthography) |

Load corpus from pre-formatted textfile |

[Create corpus from running text (transc

(Import spontaneous speech corpus]

(Remove selected corpus]

Load selected corpus) (Cancel

_static/file.png

_static/stringsimilarityresults.png
Word2 | Swingtype | Result | Typeortoken | Algorithm type

mata mitoo. Transcription | -11.429 | token Khorsi

[e T S—

_static/prodfreq.png
[soundi w| sownz | Ter Environment Freq. of Sound1. Freq. of Sound2 Freq. of env. Entropy Type or token
s I Transcription | FREQ-ONLY 5 9 14 0.94 type
m n Transcription | FREQ-ONLY 6 4 10 0.971 type
e i Transcription | FREQ-ONLY 3 10 13 0.779 type
i u Transcription | FREQ-ONLY 10 4 14 0.863 type

Save to file

_static/minus.png

_static/phonosearchsummary.png
008 s PhONOIOGICE) SEB1C (UM s

Environment Type frequency Token frequency.

t #_[+voc] 5.0 235.0

t aa 3.0 7.0

Show ndividul resuls | [Reapen Fnction deg)

_static/prodresults.png
0.0 oo e PO CEDIY,OF JiStIBUTON LSS s s

Soundl | Sound2 | Tier | Environment Freq.ofSound2 | Freg.ofew. | Entropy | Typeortoken
s I Transcription |_# 0 0 0 0 type
s I Transcription |_[-voc] 0 0 0 0 type
s I Transcription |_[+voc,+highl | 2 5 7 0.863 type
s I Transcription |_[+voc,-highl |3 4 7 0.985 type
s I Transcription | AVG 5 9 10 0.924 type

[Reopenfunctondaios] | Saveto e) (Close window

_static/stringsimilaritydialog.png
600 String Similarity

String similarity algorithm Comparison type Options
- - Tier
() Edit distance () Compare one word to entire corpus
) Phonological edit distance
(® Khorsi
Calculate for a word/nonword not in the corpus. | Transcription
None created | Create word/nonword |
() Compare a single pair of words to each other e
Word 1 spelling (if in corpus): [mata O Count types
None created | Create word/nonword (#) Count tokens.
Word 2 spelling (i in corpus):
mitoo (m.i.t.u) | Create word/nonword | e e el
Compare alist of pairs of words. ——
| Choose file... | Maximum:
Clear all created words/nonwords]
Calculate string similarity Calculate string similarity PR
(start new results table) (add to current results table) | | Cancel jJ lmmAbostring;smilariy.

_static/down.png

_static/proddialog.png
8086

Predictability of distribution

Segments Environments Options
Tier
(Add pair of sounds] (Add environment
[Remove selected sound pair | (Remove selected environments [Transcri o

Segment 1 Segment 2

_[+voc, +high]

Calculate predictability of distribution
(start new results table)

Calculate predictability of distribution
(add to current results table)

Type or token

() Count types
() Count tokens

Exhaustivity and uniqueness

(Enforce environment
exhaustivity and uniqueness

[_Cancel | [About predictability of distribution...

_static/plus.png

_static/corpustranscribed_digraphs.png
8006

Create corpus from transcribed text

Corpus details

Name for corpus (auto-suggested) bry_transcs

Punctuation to ignore

Path to corpus [|

txt

Choose fil

n_only

UL DAL
Ny < >|?|e \
NinIBIntnInIE

Check all

Uncheck all

Transcription details

Transcription and features.

n system [gitksan _ +
Feature system | hayes s

Trans

Transcription delimiter

Digraphs

s, 15,01,20, 00 Wk ALK

Construct a digraph

ok

Cancel

_static/klresults.png
T T SOOI —

| segmenti y| segmenz | Comext | Segmemlenwopy Segment2emwopy | KL | PossbleUR | Spurious allophones?
e m right 0.003 0.232 0703 e Yes
e n right 0.003 0.004 0442 e Yes
e s right 0.003 0.178 0598 e Yes
e t right 0.003 0.265 0845 e Yes
e u right 0.003 0.06 0387 |u Yes
e I right 0.003 0.148 0635 e Yes
m n right 0.232 0.004 0199 |n No
m s right 0.232 0.178 001 s Yes
m t right 0.232 0.265 0172 |m Yes
m u right 0.232 0.06 0693 |u Yes
m I right 0.232 0.148 0414 S No
n s right 0.004 0.178 013 |n Yes
n t right 0.004 0.265 0369 |n Yes
n u right 0.004 0.06 0424 |u Yes
n I right 0.004 0.148 0121 |n Yes
s t right 0.178 0.265 0198 s Yes
s u right 0.178 0.06 0583 |u Yes
s I right 0.178 0.148 0326 S No
t u right 0.265 0.06 086 |u Yes
t I right 0.265 0.148 0373 |f Yes
— ———————— Save o e] (Clos window]

_static/phonosearchenvironment2.png
8006 Phonological search

Environments Options

Tier

Basis for sear

(Add environment
[Features 3

[Remove selected environments |

~voice
~cont
[+vod]
aa
| Add [+feature] |
| Add [-feature] | -
| Add [feature] | =
mv_glot_cl | Add [nfeature] |
nasal [Remove selected |
round
son [Removeall |
strid
tense
Calculate phonological search Calculate phonological search | (

(start new results table) (add to current results table) Cancel [mAbout phonolog calsearchacm]

_static/midialog.png
Mutual Information

Options
Tier

Add bigram

Transcription

(Remove selected bigrams

ti

Set domain to word [
Halve word boundary count &

Calculate mutual information
(start new results table)

Calculate mutual information
(add to current results table)

Cancel About mutual informati

_static/digraph.png
600 Construct Digraph

Characters.

aceh
sxuwxya¢7'
x

[Add | [Addand create another | [Cancel |

_static/acousticsimdialog.png
8086

Acoustic Similarity

Comparison type

(® Analyze single directory
Directory:

Represenation

(@ MFcC
() Amplitude envelopes

ilarity /Hungarian_s | [_Choose

directory... | Distance algorithm

() Compare two directories
First directory:

(®) Dynamic time warping
) Cross-correlation

Frequency limits

| Choose directory... |
Minimur frequency (H2): (80
Sl ey Maximum frequency (Hz): (7800
| Choose directory... | Frequency resolution
() Use list of full path comparisons Number of filters: |26
——— Number of coefficients (MFCC only): 12
Choose fil

(] Output as similarity (0 to 1)

The acoustic similarity module loaded
does not support multiprocessing.

Install python-acousti
to access multiprocessing and ad

Calculate acoustic similarity.
(start new results table)

Calculate acoustic similarity | | Cancel | [About acoustic

milarity...

(add to current results table)

_static/up.png

_images/neighdencolumn.png
LN M .. < (77T 1 —"

[Search...
speling v | | Frequency | Neighborhood density
atema 110 0
enuta 110 0
masho... 5.0 0
mata 20 1
nata 20 1
sasi 139.0 0
shashi | f.a. 43.0 0
shisata | fis.ata 3.0 0
f.u.lo.m.a 0

_static/down-pressed.png

_static/cvtier.png
() CV skeleton

The following abstract symbols
correspond to the following segments:
cmns,)
Vie/i,0,u,a

o)

_static/comment-close.png

_static/createtierfeatures.png
8086 Create tier

Name of tier

Vowels

Basis for creating tie:

(Features 2]

Features to define the tier

+voc

hi_subgl_p
glot_cl
EXTRA
distr
round
voice | Add [+feature] |
mv_glotel |l Tadq [feature] |
son

| Add [feature] |
LONG | Add [nfeature] |
lat
cor

cont

[Remove selected |

[Removeall |

[Createtier | [Previewtier | [Cancel

_static/neighdeninputresults.png
600 Neighborhood density results

_ Neighborhood density | Swingtype | Typeortoken | Algorithmtype | Threshold
snow |15 Transcription | N/A Edit distance 1

bell 64 Transcri N/A 1

tree |41 Transcription | N/A 1

ice 37 Transcription | N/A 1

love |21 Transcription | N/A Edit distance 1

star 21 Transcription | N/A Edit distance 1

Angel |2 Transcription | N/A 1

[Reopen function dialog | | Save to file) (Close window

_static/neighdeninput.png
© 0O [7word.list for ND_calcs.txt

bell
tree
love
star
angel

_static/neighdendialogoutput.png
8086

Neighborhood Density

String similarity algorithm

(@ Edit distance

() Phonological edit distance
(O Substitution neighbors only
O Khorsi

Query.

Options
. Tier

(@ Calculate for one word in the corpus

fcat [Transcri o

Calculate for a word/nonword not in the corpus

None created | Create word/nonword |

Calculate for list of words

[Choose file.

Calculate for all words in the corpus

Column name: Neighborhood density

Calculate neighborhood density
(start new results table)

Type or token

+) Count types
Count tokens

Max distance /min similarity.

Threshold: 1

Output it of neighbors to a ile

Choose file.

Calculate neighborhood density
(add to current results table)

(Cancel

| [About neighborhood density..

_static/funtionalloaddialog.png
8086

Functional Load

Segments

[Add pair of sounds

[Remove selected sound pai

Functional load algorithm

m n

(@ Minimal pairs

() Change in entropy

Calculate functional load
(start new results table)

Options
Tier

[Transcription s

Multiple segment pair behaviour

() Al segment pairs together
(@) Each segment pair individually

Minimum frequency.

——

Minimal pair options

(M Use counts relative to number of possible pairs
(] Include homophones

Change in entropy options.

Type or token frequencies

<) Type
Token

Calculate functional load (
(add to current results table)

Cancel | [About functional load...

_static/ajax-loader.gif

_static/proderror2.png
The environments specified were not unique.

Please refer to file ‘pred_of_dist_s_f_error.txt'in the errors directory for
details or click on Show Details.

.| [Close | [_Open errors directory |

| Hide Detai

Segments you selected: s, |
Environments you selected: #_, #,, [+voc]

Word
shisata

n

Word environment Overlapping environments
#i #,_l+voc]
#i #, [+voc]

shushoma #_u #,_[+voc]

_static/importspontaneous.png
600 Import spontaneous speech corpus

rectory... |

Corpus directory: {1 ox/CS)/CS)_subset] | Choose directory... |

Corpus file set up: [TextG

[| Cancel

_static/segmentpair.png
™ Consonants

Labial | Dental | Aveopalatal

= ||

Nosa! .

fricatve . .

™ Vowels

Front | Nearback | Back

Close. i

Close mid o

Open a

Diphthongs

Other

#

[Add | | Add and create another | | Cancel

_static/corpustranscribed.png
8086 Create corpus from transcribed text

Corpus details

Path to corpus b [Choose file.

Name for corpus (auto-suggested) fans:

Punctuation to ignore

n_del

EIF
v
®

Check all Uncheck all

Transcription details

Transcription and features.

ion system [gitksan ¢
Feature system | hayes delimited +

Transcr

E—
Transcription delimiter |

Digraphs

—r

Construct a digraph

ok

Cancel

_static/proderror.png
The environments specified were not exhaust

Please refer to file ‘pred_of_dist_s_f_error.txt'in the errors directory for
details or click on Show Details.

| [Close | [~Openerrors directory |

| Hide Detai

Segments you selected: s, |
Environments you selected: #_, #

Word
mashomi
shisata

Relevant environments (segmental level only)

_static/logo.png
Phonological CorpusTools

Take the stress out of corpus analys

_static/pronunciationvariant.png
desu Search...
Speling v | Transcipon | Frequency
deru 1
deruta 1
(] N.<cl>,d.e.sj,|

= R e gesi
desu 142 1

a.<cl>.d.esj,l
desu<H> 1

N.<cl>,
desyo’ 2
disuka'QsyoN. 3
do 4
Lot 17

_static/phonosearchindividual.png
BD.0.0 s PHONOI0GICE) SO EIUHS s

Word | Transcription | Segment
nata nata t aa
mata mata t aa
shisata fisata t aa
ta ta t #_[+voc]
tatomi tatomi t #_[+vod]
tusa tus.a t #_[+voc]
toni to.ni t #_[+vod]
tishenishu t #_[+vod]

Show summary results | [Reopen function dialog | | Save to file Close window

_static/downloadfeature.png
6006 Download feature system

Selecta transeription system Select a feature system
el
(O ARPABET (CMU) *) Sound Pattern of English (SPE)
) XSAMPA -

(@ CELEX
S oisc Clig

Klatt

[Cancel

_static/phonoprobresults.png
Phonotactic probability results

Tier Phonotactic probability Algorithm Probabilty type ‘Type or token

Transcription ‘ 0.06 Vitevitch & Luce

ngle-phone token

[Reopen function dialog | | Save to file) (Close window

